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Detection of False Data Injection Attacks on Load 
Frequency Control System with Renewable Energy 

Based on Fuzzy Logic and Neural Networks
Ziyu Chen, Jizhong Zhu, Shenglin Li, Yun Liu, and Tengyan Luo

Abstract——Load frequency control (LFC) system may be de‐
stroyed by false data injection attacks (FDIAs) and consequent‐
ly the security of the power system will be impacted. High-effi‐
ciency FDIA detection can reduce the damage and power loss 
to the power system. This paper defines various typical and hy‐
brid FDIAs, and the influence of several FDIAs with different 
characteristics on the multi-area LFC system is analyzed. To de‐
tect various attacks, we introduce an improved data-driven 
method, which consists of fuzzy logic and neural networks. 
Fuzzy logic has the features of high applicability, robustness, 
and agility, which can make full use of samples. Further, we 
construct the LFC system on MATLAB/Simulink platform, and 
systematically simulate the experiments that FDIAs affect the 
LFC system by tampering with measurement data. Among 
them, considering the large-scale penetration of renewable ener‐
gy with intermittency and volatility, we generate three simula‐
tion scenarios with or without renewable energy generation. 
Then, the performance for detecting FDIAs of the improved 
method is verified by simulation data samples.

Index Terms——Load frequency control (LFC), wind turbine 
and photovoltaic generation, fuzzy logic, neural network.

I. INTRODUCTION 

WITH the speedy development of computation, commu‐
nication, and control technology [1], today’s smart 

grid has developed into a cyber-physical system (CPS), 
which is deeply integrated by cyber and physical systems 
[2]. Load frequency control (LFC) system connects cyber 
and physical systems, which is an important part related to 
the communication network and executed by supervisory 
control and data acquisition (SCADA) [3]. The proportional-
integral (PI) LFC program is widely used to adjust the fre‐
quency deviation and tie-line power of multi-area power sys‐
tem. In the LFC system, the power and frequency measure‐
ments of generators in each control area are transmitted to 

control center through the communication network [4]. Due 
to the close connection between LFC system and communi‐
cation part, and the dependence of the smart grid on data 
communication in addition to physical failures, the modern 
power system is also threatened by cyber attacks.

Cyber attacks may seriously affect the secure and steady 
operation of the power system by destroying important infor‐
mation on critical infrastructures [5]. Relay protection per‐
formed in a predetermined manner may not be effective for 
CPS [6], because it is not determined whether the failure is 
caused by physical or cyber factors. False data injection at‐
tack (FDIA) is a relatively common cyber attack, and it is 
highly challenging [7]. FDIAs fight the LFC system and by‐
pass the error data detection of SCADA, and then lead to 
the state estimation bias and the wrong decisions of SCADA 
[8], which makes the system unstable and affects power eco‐
nomic dispatch [9]. Many research works have been devoted 
to studying the possible means of constructing FDIAs. One 
of the generally recognized methods is that the attacker ob‐
tains part of the configuration information of the power sys‐
tem and can operate some variable measurement values [10]. 
For example, from March 2019 to April 2019, the power sys‐
tem of Venezuelan suffered FDIAs that caused widespread 
power outages. Experts speculated that the attackers corrupt‐
ed the real information based on the configuration informa‐
tion and related parameters of the system, and maliciously 
destroyed the control performance [11]. Moreover, unlike 
other cyber attacks such as jamming and distributed denial 
of service, FDIAs can avoid the traditional detection mecha‐
nisms that are residual-based bad data [10]. Therefore, it is 
significant to analyse the influence of FDIAs on LFC system 
and recognize FDIAs efficiently. In this paper, we conduct 
the study on FDIAs, destroying the power system by tamper‐
ing with measurement data.

In the past few years, research works on the impacts of 
FDIAs and the corresponding detection methods have re‐
ceived a lot of attention. In a wide range of FDIA detection 
solutions, two directions are mainly involved: model-based 
detection and data-driven detection. The former mainly con‐
tains estimation-based or residual-based methods. Reference 
[12] constructs different attack scenarios, and proposes the 
FDIAs whose principle is to track the dynamic changes of 
measurement errors based on Kullback-Leibler distance 
(KLD). After FDIAs are infiltrated into the power grid, the 
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probability distributions of measurement deviations deviate 
from historical samples, which leads to a more serious KLD. 
Reference [13] presents a decentralized identification pro‐
gram according to the Markov graph of bus phase angle. It 
uses the conditional covariance threshold test to study the 
grid construction. The model-based methods are proposed by 
the experiments for detecting FDIAs by comparing the state 
estimation value with the real-time measurement value. Ref‐
erence [14] evaluates the network security of static state esti‐
mation of power system with the possibility of phasor mea‐
surement units. Attacks are considered on the metric func‐
tion of the Jacobian matrix or state estimation. However, the 
accuracy of these methods is highly related to the accuracy 
of the models and parameters of the power system [15]. The 
slight uncertainty in mathematical models and parameters 
may cause low detection performance.

