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Defense of Massive False Data Injection Attack 
via Sparse Attack Points Considering Uncertain 

Topological Changes
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Abstract——False data injection attack (FDIA) is a typical cy‐
ber-attack aiming at falsifying measurement data for state esti‐
mation (SE), which may incur catastrophic consequences on cy‐
ber-physical system operation. In this paper, we develop a deep 
learning based methodology for detection, localization, and data 
recovery of FDIA on power systems in a coherent and holistic 
manner. However, the multi-modal probability distributions of 
both measurements and state variables in SE due to ever-chang‐
ing operating points and structural/topological changes pose 
great challenges in detecting and localizing FDIA. To address 
this challenge, we first propose an enhanced attack model to 
launch massive FDIA on limited access points. Second, we train 
an auto-encoder (AE) with a Bayesian change verification 
(BCV) classifier using N - 1 contingencies to detect FDIA with 
unseen N - k operational topologies. Third, to avoid model col‐
lapse caused by multi-modal measurement distribution, an AE-
based generative adversarial network (GAN) is derived to gen‐
erate a diverse candidate set of normal measurement vectors 
with various operational topologies. Finally, we develop a pat‐
tern match algorithm to localize and recover the falsified mea‐
surements and state variables by comparing the falsified mea‐
surement vectors with the normal measurement vectors in the 
candidate set. Case studies with IEEE benchmark systems and 
a modified 415-bus China Southern Grid system are provided 
to validate the proposed methodology. It shows that the pro‐
posed methodology achieves an average 95% accuracy for detec‐
tion, over 80% accuracy for localization of FDIA, and recovers 
the measurement and state variables close to their true values.

Index Terms——False data injection attack, auto-encoder, gener‐
ative adversarial network, state estimation, cyber security.

I. INTRODUCTION 

UBIQUITOUS applications of information technologies 
and tele-communications pose great challenges to the 

security and resilience of power grid operation. Cyber-at‐

tacks have been identified as major threats for power grids 
and associated stakeholders. False data injection attack 
(FDIA) is a typical cyber-attack aiming at falsifying mea‐
surement data for static state estimation (SE), which may in‐
cur catastrophic consequences on the power grid operation 
[1]. For example, on December 23, 2015, FDIA was 
launched against Ukraine, resulting in a massive blackout 
covering seven 110 kV substations and twenty-three 35 kV 
substations. The power supplies of the three control zones, 
over 80000 users, were interrupted by this attack [2]. There‐
fore, many research efforts have been put into real-time in‐
trusion and FDIA detection to enhance information security 
and integrity.

Even though FDIA was first proposed and realized in pow‐
er grid operation, cyber-physical systems (including the new 
generation of smart grids) built upon communications and 
publicly accessible sensor networks are also vulnerable to 
FDIA, as these access points are exposed to cyber-attackers. 
Despite that FDIA can cause adverse effect on dynamical 
system, e.g., [3]-[5], we focus on the defense of static FDIA 
targeting on a single snapshot.

To address FDIA challenges, we take effort in developing 
a systematic defense methodology for online detection, local‐
ization, and recovery of both measurements and state vari‐
ables from FDIA. Different from the existing work focusing 
on one single technical problem, we place the emphasis on 
the entire chain from issuing alarms of FDIA, identifying 
compromised measurements, and mitigating adverse impacts 
by the recovery of both measurements and states. However, 
it is difficult to identify the characteristics of the probability 
density function (PDF) of measurement and state vectors of 
SE, as these distributions are intrinsically multi-modal. 
Therefore, the FDIA detector should be generalized for un‐
certain/unseen PDFs. To achieve this goal, we have applied 
generative deep-learning models to learn the deep structure 
of the multi-modal PDF and falsified measurements and 
state variables.

The challenges of FDIA were first identified by [6] and 
aroused widespread concerns. Much research work has been 
carried out in the past decade, focusing on the attack model 
[7], [8], impact assessment [9], and detection of FDIA 
[10]-[16].

