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Statistical Measure for Risk-seeking Stochastic 
Wind Power Offering Strategies in 

Electricity Markets
Dongliang Xiao, Haoyong Chen, Chun Wei, and Xiaoqing Bai

Abstract——This study proposes a statistical measure and a sto‐
chastic optimization model for generating risk-seeking wind 
power offering strategies in electricity markets. Inspired by the 
value at risk (VaR) to quantify risks in the worst-case scenarios 
of a profit distribution, a statistical measure is proposed to 
quantify potential high profits in the best-case scenarios of a 
profit distribution， which is referred to as value at best (VaB) 
in the best-case scenarios. Then, a stochastic optimization mod‐
el based on VaB is developed for a risk-seeking wind power pro‐
ducer, which is formulated as a mixed-integer linear program‐
ming problem. By adjusting the parameters in the proposed 
model, the wind power producer can flexibly manage the poten‐
tial high profits in the best-case scenarios from the probabilistic 
perspective. Finally, the proposed statistical measure and risk-
seeking stochastic optimization model are verified through case 
studies.

Index Terms——Electricity market, risk-seeking, statistical mea‐
sure, stochastic optimization, wind power.

I. INTRODUCTION 

IN deregulated electricity markets, wind power producers 
need to develop optimal offering strategies while consider‐

ing their risk preferences (e. g., risk-neutral, risk-averse, or 
risk-seeking) [1]. A risk-neutral participant seeks to maxi‐
mize its expected profit, whereas risk-averse and risk-seek‐
ing participants might minimize the risks in the worst-case 
scenarios and maximize profits in the best-case scenarios, re‐
spectively, as depicted in Fig. 1. A typical real-world risk-
seeking example is that people are interested in lotteries be‐
cause of the potential for winning large prizes, even though 
the expected returns from lotteries are usually negative [2]. 
In [3] and [4], the prospect theory and regulatory focus theo‐

ry are utilized to explain risk-seeking behaviors, respective‐
ly. Risk-seeking behaviors have been extensively studied in 
the markets of multi-type products such as stock [5], crude 
oil [6], and cryptocurrency [7]. However, most existing deci‐
sion-making models in electricity markets have been devel‐
oped for risk-neutral and risk-averse participants. By con‐
trast, the research on risk-seeking electricity market partici‐
pants has been quite limited.

Stochastic optimization [8], robust optimization [9], and 
information gap decision theory (IGDT) [10] have been 
widely used by electricity market participants facing risks. In 
stochastic optimization models, uncertain parameters are rep‐
resented by the scenarios generated based on their probabili‐
ty distributions, and risk-averse participants can manage the 
risks in the worst-case scenarios by using risk measures such 
as value at risk (VaR) and conditional value at risk (CVaR). 
By contrast, the stochastic optimization models used by risk-
seeking participants have not been reported. The robust opti‐
mization model is suitable only for risk-averse participants 
because it only considers the worst-case scenarios. The non-
probabilistic IGDT models with robust and opportunistic 
functions can be used by risk-averse and risk-seeking partici‐
pants, respectively. However, IGDT models do not utilize 
the full probability distributions of uncertain parameters. 
Thus, high profits cannot be quantified or managed from the 
probabilistic perspective.

Specifically, IGDT and stochastic optimization are risk-
aware optimization techniques suitable for different cases. 
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Fig. 1.　Cumulative probability distribution of expected profit.
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IGDT is a non-probabilistic method without strict statistical 
assumptions and can be used when the probability distribu‐
tions of uncertain parameters are difficult to estimate. Thus, 
it cannot manage expected profit from the probabilistic per‐
spective. By contrast, the stochastic optimization is a proba‐
bilistic approach that requires the probabilistic forecasting re‐
sults of uncertain parameters and can therefore fully utilize 
the statistical properties of uncertain parameters to manage 
the expected profit more accurately and flexibly. Risk-seek‐
ing IGDT methods have been proposed in many studies, 
whereas the risk-seeking stochastic optimization method has 
yet to be developed. This is the research gap that this study 
intends to fill.

Thus, this study proposes a statistical measure and stochas‐
tic optimization model for risk-seeking participants in elec‐
tricity markets. This study shows that, when probabilistic 
forecasting results of uncertain parameters are available, the 
proposed risk-seeking stochastic optimization method is 
more accurate and flexible than the existing risk-seeking IG‐
DT method. The main contributions of this study are two‐
fold: ① a statistical measure is proposed to quantify poten‐
tial high profits in the best-case scenarios with expected prof‐
it distribution of a decision maker; ② a risk-seeking stochas‐
tic optimization model is developed to generate wind power 
offering strategies in electricity markets.