As for data-driven detection method, it does not require a 
real physical model. Data-driven detection method relies on 
historical data to train statistical models, i.e., to find the rela‐
tionship between the input features and the output variables, 
e.g., the types of FDIAs. However, a single method ordinari‐
ly has certain limitations. Specifically, the classic support 
vector machine (SVM) [16] only gives the two-class classifi‐
cation algorithm. In the usage of data mining, it is usually 
necessary to deal with the multi-class classification scenario. 
Pattern trees (PTs) [17] are relatively difficult to detect the 
patterns in the sequence. Long short-term memory (LSTM) 
networks [18] are a special kind of recurrent neural net‐
works (NNs). LSTM networks have large computational 
complexity and need more computational cost. In addition, 
although LSTM networks can learn long-term dependencies, 
they still face the problem of vanishing and exploding gradi‐
ents. When the time steps are relatively long, the informa‐
tion may not be transmitted to the later time steps. More‐
over, overfitting may happen after the training of backpropa‐
gation NNs [19], which will affect the accuracy of detection. 
Faced with the above challenges, the paper proposes an im‐
proved method for detecting FDIAs, which is data-driven 
and composed of fuzzy logic and neural networks (FNNs). 
Fuzzy logic has the characteristics of high applicability, ro‐
bustness, and agility, which can make full use of data [20]. 
NNs have the features of simple structure, strong generaliza‐
tion ability, and nonlinear mapping [21]. Reference [22] 
shows that FNNs can identify the faults in building automa‐
tion systems and accurately classify the characteristics of var‐
ious faults. Reference [23] indicates that FNNs can accurate‐
ly detect and perform the islanding. Reference [24] express‐
es that in a liquid-level modeling of an industrial coke fur‐
nace, when input or output information is available, FNNs 
are very useful for nonlinear system recognition. However, 
there is no research work on the detection of FDIAs on LFC 
system with wind turbine (WT) or photovoltaic (PV) power 
generation based on FNNs. Due to the rapid development of 
renewable energy (RE) power generation, the intermittency 
and volatility of its output also affect the safety and stability 
of modern power system. The RE generation system is add‐
ed to the simulation system, which makes the experiment 
more diverse and practical.

To detect the FDIAs accurately and quickly, this paper in‐
troduces an improved data-driven detection method, which is 
a combination of fuzzy logic and NNs, and has the character‐
istics of strong robustness, agility, and generalization ability. 
The performance of the method is verified by detecting vari‐
ous types of FDIAs on the dynamic simulation model of 
LFC with RE generation. The detailed contributions of this 
paper can be summarized as follows.

1) The model of multi-area LFC system with RE genera‐
tion is set up. The two-area and four-area LFC systems are 
simulated based on MATLAB/Simulink platform in three sce‐
narios, respectively. They are the LFC system without RE 
generation, the LFC system with RE generation in one area, 
and the LFC system with RE generation in each of the two 
areas.

2) The typical and hybrid FDIAs with various characteris‐
tics are defined, and the impacts of various FDIAs on two-
area and four-area LFC systems in different simulation sce‐
narios are simulated and analyzed.

3) An improved method is proposed, then the fault detec‐
tion results through the improved method are compared with 
NNs, fuzzy pattern trees (FPTs), and LSTM, from which the 
performance of the improved method is proven.

The rest of this paper is organized as follows. Section II 
indicates the dynamic model of multi-area LFC system with 
RE generation. (Section III introduces an improved method 
for detecting FDIAs. Section IV defines the various typical 
and hybrid FDIAs.) In Section V, the impacts of different 
FDIAs on the two-area and four-area LFC systems are simu‐
lated based on MATLAB/Simulink platform, and the perfor‐
mance of the improved method for detecting FDIAs is evalu‐
ated. Section VI summarizes this paper and plans future 
works.

II. DYNAMIC MODEL OF MULTI-AREA LFC SYSTEM 

Figure 1 presents the dynamic model of the multi-area 
LFC system with RE generation. Each area of the simulation 
includes several basic components, among which are gover‐
nor, turbine, generator, and PI controller. The PI controller is 
used to wipe out the area control error (ACE). In Fig. 1, a 
and b in the superscript and subscript denote the ath and bth 
areas, res pectively DPab is the tie-line power deviation flow‐
ing from the ath area to the bth area; Ra and Rb are the gover‐
nor droop control factors of the ath and bth areas, respective‐
ly; K a

P and K a
I  are the proportional and integral gains of the 

ath area, respectively; T a
g  and T a

ch are the time constants of 
governor and turbine of the ath area, respectively; Tab is the 
tie-line synchronizing co-efficiency between the ath and bth 
areas; DP a

v , DP a
m, and DP a

d are the deviations of power out‐
put, generator mechanical output, and load of the ath area, re‐
spectively; P a

WT and P a
PV are the outputs of WT and PV pow‐

er generation systems of the ath area, respectively; Psysbase is 
the base power of the multi-area LFC system; DP a

RE is the 
output deviation of RE generation of the ath area; Ma is the 
inertia moment of generator of the ath area; Da is the damp‐
ing coefficient of unit of the ath area; ua is the signal of tur‐
bine control of the ath area; and ca and cb are the transmis‐
sion channels of FDIA measurement data of the ath and bth 
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areas, respectively. 
In the multi-area LFC system, each generation unit in all 

the control areas can be simplified into an equivalent genera‐
tion part. The ACE is defined as:

ACEa = βaDfa +DP a
tie (1)

where ACEa is the ACE of the ath area, ab = 12l are the 
indices of areas, and l is the number of areas in the multi-ar‐
ea LFC system; βa is the frequency bias factor of the ath ar‐
ea; Dfa is the frequency deviation of the ath area; and DP a

tie is 
the tie-line exchange power deviation of the ath area. 

As for the uncertainty and intermittence of WT/PV power 
generation system, when the RE generation system is added 
to the LFC system, there are not only power constraints, but 
also power balance constraints, which can maintain the rela‐
tive stability of load and power generation.

As illustrated in Figs. 1 and 2, the equations for dynamic 
model of the multi-area LFC system are:

ì

í

î

ïïïï

ïïïï

ẋ(t)=Ax(t)+Bu(t)+F ( )DP L
d -

2πDf a
RE

kinv

y(t)=Cx(t)

(2)

where x is the state vector; u is the control vector; y is the 
output vector; A, B, C, F, and DP L

d  are the system matrices; 
kinv is the droop factor; Df a

RE is the frequency deviation of the 
inverter in the ath area of RE generation system; x(t)=

[ x1 (t) x2 (t)  xL (t) ]T
; xa (t)= é

ë
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III. FNNS 

In this section, an improved method for detecting FDIAs 
is proposed, which is based on data-driven method and com‐
posed of FNNs [20]. Fuzzy logic can make full use of data, 
which has the characteristics of high agility. The structure of 
NNs is simple, and it has the feature of strong generalization 
ability, and nonlinear mapping [21].