For the detection of FDIA, both model-based algorithms 
[10]-[12] and data-driven approaches have been applied. For 
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model-based algorithms, unscented Kalman filter [10], graph 
theory based method [11], and temporal correlation analysis 
technique [12] are applied. For the machine learning ap‐
proaches, conditional deep belief network [13], wavelet trans‐
form and recurrent neural network [14], improved ensemble 
learning [15], and multivariant Gaussian anomaly detection 
[16] have been applied. The general breakthrough shared by 
machine learning based methods is to distinguish camou‐
flaged false data from normal measurements based on vari‐
ous statistical properties. While most of the above research 
has demonstrated effective performance, the common as‐
sumption in their works, i.e., implicitly assuming a fixed dis‐
tributional mode on the measurement vectors in SE, is not 
generally valid. A comprehensive survey of the detection al‐
gorithms for FDIA is given in [17]. Besides, the localization 
of FDIA still needs further investigation. References [18] 
and [19] localize and isolate the attacked points of FDIA us‐
ing logical judgment matrices of attack signature. A convolu‐
tional neural network based multi-label classifier is applied 
to localize the FDIA, which relies on a massive training da‐
taset [20]. Mixed outlier detection [21] and deep learning 
based interval SE [22] are used to locate the errors on esti‐
mated state variables caused by FDIA with small-scale cas‐
es. The basic assumption of FDIA is that both the attacker 
and the defender have complete information on the topology 
and parameters of the power grid. References [23] and [24] 
propose two novel attack models with incomplete informa‐
tion, demonstrating the significance and complexity of de‐
fending FDIA. We would refer the readers to our recent sur‐
vey [25] on major advancements and limitations of the exist‐
ing FDIA research. Besides the detection of FDIA, identify‐
ing the locations of falsified measurements, rather than the 
locations of falsified state variables, is critical for the preven‐
tion of FDIA, as the system operators can consolidate identi‐
fied vulnerable components or communication channels.

The above research works have missed a key aspect to im‐
prove the overall effectiveness in defending FDIA. We no‐
tice that the distribution of the measurement has multi-modal 
properties due to the diversified and ever-changing system 
structure, i.e., operating points and topologies, of power sys‐
tems. We hereby make mild assumptions on the distribution 
of measurements, rather than assume a particular family of 
distributions. In this paper, we assume that the defender and 
the attacker possess the complete information of the power 
grid. In designing our defense methodology based on deep-
learning techniques, we resolve the generalization difficulties 
caused by multi-modal distribution to a wider range of uncer‐
tain operating points of power systems. As a result, the pro‐
posed detection/localization model trained offline can be gen‐
eralized to online ever-changing operating points without re-
training.

To summarize, we make the following contributions.
1) We develop an enhanced attack model to launch FDIA 

with a limited number of targeted access points. The key fea‐
ture of this model, as compared with [6], is that this model 
can launch massive FDIA by attacking only smaller numbers 
of substations. From the defender’s standpoint, the proposed 
FDIA model leads to a better understanding of the impact of 

FDIA and better planning for systematic defense methodolo‐
gy.

2) We develop an auto-encoder (AE) feature extractor to‐
gether with Bayesian change verification (AE-BCV) classifi‐
er to detect FDIA. The AE is trained to learn lossless map‐
ping from multi-modal joint probability density distribution 
of state variables along with normal/falsified measurement 
vectors into a lower-dimensional distribution. Then, the BCV 
classifier is applied to detect FDIA with adaptiveness for un‐
seen topological changes of power grids.

3) We derive an AE-based generative adversarial network 
(AE-GAN) for the offline generation of various multi-modal 
probability distributions of normal measurements under un‐
seen power system topologies, which constructs a candidate 
set for localization and recovery of falsified measurement da‐
ta. Compared with [26], AE-GAN can avoid the model col‐
lapse problem. Therefore, the candidate set consists of mea‐
surement samples under various unseen system structures, 
rather than being stuck into pre-selected topologies.

4) We develop a pattern match algorithm for the online re‐
covery of falsified measurements/states to their normal val‐
ues: ① clean the measurement vectors by locating and re‐
moving suspicious falsified measurements; ② compare the 
similarities of the cleaned measurement with the candidate 
set and choose the most similar measurement vector from 
the candidate set as a recovered measurement vector; ③ re‐
cover state variables with the cleaned measurements.

For sake of clarification, the major differences between 
this research work and closely related research works are 
summarized below.

1) Although the proposed attack models are extended 
based on [6] and [27], the fundamental differences between 
our research work and [9], [27] are that the proposed attack 
models falsify much fewer measurements and cause substan‐
tial changes in more state variables. Additionally, in the tar‐
geted mode, we restrict the changes of state variables in non-
targeted substations, leading to a less detectable massive 
FDIA.