II. PROPOSED STATISTICAL MEASURE 

In a stochastic optimization model, a risk-neutral partici‐
pant seeks to maximize the total expected profit when con‐
sidering all possible scenarios, whereas a risk-averse partici‐
pant can manage the risks in the worst-case scenarios by in‐
corporating a risk measure into its objective function, which 
can be expressed as:

max
x

 (1 - βr )Eζ ( f (xζ))+ βr Rζ ( f (xζ)) (1)

where x and ζ are the vectors of the decision variables and 
uncertain parameters, respectively; f (xζ) is the profit distri‐
bution function; Eζ ( f (xζ)) is the expected value; 
Rζ ( f (xζ)) is a risk measure of f (xζ) such as VaR and 
CVaR; and βr is the risk-averse degree, and a larger βr indi‐
cates that the participant is more risk-averse. Given a confi‐
dence level parameter αrÎ(01), the VaR of f (xζ) is denoted 
as VaR(αrx) and is equal to the largest ηr, which ensures 
that the probability of making a profit less than ηr is not 
more than 1 - αr. If ζ is approximated by a scenario set 
{ζw }NΩ

w = 1 consisting of NΩ scenarios, VaR(αrx) can be ex‐
pressed as:

VaR(αrx)=max {ηr: P(ζw|f (xζw )< ηr )£ 1 - αr }    "αrÎ ( )01
 (2)

where VaR(αrx) is the upper bound of the potential losses 
or low profits in the (1 - αr )´ 100% worst-case scenarios.

A risk-seeking participant is sensitive to high profits in 
the best-case scenarios and can adopt an objective function 
consisting of the total expected profit and a statistical mea‐
sure of high profits. This can be expressed as:

max
x

 (1 - βs )Eζ ( f (xζ))+ βs Bζ ( f (xζ)) (3)

where Bζ ( f (xζ)) is a statistical measure of the high profits 

in the best-case scenarios of the profit distribution f (xζ); 
and βs is the risk-seeking degree, and a larger βs indicates 
that the participant is more risk-seeking.

Inspired by the risk measure VaR used by risk-averse par‐
ticipants, a statistical measure is proposed to quantify the 
high profits of a risk-seeking participant, which is referred to 
as the value at best (VaB) in the best-case scenarios. Given a 
probability parameter αsÎ(01), the VaB of profit distribution 
f (xζ) can be denoted as VaB(αsx) and is equal to the larg‐
est ηb, which ensures that the probability of making a profit 
equal to or higher than ηb is not less than αs. This can be ex‐
pressed as:

VaB(αsx)=max {ηb: P(ζw|f (xζw )³ ηb )³ αs }    "αsÎ(01) (4)

where the proposed statistical measure VaB(αsx) can be re‐
garded as the lower bound of the potential high profits in 
the αs ´ 100% best-case scenarios for profit distribution. Be‐
cause VaR and VaB are both quantiles of the expected profit 
probability distribution, VaB may have some properties simi‐
lar to those of VaR such as the non-convexity of the associat‐
ed stochastic optimization problem, which is discussed in 
Section III-B.

III. PROPOSED STOCHASTIC OPTIMIZATION MODEL 

A. Market Framework and Uncertainty Characterization

A typical U.S. electricity market includes day-ahead (DA) 
and real-time (RT) markets. The wind power producer sub‐
mits DA offers before the closure time of DA market. In the 
RT market, the deviations between the DA offers and actual 
wind power are settled at RT prices and charged with devia‐
tion penalties. Thus, the uncertain parameters faced by the 
wind power producer include wind power and electricity 
prices in the DA and RT markets. In this study, the scenarios 
with uncertain parameters are generated using the seasonal 
autoregressive integrated moving average (SARIMA) model, 
and their dependency is characterized through a variance-co‐
variance-based method [11].