A. Fuzzy Aggregation

Fuzzy aggregation is a logical operator of fuzzy set or 
fuzzy membership value [25]. There are several categories, 
including triangular-conorm (T-conorm), triangular-norm (T-
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Fig. 1.　Dynamic model of multi-area LFC system with RE generation.
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norm), and averaging operator. T-norm is proposed by Sch‐
weizer and Sklar, the averaging operator of which is divided 
into weighted averaging (WA) and ordered-WA (OWA) [26], 
[27]. As demonstrated in Table I, the fundamental T-norm 
and T-conorm pairs operate separately based on u and v 
(uvÎ [0,1]), which are fuzzy membership values.

The WA operator of dimension m is a map about Qm®Q, 
which has an related m-element vector r i =[r1    r2        rm ]T, 

rjÎ[01], 1 £ j £m, and ∑
j = 1

m

rj = 1; then, the WA is defined as:

WA(u1u2um )=∑
i = 1

m

ri ui (3)

Similarly, the OWA is defined as:

OWA(u1u2um )=∑
i = 1

m

ri gi (u1u2um ) (4)

where gi (u1u2um ) returns the ith largest element of the 
collection (u1u2um ). Among them, the prime differentia‐
tion between WA and OWA operators is that the OWA has 
no special weight wj related to an element, while the weights 
are related to the specific ordered locations of the elements.

In short, it is straightforward to extend forenamed aggrega‐
tion to fuzzy item: the consequence of the aggregation of 
two fuzzy items is a novel fuzzy item, and the aggregation 
is employed between the two fuzzy items in pairs.

B. Structure of FNN

FNN is the improved model based on fuzzy logic and 
NNs for detecting FDIAs in this paper. The frame of FNNs 
is shown in Fig. 3, which includes four layers. 

In the first layer, the neuron nodes of input layer are used 
to input samples. The data sets generated by different FDIAs 
on the multi-area LFC system are the input samples of 

FNNs, which include 10 features such as the ACE value, de‐
viation values of measurement frequency, real frequency, at‐
tack frequency, power output, and mechanical output and 
load of the generator. The second layer is fuzzy input layer. 
It is applied to produce new fuzzy items that can fully mir‐
ror the features of input data. Then, the third layer is hidden 
layer. The connection of these hidden layers has the most im‐
portant feature of FNNs. The neuron nodes of fuzzy input 
layer and hidden layer are connected with each other. Specif‐
ically, the information is transmitted from input layer to 
fuzzy input layer, and then to hidden layer and output layer 
(the last layer). Final output results are compared with the 
sample values to calculate the accuracy [28]. The neuron 
nodes in adjacent layers are fully connected and expressed 
as weights, and the neuron nodes in the same layer are not 
connected with each other. The improved method contains 
two phases. One is the forward transmission of the signals, 
and the other is the backward transmission of the errors. As 
shown in Fig. 3, xi (i = 12n) are the input samples; 
xil (il = 12n) are the data samples processed by fuzzy 
method; p is the connection of neuron nodes of fuzzy input 
and hidden layer as weight; q is the connection of neuron 
nodes of hidden layer and output layer as weight; and yi (i =
12n) is the output results. The formula for the hidden 
layer f n ( j) is:

f n ( j)=∑
il

pn
ilj xil (5)

where pn
ilj is the connection of neuron nodes of fuzzy input 

and hidden layer as the weight in the nth iteration, l indicates 
the number of fuzzy items obtained by fuzzy method, and i 
and il are the numbers of neuron nodes of input layer and 
those of fuzzy input layer, respectively. The formula of the 
output layer is:

ŷn (k)=∑
j

qn
jk f n ( j) (6)

where ŷn (k) is the output result after the nth iteration; qn
jk is 

the connection of neuron nodes of hidden layer and those of 
output layer as weight in the nth iteration; and k is the num‐
ber of neuron nodes of output layer.

In order to make the network outputs as close as possible 
to the actual results, output errors can be fed back in the di‐
rection from the output layer to input layer. The gradient cor‐
rection method [29] is used to adjust the weights between 
the neuron nodes of each layer and the threshold θ of each 
neuron node. The structure of the FNNs is determined after 
meeting the accuracy requirements. The calculation output er‐
ror in the nth iteration en is:

en =
1
2∑k

(y(k)- ŷn (k))2
(7)

where y(k) is the actual sample value. The equations of cor‐
rection weights in the (n + 1)th iteration are:

qn + 1
jk = qn

jk +Dqn + 1
jk (8)

pn + 1
ilj = pn

ilj +Dpn + 1
ilj (9)

Let η denote the learning rate, we can obtain:

y
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x
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1n
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2n
x

nnx

…
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q

Fig. 3.　Frame of FNNs.

TABLE I
FUNDAMENTAL T-NORM AND T-CONORM PAIRS

Name

Min/max

Algebraic

Lukasiewicz

Einstein

T-norm

min{uv} = uÙ v

uv

max{u+ v - 10}
uv

2 - (u+ v - uv)

T-conorm

max{uv} = uÚ v

u + v - uv

min{u+ v1}
u + v

1 + uv
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Dqn + 1
jk =-η

¶e
¶qn

jk
(10)

Dpn + 1
ilj =-η

¶e
¶pn

ilj
(11)

Besides, the improved method includes a training phase 
and a testing phase. The data samples from FDIAs in multi-
area LFC system are separated into training groups and test‐
ing groups. During the training phase of FNNs, in the fuzzy 
input layer, the features of input variables can be better ex‐
tracted in unsupervised learning. Then, in the supervised 
learning, the regularization method [30] is used to alleviate 
the overfitting of the training sets.