2) The proposed methodology places an emphasis on the 
topological changes in the detection/localization of falsified 
measurements and recovery of corresponding state variables, 
as compared with [21]. We construct our training/validation 
dataset with unseen contingencies.

3) We aim to localize and recover the falsified measure‐
ments rather than state variables, to provide more insights 
for the prevention/consolidation against FDIA. Compared 
with [21] which localizes falsified state variables using a pre-
defined candidate set of normal state variables, we construct 
a comprehensive candidate set with AE, which is, in theory, 
able to generate an infinite number of samples for the candi‐
date set. Reference [28] provides a novel SE method which 
can recover the state variables. Different from that work, we 
recover both the measurements and state variable consider‐
ing the topology uncertainty, and validate our methods using 
a real-world larger power system.

The rest of this paper is structured as follows. In Section 
II, the enhanced FDIA model is formulated. From Section 
III to Section V, an overview of the proposed defense meth‐
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odology, methods for detection, and localization and data re‐
covery of FDIA are described, respectively. Case studies are 
provided in Section VI. Finally, we conclude our work in 
Section VII.

II. ENHANCED FDIA MODEL 

In this section, we propose an enhanced FDIA model that 
can launch massive FDIA by falsifying a larger number of 
measurements with fewer attack points, as compared with 
the existing models without triggering bad data detection 
(BDD). For ease of verification and a moderate research 
scope, we focus on the DC SE model with complete infor‐
mation, and formulate our proposed model into a convex op‐
timization problem. Note that the proposed model can also 
be extended to full AC SE, which will be applied to gener‐
ate FDIA samples for training deep learning models in subse‐
quent sections.

BDD had been regarded as a strong guarantee for mea‐
surement reliability in power system SE [29]. However, 
FDIA, known as a topology-knowledge-based cyber-attack, 
is able to inject malicious measurement data bypassing BDD 
[30]. We begin with the DC SE model and BDD principle, 
followed by the proposed model.

A. DC SE Model and BDD Principle

SE aims to estimate the states of the power system via the 
measurement model. Considering m measurements in an n-
bus power system, the measurement model using DC power 
flow is:

z =Hx + e (1)

where zÎRm is the measurement vector, normally including 
phase angles, transmission line power flows, etc.; x = (θ i )

T, 
xÎRn - 1 denotes the state variables, namely the phase angles 
θ i; eÎRm is the irreducible measurement noise; and 
HÎRm ´(n- 1) is the Jacobian matrix containing the informa‐
tion about the power grid topology. Therefore, H is time-
varying due to the changes of system structures or topolo‐
gies.

The DC SE model can be solved by minimizing the 
weighted least square (WLS) as (2), and the estimation re‐
sult x̂ has a closed form given by (3).

min J(x)= (z -Hx)T R-1 (z -Hx) (2)

x̂ = (H T R-1 H)-1 H T R-1 z (3)

where R is a diagonal matrix with diagonal elements equal 
to σ 2

i , and σ i  is the measurement error of the ith bus.
Based on BDD theory, bad data can be detected if the fol‐

lowing condition holds:

 z -Hx̂
2
> τBDD (4)

where τBDD is the pre-defined threshold for BDD.

B. FDIA Principle and Proposed FDIA Model

Let a denote the injection data for z, and z' = z + a is the 
falsified measurement vector, c denote the introduced error 
in the estimation, and x' = x̂ + c denote the estimated state 
vector after FDIA attack.

If condition (5) holds [6], BDD will fail to detect abnor‐

mal measurements, as the residual of measurement model is 
less than the pre-defined threshold τ1, as in (6).

a =Hc (5)

 z' -Hx'
2
=  z + a -H(x̂ + c)

2
=  z -Hx̂

2
£ τ1 (6)

Given the complete information on z, x̂, and H, cyber at‐
tackers are able to launch the most effective and concealed 
FDIA by solving a convex FDIA attack model [27] given by 
(7), which poses great challenges to power grid operation.

min
c

 Hc
1 (7)

However, cyber-attackers need to compromise meters by 
using the above model. As shown in [6], to create an impact 
on 10 variables in the error vector c, 60-140 variables of in‐
jected measurement data a for the IEEE 118-bus system are 
falsified.