B. Proposed Risk-seeking Stochastic Optimization Model 
Based on VaB

In this section, mathematical formulas of the proposed 
risk-seeking stochastic optimization model based on VaB 
used by a wind power producer in electricity market are il‐
lustrated, which consists of (5) - (13). The objective function 
of the proposed risk-seeking stochastic optimization model 
can be expressed as:

max
Ξ

 (1 - βs )∑
w = 1

NΩ

Prw × πw + βsηb (5)

where Ξ ={πwηbzwP
WD
tw ∆+

tw∆-
tw } is the decision variable set 

of the model, and zw is a binary variable that is equal to 1 
when πw ³ ηb and 0 otherwise, P WD

tw  is the wind power sold in 
the DA market, ∆+

tw and ∆-
tw are positive and negative RT 

wind power deviations, respectively; and Prw and πw are the 
probability and profit of scenario w, respectively, and 

∑
w = 1

NΩ

Prw × πw is the total expected profit of NΩ scenarios. In ad‐

dition, ηb is used to quantify the high profits by the statisti‐
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cal measure VaB in the best-case scenarios, which can be 
calculated using constraints (6)-(9).

πw - ηb £Mzw    "w (6)

ηb - πw £M (1 - zw )    "w (7)

zwÎ{01}    "w (8)

∑
w = 1

NΩ

Prw × zw ³ αs    "w (9)

where M is a sufficiently large constant. Constraints (6)-(8) 
indicate that for each scenario w, zw is equal to 1 when πw ³
ηb and 0 otherwise. By maximizing ηb in the objective func‐
tion (5), constraint (9) ensures that the probability of obtain‐
ing a profit equal to or higher than ηb is no less than αs. The 
weight parameter βs assigned to VaB in (5) is the risk-seek‐
ing degree, where a larger βs indicates that the VaB is maxi‐
mized more significantly and the wind power producer is 
more risk-seeking.

The profit of wind power producer in each scenario is cal‐
culated using constraints (10)-(13).

πw = λ
DA
tw P WD

t + λRT
tw (∆+tw - ∆-

tw )- λP
t ∆+tw - λN

t ∆-tw     "tw    (10)

P WR
tw -P WD

tw = ∆+
tw - ∆-

tw    "tw (11)

∆+
tw ³ 0 ∆-

tw ³ 0     "tw (12)

0 £P WD
t £PWmax    "t (13)

where P WR
tw , λDA

tw , and λRT
tw  are the uncertain RT wind power 

production, DA electricity price, and RT electricity price, re‐
spectively; and PWmax, λP

t , and λN
t  are the maximum wind 

power capacity, positive deviation penalty, and negative devi‐
ation penalty, respectively. Constraint (10) provides the prof‐
it in scenario w, which is equal to the revenue of selling 
wind power in DA markets plus the profits or minus the loss‐
es caused by RT power deviations. Specifically, a positive 
deviation ∆+

tw and a negative deviation ∆-
tw would be sold and 

bought at RT electricity prices, respectively, and both ∆+
tw 

and ∆-
tw would be charged with deviation penalties. Con‐

straints (11) and (12) calculate the positive and negative RT 
power deviations, respectively. Constraint (13) limits the DA 
wind power offering quantities to be the installed capacity.

In addition to electricity prices and wind power produc‐
tion, other uncertain parameters can also be incorporated in‐
to the proposed risk-seeking stochastic optimization model 
by using their scenario sets. Because the binary variable is 
used in constraints (6)-(9), the proposed stochastic optimiza‐
tion model is not convex, which indicates that its computa‐
tional cost might be high when a large number of scenarios 
are considered. In this circumstance, the scenario reduction 
method in [12] or the model decomposition method in [13] 
can be adopted to simplify the stochastic optimization model 
and decrease the computational cost.

It should be noted that the proposed constraints (5) - (9) 
used to calculate VaB can be incorporated into a general sto‐
chastic optimization model without adding additional nonlin‐
ear terms. Therefore, by changing constraints (10)-(13) used to 
calculate the expected profit, risk-seeking stochastic optimiza‐
tion models can be developed for other decision-makers with 
different physical properties and market rules and policies.

C. Risk-averse Stochastic Optimization Models based on 
VaR and CVaR

To make this study self-contained, the risk-averse stochas‐
tic optimization models based on VaR and CVaR are de‐
scribed in this subsection, which will then be used in Sec‐
tion IV to conduct a comparative study. Specifically, the ob‐
jective function of a risk-averse stochastic optimization mod‐
el is the weighted sum of the total expected profit and a risk 
measure, which is expressed as:

max
Ξ

( )1 - βr ∑
w = 1

NΩ

Prw × πw + βrηr (14)

where ηr is a risk measure such as VaR or CVaR.
The VaR in a risk-averse stochastic optimization model 

can be calculated using constraints (15)-(17).
ηr - πw £Myw     "w (15)

ywÎ{01}     "w (16)

∑
w = 1

NΩ

Prw × yw £ 1 - αr    "w (17)

where yw is a binary variable that is equal to 0 when πw ³ ηr 
and 1 otherwise. Therefore, the risk-averse stochastic optimi‐
zation model based on VaR is composed of (10)-(17).