IV. TYPES OF ATTACKS 

As shown in the Fig. 1, ca and cb are the transmission 
channels of FDIA measurement data, and various attacks are 
added to the multi-area LFC system through the measure‐
ment channels. The control center accepts measurement val‐
ues as input and processes them to obtain the output control 
signal. The attackers can manipulate measurement values so 
that any operational decisions based on these measurement 
values may trigger the control operations unwarranted for 
the real system state [31]. In this section, we define several 
types of attack templates as follows.

A. Typical Attack

1)　Scaling Attack
Scaling attack can affect system rapidly and trigger the 

load shedding scheme. The scaling attack modifies measure‐
ment value by injecting scaling parameter to make it propor‐
tionally higher or lower than the actual value cs. We define 
the system equations as:

ZmeaCA =
ì
í
î

ïïZrea    "tÏ ta

Zrea +CA "tÎ ta

(12)

CA = csZrea (13)

where t is the running time of the dynamic system; CA is 
the scaling attack value; Zrea is the real value; and ZmeaCA is 
the measurement value under scaling attack.
2)　Ramp Attack

A ramp function changes with the time gradually at a con‐
stant rate. Ramp attack alters the measurement by adding 
crta, where cr is the factor of ramp attack and ta is the attack 
period. We can define the system of equations as:

ZmeaRA =
ì
í
î

ïïZrea    "tÏ ta

Zrea +RA "tÎ ta

(14)

RA = crta (15)

where RA is the value of ramp attack; and ZmeaRA is the mea‐
surement value under ramp attack.
3)　Sine Attack

Sine attack is a type of attack that changes the measure‐
ment value in cycles, causing it to oscillate continuously. 
During the attack, as the sine wave fluctuates, the measure‐
ments are periodically set to higher or lower values. We can 
define the system of equations as:

ZmeaSA =
ì
í
î

ïïZrea    "tÏ ta

Zrea + SA "tÎ ta

(16)

SA = sin ta (17)

where SA is the sine attack value; and ZmeaSA is the measure‐
ment value under sine attack.

B. Hybrid Attack

Scaling-ramp attack (SRA) modifies the measurement val‐
ue by simultaneously injecting the scaling and ramp attacks. 
Scaling-sine attack (SSA) tampers the measurement value by 
injecting the scaling and sine attacks at the same time. 
Ramp-sine attack (RSA) alters the measurement value by si‐
multaneously infiltrating the ramp and sine attacks.

Typical and hybrid FDIAs are maliciously injected to the 
multi-area LFC system through ca and cb, which causes er‐
rors in the measurement values, leads the control center to 
make wrong decisions, and affects the safe and stable opera‐
tions of CPS.

V. SIMULATION STUDIES AND ANALYSIS 

The experiments are implemented on a desktop computer 
with i7-9700 CPU at 3.00 GHz, 16 GB of RAM, 64-bit Win‐
dows. The base power of experiment system is 100 MW and 
the experimental simulations are based on per-unit data. The 
parameters of the two-area LFC system are illustrated in Ta‐
ble II.

The values of WT-PV power are obtained from the Elia 
Group. As shown in Fig. 4, the outputs of WT-PV power 
generation system are illustrated in detail. 

The value of WT power gradually increases over time, 
and reaches the maximum value at about the 80th time inter‐
val, because of high wind speed at night. The value of PV 

TABLE II
PARAMETERS OF TWO-AREA LFC SYSTEM

Parameter

R

kP, kI

M

Tg

Value (p.u.)

0.05
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Parameter

β

T12

D

Tch

Value (p.u.)

21

0.1986

1

0.3

P
o

w
er

 (
k

W
)

No. of time interval

8
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Fig. 4.　Output of WT-PV power generation system.
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power attains the peak at the 50th time interval, due to the 
strong sunlight at noon.

A. Impacts of FDIAs on Two-area LFC System

In this subsection, the impacts of different typical FDIAs 
on the two-area LFC system will be analyzed. Area 1 and ar‐
ea 2 of the two-area LFC system are the same, and the simu‐
lation system is set up in three environments. The experi‐
ment is based on MATLAB/Simulink platform.
1)　Frequency Deviations Without WT-PV Power Generation 
System

Figure 5 demonstrates the frequency deviations of the two-
area LFC system without WT-PV power generation under 
different attacks on area 1. The real value reflects the actual 
state of system operation, and the measurement value is the 
superimposed result of the real and attack effects. 

FDIAs can cause errors in the measurement values, which 
may lead to mistakes in control decisions and affect normal op‐
erations. As indicated in Fig. 5(a) and (b), under the normal 
circumstance, the real frequency deviation values of two areas 
are interfered in the first second due to the sudden change of 
load, whose value is 0.2. And after a short oscillation, the val‐
ues become steady. When the scaling attack with a scaling pa‐
rameter of 0.5 is injected into area 1, as denoted in Fig. 5(c), 
the real frequency deviation amplitude of area 1 changes pro‐
portionally, and the duration of fluctuation increases. At the 
same time, comparing Fig. 5(b) and (d), the real frequency de‐
viation value of area 2 has not changed. When a ramp attack is 
injected into area 1, it has a slope of 0.005 and an upper limit 
of 0.025, as shown in Fig. 5(e) and (f). In area 1, as the attack 
value increases, the real frequency deviation value decreases. 
When the attack value becomes fixed, the real frequency devi‐
ation of area 1 slowly increases. Due to the influence of area 
1, the real frequency deviation of area 2 fluctuates for a while, 
then it keeps increasing and cannot reach the equilibrium. Af‐
ter a sine attack with the amplitude of 0.05 and the frequency 
of 0.5 is injected to area 1, the relevant results are demonstrat‐
ed in Fig. 5(g) and (h). As the attack value fluctuates periodi‐
cally in area 1, the real frequency deviation value of area 1 
waves irregularly within a certain range, then it changes with 
the cycle. Due to the influence of area 1 and the mutation load 
with the value of 0.2 in the first second, the real frequency de‐
viation value of area 2 fluctuates within a periodic after a peri‐
od of shock.
2)　Frequency Deviations with WT-PV Power Generation Sys‐
tem in Area 1