We propose an enhanced FDIA model by adding several 
constraints to (7) based on two realistic attack preferences. 
These expansions of the model enable the attackers to 
launch massive FDIA with fewer compromised meters. The 
FDIA can be raised to a specified intensity on a preselected 
set of buses.
1)　Model I: Untargeted FDIA

In this model, the attacker aims to cause valid errors on 
the system without specific targeting. The optimal strategy 
of this model is to: ① ensure that the total impact on estima‐
tion reaches a given level; and ② minimize the number of 
compromised meters. This strategy enables the attacker to 
launch a massive FDIA with restricted accesses to meters. 
The model is given by:

ì
í
î

ïï

ïï

min
c

 Hc
1

s.t.  ∑c ³ k∑ || x̂
(8)

where k entitled attack intensity is a given value ensuring 
that the total caused estimation error is k times larger than 
the sum of the absolute values of real estimation.
2)　Model II: Targeted FDIA

Targeted FDIA aims to cause valid errors on a selected set 
of estimated measurements. The optimal strategy of this 
model is to: ① cause the impacts on given variables to 
reach a given level; ② minimize the number of compro‐
mised meters and the total error of the estimate state. This 
model is formulated as:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

min
c ( ) Hc

1
+  c

1

s.t.  || c ³ || ce

        ce = kxe

(9)

where ceÎRn is a given vector, and ce represents the expect‐
ed errors on the estimated state variables; and xe is the affect‐
ed state vector. If the i th

e  variable is not expected to be falsi‐
fied, xe (ie )= 0, otherwise xe (ie )= x̂(ie ). The constraint ce = kxe 
ensures that valid errors are injected into pre-selected state 
variables.

k specifies the attack strategies of the attackers with a lim‐
ited budget of accessible attack points. By increasing k, the 
attackers cause a larger deviation of many state variables 
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(untargeted FDIA), or a selected set of state variables (target‐
ed FDIA). System operators have priori knowledge to per‐
ceive abnormal state deviation, it is still difficult to assert an 
FDIA event in case of extreme operational conditions or in 
junction with physical attacks [31]. More importantly, the 
proposed attack model poses great challenges in the localiza‐
tion of the sparse falsified measurements and the system-
wide affected state variables by launching intensive FDIA.

III. DEFENSE METHODOLOGY AGAINST FDIA 

We propose a comprehensive methodology as in Fig. 1 to 
systematically address the challenges of FDIA by detecting 
and locating falsified measurement by FDIA, and subse‐
quently recovering these measurements to their correct val‐
ues.

This methodology includes three co-related tasks as fol‐
lows.

1) Detection. z, H, x̂ are first sent to the BDD module. If 
no bad data are detected, z and x̂ will be sent to the AE-
BCV classifier to detect FDIA.

2) Localization. Once an FDIA event is detected, z will be 
labelled as z' that will be sent to the localization module, 
aiming to identify the set of measurements having been falsi‐
fied.

3) Recovery. Once the injections on measurements are lo‐
cated, z' will then be sent to the recovery module. The falsi‐
fied variables on z' will be recovered to approximate its orig‐
inal values. Finally, the true value of x̂ is re-estimated based 
on the recovered z' and H.

In the subsequent sections, we elaborate the models and 
algorithms for detection, localization, and measurement re‐
covery, respectively.

IV. AE-BCV-BASED FDIA DETECTOR 

The detection of FDIA aims to determine whether the 
measurement vector is falsified by FDIA. Therefore, we for‐
mulate the FDIA detection as a binary classification prob‐
lem. However, the detection of FDIA is faced with two ma‐
jor challenges. First, the large size of the measurement vec‐
tor causes unobvious variation on a subset of measurements, 
reducing the sensitivity of the classifier for the change of 

measurement distribution. Second, the ever-changing operat‐
ing points of the power grid (especially the topology of the 
power grid) pose great challenges in training the classifier, 
as the training datasets cannot cover all possible unseen oper‐
ational scenarios in the training stage. The unseen probabili‐
ty distributions of measurements in the test dataset will be 
viewed by the classifier as a novel category that is not in‐
cluded in the training, which may lead to poor performance 
in the identification of FDIA.