The CVaR in a risk-averse stochastic optimization model 
can be calculated using constraints (18)-(20).

ηr = ζ -
1

1 - αr
∑
w = 1

NΩ

Prw × gw     "w (18)

gw ³ 0    "w (19)

ζ - gw £ πw     "w (20)

where gw and ζ are the continuous ancillary variables. As a 
result, the risk-averse stochastic optimization model based 
on CVaR is composed of (10)-(14) and (18)-(20).

IV. CASE STUDIES AND RESULTS 

Case studies are conducted for a wind farm with an in‐
stalled capacity of 16 MW. The historical electricity price 
and wind power data are obtained from the websites of the 
Pennsylvania New Jersey Maryland market [14] and Nation‐
al Renewable Energy Laboratory [15], respectively. The devi‐
ation penalties are set to be 0.5 MWh/$, and the probability 
parameter αs of the VaB is specified in each section separate‐
ly. The historical data of pricing node IMO from January 1, 
2019 to May 30, 2019 are used to fit the SARIMA model 
and generate scenarios for June 1, 2019. All the stochastic 
optimization models are solved using the Yalmip toolbox 
[16] in MATLAB and Gurobi 6.52 [17].

A. Illustrative Example

An illustrative example considering 2-hour periods and 10 
scenarios with equal probabilities is studied in this subsec‐
tion, where scenario values are listed in Table I. Figure 2 
shows the cumulative probability distributions of the wind 
power producer’s profit, and Table II lists the generated DA 
wind power offering quantities. The parameter αs is set to be 
0.2, and it is shown that VaB is equal to the second largest 
profit among those in the 10 scenarios. Thus, the probability 
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of gaining a profit of no less than VaB is equal to 0.2. Table 
I shows that the RT electricity prices are more volatile than 
the DA electricity prices. Thus, the RT market may lead to 
high profits in best-case scenarios and low profits in the 
worst-case scenarios. When βs increases from 0 to 0.6, the 
DA wind power offerring quantity decreases by 56.4%, and 
more power are traded in RT markets. As a result, the VaB 
increases from $442.89 to $470.23, whereas the total expect‐
ed profit decreases from $340.22 to $327.98.

B. Larger Case Studies

Larger case studies considering 24-hour periods and addi‐
tional scenarios are conducted to further verify the proposed 
risk-seeking stochastic optimization model. First, 1000 sce‐
narios are generated for uncertain parameters and then re‐
duced to 100, where the other parameters are the same as 
those adopted in Section IV-A. Simulation results with differ‐
ent risk-seeking degrees are obtained, as shown in Fig. 3. 
When βs increases from 0 to 0.1, the VaB increases by $479, 
whereas the total expected profit decreases by only $25.5, in‐
dicating that the potential high profits increase significantly 

without considerably decreasing the total expected profit. 
The computational time of solving these stochastic optimiza‐
tion models is between 0.9 s and 18.3 s, which are accept‐
able for electricity market participants in practice.

C. Effects of Scenario Number on Simulation Results

To analyze the performance of the proposed risk-seeking 
stochastic optimization models based on VaB with different  
scenario numbers, case studies are conducted when the sce‐
nario number increases from 50 to 100 with an increment of 
10. βs is set to be 0.1, and the other parameters are the same 
as those adopted in Section IV-A. The simulation results of 
the risk-neural stochastic optimization model with βs = 0 and 
the proposed risk-seeking stochastic optimization model with 
βs = 0.2 are presented in Fig. 4.

TABLE I
SCENARIO VALUES OF UNCERTAIN PARAMETERS

Scenario
index w

1

2

3

4

5

6

7

8

9

10

t = 1 hour

λDA
1w

(MWh/$)

17.62

3.96

19.89

17.22

17.22

16.60

11.94

19.43

14.89

13.64

λRT
1w

(MWh/$)

22.18

7.24

11.22

18.03

8.03

22.10

22.09

19.42

20.83

0.55

P WR
1w

(MW)

12.18

16.00

10.04

12.01

16.00

13.51

9.69

8.49

8.39

10.66

t = 2 hour

λDA
2w

(MWh/$)

16.87

3.20

19.14

16.46

16.46

15.84

11.19

18.67

14.14

12.89

λRT
2w

(MWh/$)

17.92

0.97

15.83

15.68

11.41

16.72

11.39

18.80

14.23

1.68

P WR
2w

(MW)

12.22

16.00

10.07

12.05

16.00

13.54

9.72

8.52

8.42

10.69
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Fig. 2.　 Cumulative probability distributions of wind power producer’s 
profit. (a) βs = 0. (b) βs = 0.6.