Figure 6 shows the frequency deviations of the two-area 
LFC system with WT-PV power generation in area 1 under dif‐
ferent attacks on area 1. Comparing Fig. 6(a) with Fig. 5(a), 
under normal circumstances, these two pictures are symmetric 
about the x-axis, which represents the WT-PV power genera‐
tion system as the power generation module, and its output val‐
ue is twice the load value. Likewise, Fig. 6(c) and Fig. 5(c) are 
also x-axis symmetric. Figure 6(e) and Fig. 5(e) are symmetri‐
cal about the x-axis in the first three seconds. Comparing Fig. 
6(g) with Fig. 5(g), under a sine attack in area 1, the amplitude 
is 0.05 p.u. and the frequency is 0.5 p.u.. The real frequency 
deviation value has minor changes in the first three seconds; 
however, it still fluctuates with the the cycle afterwards. Com‐
paring the Fig. 6(b), (d), (f), and (h) with Fig. 5(b), (d), (f), and 
(h), it can be observed that they are exactly the same, meaning 
that adding the WT-PV power generation system with appro‐
priate capacity to area 1 has no effect on area 2.

Figure 7 reveals the frequency deviations of the two-area 
LFC system with WT-PV power generation in area 1 under dif‐
ferent attacks on area 2. Comparing Fig. 7(b) with Fig. 5(b), it 
can be observed that when the scaling attack is injected into ar‐
ea 2, it has a scaling parameter of 0.5. The real frequency devi‐
ation value of area 2 fluctuates more strongly and the fluctua‐
tion lasts longer, but it eventually stabilizes. At the same time, 
comparing Fig. 7(a) with Fig. 6(a), it can be observed that the 
real frequency deviation value of area 1 has not changed at all.
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Fig. 5.　 Frequency deviations of two-area LFC system without WT-PV 
power generation under different attacks on area 1. (a) Df1 under normal cir‐
cumstances. (b) Df2 under normal circumstances. (c) Df1 under a scaling at‐
tack on area 1. (d) Df2 under a scaling attack on area 1. (e) Df1 under a 
ramp attack on area 1. (f) Df2 under a ramp attack on area 1. (g) Df1 under a 
sine attack on area 1. (h) Df2 under a sine attack on area 1.
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When the ramp attack is injected into area 2, it has a 
slope of 0.005 and an upper limit of 0.025, as displayed in Fig. 
7(d). As the attack value increases, the real frequency devia‐
tion value of area 2 decreases. When the attack value is sta‐
ble, the real frequency deviation value of area 2 gradually 
declines. Due to the influence of area 2, as illustrated in Fig. 
7(c), the real frequency deviation value of area 1 fluctuates 
for a while and then keeps falling, which can not reach the 
stable state. After a sine attack is injected into area 2, which 
has the amplitude of 0.05 and the frequency of 0.5, as illus‐
trated in Fig. 7(f), the real frequency deviation value fluctu‐
ates slightly within a certain range in area 2, then it changes 
with the period. As shown in Fig. 7(e), due to the effect of 
the load, the real frequency deviation value oscillates for a 

short time in area 1, then it fluctuates periodically with 
the influence of area 2.

3)　Frequency Deviations with WT-PV Power Generation Sys‐
tem in Each of Two Areas

Figure 8 indicates the frequency deviations of the two-area 
LFC system with WT-PV power generation in each of the two 
areas under different attacks on area 1. Under normal situa‐
tion, comparing Fig. 8(b) with Fig. 6(b), they are all symmetri‐
cal about the x-axis, which draws the WT-PV power genera‐
tion system as the power generation module, and its output val‐
ue is twice the load value. Likewise, Fig. 8(d) and Fig. 6(d) 
are also x-axis symmetric. Figure 8(f) and (h) and Fig. 6(f) and 
(h) are symmetrical about the y-axis in the first three seconds, 
then the change trends of real frequency deviation values are 
the same in the two scenarios, because the attack types are 
the same. In addition, Fig. 8(a), (c), (e), (g) are the same as 
Fig. 6(a), (c), (e), (g), respectively, which means that a WT-PV 
power generation system with appropriate capacity is added to 
area 2 and it will not affect area 1.

By analyzing the impacts of various attacks on the fre‐
quency deviations from different situations, we can draw the 
following conclusions. Firstly, different kinds of attacks have 
different effects on the two-area LFC system. Under a slight 
attack, the system resumes stable operation after a period of 
fluctuation. However, under a severe attack, excessive fre‐
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Fig. 6.　Frequency deviations of two-area LFC system with WT-PV power 
generation in area 1 under different attacks on area 1. (a) Df1 under normal 
circumstances. (b) Df2 under normal circumstances. (c) Df1 under a scaling 
attack on area 1. (d) Df2 under a scaling attack on area 1. (e) Df1 under a 
ramp attack on area 1. (f) Df2 under a ramp attack on area 1. (g) Df1 under a 
sine attack on area 1. (h) Df2 under a sine attack on area 1.
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Fig. 7.　Frequency deviations of two-area LFC system with WT-PV power 
generation in area 1 under different attacks on area 2. (a) Df1 under a scal‐
ing attack on area 2. (b) Df2 under a scaling attack on area 2. (c) Df1 under 
a ramp attack on area 2. (d) Df2 under a ramp attack on area 2. (e) Df1 un‐
der a sine attack on area 2. (f) Df2 under a sine attack on area 2.
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quency oscillations may cause irreversible and dangerous op‐
eration trend of the system. Secondly, the WT-PV power gen‐
eration system affects the dynamic characteristics of the 
LFC system. In addition, if the WT-PV power generation 
system with appropriate capacity is added to one area, the 
other area will not be affected. Thirdly, the two areas influ‐
ence each other. Under a slight attack, one area returns to 
stable state after slight fluctuation, the other area is not af‐
fected. Under a severe attack, one area cannot reach its origi‐
nal state, and the other area cannot reach its stable state.

B. Test Results of Detection Performance

In order to verify the feasibility of the modified method, 
the accuracy of three methods for detecting various FDIAs 
are compared in this subsection. Firstly, the two-area LFC 

system is constructed on MATLAB/Simulink. Secondly, 24 
groups of faults are simulated in the dynamic system. Specif‐
ically, typical FDIAs containing scaling attack, ramp attack, 
sine attack, and hybrid FDIAs including CRAs, SRAs, 
SSAs, and RSAs are injected in different environments. As 
shown in Table III and Table IV, the types and the targets of 
24 faults are described. Thirdly, the impacts of different at‐
tacks on the dynamic system are analyzed. Fourthly, 24000 
experimental samples with 10 features including the ACE 
value, deviation values of measurement frequency, real fre‐
quency, attack frequency, power output, and mechanical out‐
put of generator and load are obtained from two-area LFC 
system. Specifically, 6000 experimental samples are obtained 
from the two-area LFC system without WT-PV power gener‐
ation; 9000 experimental samples are obtained from the two-
area LFC system with WT-PV power generation in area 1; 
and 6000 experimental samples are from the two-area LFC 
system with WT-PV power generation in each area. Then, 
19200 experimental samples are applied to train the FNN 
models, and 4800 experimental samples are applied to calcu‐
late the accuracy of FNNs for detecting the kinds of FDIAs, 
which is based on Python platform. Lastly, as demonstrated 
in Tables V and VI, the performances of four methods for 
detecting 24 faults by four evaluation indexes are compared. 

The indexes contain recall (Reca), precision (Prec), and 
F1-score, which are based on the confusion matrix. More‐
over, the average (Avg) of the values obtained by these three 
indexes is also calculated. These three indexes are derived 
from the calculation of true positive (TP), false positive 
(FP), false negative (FN), and true negative (TN) [32]. In de‐
tails, the three indexes are defined as:
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Fig. 8.　Frequency deviations of two-area LFC system with WT-PV power 
generation in each of two areas under different attacks on area 1. (a) Df1 un‐
der normal circumstances. (b) Df2 under normal circumstances. (c) Df1 under 
a scaling attack on area 1. (d) Df2 under a scaling attack on area 1. (e) Df1 
under a ramp attack on area 1. (f) Df2 under a ramp attack on area 1. (g) Df1 
under a sine attack on area 1. (h) Df2 under a sine attack on area 1.

TABLE III
TYPE AND TARGET OF TYPICAL FDIA

Type

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

Target

Two-area LFC system without 
WT-PV power generation

Two-area LFC system without 
WT-PV power generation

Two-area LFC system without 
WT-PV power generation

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in each area

Two-area LFC system with WT-PV 
power generation in each area

Two-area LFC system with WT-PV 
power generation in each area

Attack

Scaling attack on area 1

Ramp attack on area 1

Sine attack on area 1

Scaling attack on area 1

Ramp attack on area 1

Sine attack on area 1

Scaling attack on area 2

Ramp attack on area 2

Sine attack on area 2

Scaling attack on area 1

Ramp attack on area 1

Sine attack on area 1
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Prec =
TP

TP +FP
(18)

Reca =
TP

TP +FN
(19)

F1 =
2Prec ×Reca
Prec +Reca

(20)

where Prec is the overall effectiveness of the diagnostic 
method; Reca is the ability of the diagnostic method to iden‐
tify positive classes; F1 is the overall index result of Prec 
and Reca; TP is the proportion of actual faulty cases that are 
classified as faulty operating condition; TN is proportion of 
actual normal cases that are classified as normal operating 

condition; FP is to the proportion of actual faulty cases that 
are classified as normal operating situation; and FN is the 
proportion of actual normal cases that are classified as faulty 
operating situation

The parameter setting of the FNN training is described in 
Table VII. The number of neurons in hidden layers, the max‐
imum number of iterations, the penalty factors and the sub‐
set of fuzzy logic operators are obtained through grid re‐
search method [33].

As illustrated in Tables V and VI, the performances of 
FNNs, NNs, FPTs, and LSTM under 24 groups of faults are 
compared. A1-A12 represent the 12 types of faults that the 
LFC system suffers from typical FDIAs, and HA1-HA12 
mean the 12 groups of faults that the LFC system suffers 
from hybrid FDIAs. Under the typical FDIAs, from a hori‐
zontal perspective, the accuracy of FNNs for detecting all 
groups of attacks is higher than 0.93, which embodies the ex‐
cellent performance of the improved method, and it has fa‐
vorable robustness in the face of various input disturbances. 
In addition, the accuracies of A4-A9 are equal to or greater 
than those of A1-A3. This shows that as the WT-PV power 
generation system is added to the simulation model, the de‐
tection accuracy increases slightly, which means that the 
more obviously the system changes, the higher the accuracy 
of FNNs for detecting attacks. It reflects the high sensitivity 
of the improved method. From a vertical perspective, in 
most cases, the accuracies of FNNs for detecting attacks are 
higher than those of NNs for detecting attacks, and the accu‐
racies of NNs are even lower than 0.9 in 3 cases. More obvi‐
ously, the accuracies of FNNs for detecting attacks are more 
superior than those of FPTs for detecting faults in all situa‐
tions. Conversely, the detection accuracy of FPTs under 
most attacks is low and unstable, and there are detection 
blind spots in A7. Moreover, the detection accuracy of FNNs 
is not lower than LSTM networks in most cases, and the 
overall accuracy is more stable than LSTM networks. Specif‐
ically, the average accuracy of LSTM networks in A8 is 
0.88, but the average accuracy of FNNs is not lower than 
0.93 in all situations.