TABLE II
DA WIND POWER OFFERING QUANTITIES

Time (hour)

t = 1

t = 2

P WD
t  (MW)

βs = 0

12.01

0

βs = 0.6

16.00

12.22

7800 7900 8000 8100 8200 8300 8400

VaB ($)

5490

5500

5510

5520

5530

5540

5550

T
o
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ro

fi
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($
)

βs=0

βs=0.01

βs=0.04

βs=0.05

βs=0.06
βs=0.10

βs=0.30

βs=0.70

βs=0.80

Fig. 3.　Effects of risk-seeking degrees on simulation results.
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Fig. 4.　Simulation results of risk-neutral and risk-seeking stochastic optimi‐
zation models. (a) VaB. (b) Total expected profit.
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In the six cases with different scenario numbers, when the 
risk-seeking parameter increases from 0 to 0.2, the VaBs in‐
crease by 0.39%, 0.34%, 0.3%, 5%, 2.5%, and 6.24%, re‐
spectively. By contrast, the total expected profits in the six 
cases decrease by 0.06%, 0.08%, 0.07%, 0.29%, 0.24%, and 
0.49%, respectively. Therefore, the proposed  risk-seeking 
stochastic optimization models base on VaB  with different 
scenario numbers are found to significantly increase the po‐
tential high profits without considerably decreasing the total 
expected profit. In this circumstance, the proposed risk-seek‐
ing offering strategy could be attractive for wind-power pro‐
ducers in electricity markets.

D. Comparative Study of Different Stochastic Optimization 
Models

To further verify the effectiveness of the proposed statisti‐
cal measure and risk-seeking stochastic optimization model 
based on VaB, a comparative study is conducted for risk-neu‐
tral, risk-seeking, and risk-averse stochastic wind power of‐
fering strategies. For the sake of comparison, 100 scenarios 
with equal probabilities are generated and used in models 1-
4, the details of which are as follows:

1) Model 1: risk-neutral stochastic optimization model 
consisting of (5) and (10)-(13) with βs = 0;

2) Model 2: risk-seeking stochastic optimization model 
based on VaB consisting of (5) - (13) with βs = 0.2 and 
αs = 0.1;

3) Model 3: risk-averse stochastic optimization model 
based on VaR consisting of (10) - (17) with βr = 0.2 and αr =
0.9;

4) Model 4: risk-averse stochastic optimization model 
based on CVaR consisting of (11) - (14) and (18) - (20) with 
βr = 0.2 and αr = 0.9.

As shown in Table III, the VaB and the highest profit of 
model 2 are both higher than those of the other stochastic 
optimization models, indicating that the proposed statistical 
measure based on VaB could be used to effectively maxi‐
mize the high profits in the best-case scenarios. In addition, 
the total expected profits of models 2-4 are lower than that 
model 1. This is because the objective functions of risk-seek‐
ing and risk-averse participants include statistical measures 
such as VaB and VaR.

TABLE III
SIMULATION RESULTS OF RISK-NEUTRAL, RISK-SEEKING, AND RISK-AVERSE 

STOCHASTIC OPTIMIZATION MODELS

Model 
type

Model 1

Model 2

Model 3

Model 4

VaB 
($)

9318

9467

8871

9108

The highest 
profit ($)

13256

13446

13339

13236

VaR 
($)

1805

1660

2515

1951

The lowest 
profit ($)

-1017

-1222

-145

-858

Total expected 
profit ($)

5263

5240

5226

5262

V. CONCLUSION 

This study proposes a statistical measure and scenario-
based stochastic optimization model to generate risk-seeking 
wind power offering strategies in electricity markets. The re‐

sults of case studies show that the high profits in the best-
case scenarios could be managed effectively from the proba‐
bilistic perspective by using the proposed risk-seeking sto‐
chastic optimization method. In future, the proposed statisti‐
cal measure could be used to model and investigate other 
risk-seeking participants with other power system assets or 
electricity market policies such as demand response [18], vir‐
tual bidding [19], and microgrid operation [20]. In addition, 
risk-seeking portfolio optimization theory should be further 
investigated, and other types of statistical measures with dif‐
ferent properties should be developed and studied to address 
risk-seeking stochastic optimization problems.
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