TABLE IV
TYPE AND TARGET OF HYBRID FDIA

Type

HA1

HA2

HA3

HA4

HA5

HA6

HA7

HA8

HA9

HA10

HA11

HA12

Target

Two-area LFC system without WT-PV 
power generation

Two-area LFC system without WT-PV 
power generation

Two-area LFC system without WT-PV 
power generation

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in area 1

Two-area LFC system with WT-PV 
power generation in each area

Two-area LFC system with WT-PV 
power generation in each area

Two-area LFC system with WT-PV 
power generation in each area

Attack

SRAs on area 1

SSAs on area 1

RSAs on area 1

SRAs on area 1

SSAs on area 1

RSAs on area 1

SRAs on area 2

SSAs on area 2

RSAs on area 2

SRAs on area 1

SSAs on area 1

RSAs on area 1

TABLE V
PERFORMANCE OF FOUR DETECTION METHODS FOR DETECTING TYPICAL FDIAS IN TWO-AREA LFC SYSTEM

Type

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

FNN

Prec

0.94

1.00

0.92

0.91

0.95

0.96

0.97

1.00

0.95

0.97

1.00

1.00

Reca

0.97

0.87

0.96

1.00

0.96

0.98

1.00

0.95

0.98

0.97

0.98

0.92

F1

0.95

0.93

0.94

0.95

0.95

0.97

0.98

0.98

0.97

0.97

0.99

0.96

Avg

0.95

0.93

0.94

0.95

0.95

0.97

0.98

0.98

0.97

0.97

0.99

0.96

NN

Prec

0.84

1.00

0.97

0.88

1.00

0.98

1.00

1.00

0.93

0.89

1.00

1.00

Reca

1.00

0.91

0.90

1.00

0.95

0.96

0.99

0.92

0.95

1.00

0.93

0.95

F1

0.91

0.95

0.93

0.93

0.97

0.97

1.00

0.96

0.94

0.94

0.96

0.97

Avg

0.92

0.95

0.93

0.94

0.98

0.97

1.00

0.96

0.94

0.94

0.96

0.97

FPT

Prec

0.79

0.94

1.00

0.37

0.97

0.88

0

1.00

1.00

0.65

1.00

1.00

Reca

1.00

0.90

0.77

1.00

0.76

0.79

0

0.85

0.81

1.00

0.79

0.71

F1

0.88

0.92

0.87

0.54

0.85

0.83

0

0.92

0.90

0.79

0.88

0.83

Avg

0.89

0.92

0.88

0.64

0.86

0.83

0

0.92

0.90

0.81

0.89

0.85

LSTM

Prec

1.00

1.00

0.92

0.97

0.92

1.00

1.00

0.78

0.98

1.00

0.95

1.00

Reca

0.98

0.98

1.00

1.00

0.96

0.88

0.86

1.00

0.83

0.99

1.00

0.93

F1

0.99

0.99

0.96

0.98

0.94

0.94

0.92

0.87

0.90

1.00

0.97

0.96

Avg

0.99

0.99

0.96

0.98

0.94

0.94

0.93

0.88

0.90

1.00

0.97

0.96
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Under the hybrid FDIAs, from the horizontal perspective, 
the accuracy of FNNs for detecting all kinds of attacks is 
higher than 0.98, and especially under the HA7, the accuracy 
reaches 1.00. From the vertical perspective, under most in‐
stances, the accuracy of FNNs for detecting attacks is higher 
than NNs, and the accuracy of NNs is lower than 0.98 in six 
cases. More obviously, the accuracy of FPTs is lower than 
FNNs under 11 instances, and the accuracy is only 0.37 un‐
der the HA8. Moreover, the accuracy of LSTM networks is 
higher than FNNs in only one case. In addition, the accuracy 
of detecting hybrid FDIAs is mostly higher than that of de‐
tecting typical FDIAs. Because a hybrid attack is composed 
of two typical FDIAs at the same time, different types of 
FDIAs have different characteristics. When multiple typical 
FDIAs maliciously attack the LFC system at the same time, 
the damage to the LFC system is also superimposed. There‐
fore, the changing features of the LFC system under hybrid 
FDIAs are more easily captured than that under single typi‐
cal FDIAs.

As shown in Table VIII, the computational cost of FNNs 
is significantly less than that of FPTs and LSTM networks. 

Comparing the computational time of the four methods for 
detecting typical FDIAs and hybrid FDIAs, in most cases, 
the latter is longer than the former. In general, the detection 
accuracy of FNNs in various attack environments and vari‐
ous types of attacks is higher and more stable than NNs, 
FPTs, and LSTM networks, and the computational cost of 
FNNs is also significantly lower than that of FPTs and LST‐
Ms. FNNs have better performance than NNs, FPTs, and 
LSTM networks for detecting the FDIAs in the two-area 
LFC system with RE generation.

To demonstrate the scalability of the proposed method, the 
accuracy of FNNs for detecting typical and hybrid FDIAs on 
the four-area LFC system is shown in Tables IX and X, re‐
spectively. The accuracy of FNNs for detecting typical and 
hybrid FDIAs is higher than 0.93, which reflects the stability 
and feasibility of the proposed method. And in most cases, 
the accuracy is close to be 1, which shows the robustness of 
FNNs.

VI. CONCLUSION

This paper introduces an improved data-driven method, 
which is composed of fuzzy logic and NNs. Various types of 
typical and hybrid FDIAs are defined, including ramp attack, 
scaling attack, sine attack, SRA, SSA, and RSA. The dynam‐
ic model of the multi-area LFC system is set up, and then 
three simulation scenarios are constructed and developed in 
MATLAB/Simulink platform. They are LFC system without 
RE generation, LFC system with RE generation in one area, 
and LFC system with RE generation in each of two areas.

TABLE VIII
COMPUTATIONAL TIME OF FOUR DETECTION METHODS

FDIA

Typical FDIA

Hybrid FDIA

Senario

Training

Test

Training

Test

Time (s)

FNN

40.80

0.05

32.76

0.04

NN

26.33

0.04

29.47

0.04

FPT

242.07

0.02

281.38

0.02

LSTM

287.79

1.80

299.32

1.89

TABLE VII
PARAMETER SETTING OF FNN TRAINING

Parameter

j1

j2

j3

γ

α

O1

O2

O3

O4

O5

O6

O7

O8

Description

Number of neurons in the 1st hidden layer

Number of neurons in the 2nd hidden layer

Number of neurons in the 3rd hidden layer

The maximum number of iterations

Penalty factor

The 1st operater in fuzzy logic

The 2nd operater in fuzzy logic

The 3rd operater in fuzzy logic

The 4th operater in fuzzy logic

The 5th operater in fuzzy logic

The 6th operater in fuzzy logic

The 7th operater in fuzzy logic

The 8th operater in fuzzy logic

Value

10

10

10

500

0.1

Einsteini

Lukasiewiczi

Algebraicsum

Lukasiewiczu

Einsteinu

Mean

Min

Max

TABLE VI
PERFORMANCE OF FOUR DETECTION METHODS FOR DETECTING HYBRID FDIAS IN TWO-AREA LFC SYSTEM

Type

HA1

HA2

HA3

HA4

HA5

HA6

HA7

HA8

HA9

HA10

HA11

HA12

FNN

Prec

0.98

0.98

1.00

0.99

0.96

1.00

1.00

0.98

1.00

0.98

0.97

1.00

Reca

0.99

1.00

0.96

0.99

1.00

0.98

1.00

0.98

0.98

0.98

1.00

0.97

F1

0.99

0.99

0.98

0.99

0.98

0.99

1.00

0.98

0.99

0.98

0.98

0.98

Avg

0.99

0.99

0.98

0.99

0.98

0.99

1.00

0.98

0.99

0.98

0.98

0.98

NN

Prec

0.97

0.90

1.00

0.96

0.98

1.00

0.99

0.99

1.00

0.98

0.88

1.00

Reca

0.99

1.00

0.97

0.98

0.92

0.94

0.95

0.99

0.98

0.99

0.98

0.97

F1

0.98

0.95

0.98

0.97

0.95

0.97

0.97

0.99

0.99

0.99

0.93

0.98

Avg

0.98

0.95

0.98

0.97

0.95

0.97

0.97

0.99

0.99

0.99

0.93

0.98

FPT

Prec

0.85

0.98

0.93

0.96

0.82

1.00

0.62

0.66

0.74

0.93

0.97

1.00

Reca

1.00

0.93

0.83

0.99

0.98

0.94

0.78

0.17

0.98

0.99

1.00

0.91

F1

0.92

0.95

0.88

0.97

0.90

0.97

0.69

0.27

0.85

0.96

0.99

0.95

Avg

0.92

0.95

0.88

0.97

0.90

0.97

0.70

0.37

0.86

0.96

0.99

0.95

LSTM

Prec

0.97

0.99

0.98

1.00

0.86

0.99

0.97

1.00

0.99

0.99

0.98

0.98

Reca

1.00

0.98

0.96

0.97

0.99

0.97

1.00

1.00

0.86

0.98

0.99

0.98

F1

0.98

0.99

0.97

0.99

0.92

0.98

0.98

1.00

0.92

0.98

0.98

0.98

Avg

0.98

0.99

0.97

0.99

0.92

0.98

0.98

1.00

0.92

0.98

0.98

0.98
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The impacts of different FDIAs on the two-area and four-
area LFC systems under three circumstances are analyzed, 
and a large number of experimental samples with system 
change are obtained to verify the excellent performance of 
FNNs. The detection results illustrate higher and more 
steady accuracy for detecting various FDIAs by FNNs than 
those by NNs, FPTs, and LSTM networks under most condi‐
tions. And the computational cost of FNNs is obviously less 
than that of FPTs and LSTM networks, which shows the ex‐
cellent performance of FNNs for detecting FDIAs on LFC 
system with RE generation. In addition, the accuracy of 
FNNs for detecting hybrid FDIAs is higher than that of sin‐
gle typical FDIAs, which means that when multiple typical 
FDIAs maliciously attack the LFC system at the same time, 
the damage to the LFC system is also superimposed, and the 
impact on the system is also more serious. Moreover, the im‐
proved method has a broad range of applications and relies 
on historical data to train statistical models and does not re‐
quire real physical models, which decreases the issues due to 
“model-reality mismatch”.

Future work will consider semi-supervised learning, which 

can comprehensively use labeled and unlabeled data to gen‐
erate suitable classification functions, and can detect un‐
known attacks. In addition, some unique attacks can also be 
studied such as stealthy attacks and time-delay attacks. More‐
over, a more general test system can be simulated based on 
MATLAB/Simulink platform.
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