In view of these challenges, we propose to apply AE [32] 
as the feature extractor combined with a decision maker 
based on BCV [33]. AE is used to learn a compressed map‐
ping of the original higher-dimensional multi-modal distribu‐
tion of the state/measurement vector into a lower-dimension‐
al space. We notice that the existing methods of dimensional‐
ity reduction, e. g., principal component analysis, aim to re‐
move unimportant dimensions in the vector. However, each 
variable in the measurement vector is equally important, as 
FDIA may falsify on any variable. AE reduces the dimen‐
sions of measurement via the encoding process. The key fea‐
tures of the distribution of the state/measurement vector are 
retained during this process. The BCV-based decision maker 
transforms the classification problem into a hypothetical deci‐
sion-making problem to overcome the second challenge. The 
BCV-based decision maker makes robust decisions by calcu‐
lating the probabilities of a pair of mutually exclusive hy‐
potheses. The impact of generalization error (due to unseen 
operating points of the power grid) will be greatly reduced 
in detecting FDIA, as compared with conventional classifica‐
tion-based methods.

A. AE-based Feature Extractor Model

AE is a feed-forward neural network consisting of an en‐
coder qd and a decoder pd. As in Fig. 2, the input of AE 
ydÎRm + n - 1 consists of z and x̂. The encoder aims to encode 
the joint PDF of (zx̂) with a compressed representation, i.e., 
the code cdÎRd. The decoder subsequently reconstructs the 
input as y͂dÎRm + n - 1 with the compressed code. By training 
AE with the dataset, the reconstructed input will asymptoti‐
cally approach the original distributions.

Both the encoder and the decoder are essentially nonlinear 
mapping, which are briefly written as:

cd = σ(ωyd + b) (10)

y͂d = σ(ῶcd + b͂) (11)

x
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Fig. 1.　Proposed methodology for defensing FDIA.
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where ω and ῶ are the weights of mapping layers; b and b͂ 
are the biases; and σ is the activation functions such as Re‐
LU, Sigmoid, etc. Parameters in AE model, i.e., weights and 
biases, will be determined in the training process, which min‐
imizes the mean square error between the input and recon‐
structed input as:

min
ωῶbb͂

 yd - σ{ῶ[σ(ωyd + b)]+ b͂}
2

(12)

After the AE is well-trained, we will only use the encoder 
as the feature extractor. The input will first map to the com‐
pressed code by the encoder. Then, this code will be sent to 
the BCV-based decision maker, as shown in Fig. 3.

B. BCV-based Decision Maker to Detect FDIA

The BCV-based decision maker proposed in [33] aims to 
perform face recognition under uncertain conditions. Inspired 
by BCV, we aim to determine whether the measurement vec‐
tor has been falsified with uncertain topological change of 
the power grid by solving a hypothetical decision-making 
problem formulated as:

r(c1c2 )= lg
P(Δ|H1 )
P(Δ|H2 )

³ τBCV (13)

where c1 is the given code of a reliable measurement vectors 
from a training dataset containing N codes; c2 is the code of 
the detection input we want to test; H1 is the hypothesis 
where c1 and c2 are equally reliable; and H2 is the hypothesis 
where c2 is falsified by FDIA. The difference in the two 
codes is given by Δ = c1 - c2, and τBCV is a given threshold. 
Based on the maximum a posterior (MAP) rule, we make 
the decision by testing the log-likelihood ratio r, where r 
measures the similarity between c1 and c2 [33]. If r exceeds 
the given threshold, H1 is true, indicating that the tested mea‐
surement vector is reliable. Otherwise, H2 is true, indicating 
that FDIA has falsified the tested measurement vector.

With N training samples, the posterior probabilities of Δ 
based on H1 and H2 can be calculated by:

P(Δ|H)=∏
u = 1

N

P(Δ(u)= c(u)
1 - c(u)

2 |Hv )    v = 12 (14)

V. AE-GAN-BASED LOCALIZATION AND RECOVERY 
ALGORITHMS 

In this section, we aim to locate the falsified variables in 
the measurement vector and recover those variables. The lo‐
calization and recovery process contain two steps: ① an AE-
GAN model is proposed to generate a candidate set of distri‐
butions of normal measurements; ② a pattern match algo‐

rithm is proposed to locate the attacked point and identify 
the most likely candidate measurement in the candidate set.

A major challenge to fulfill this goal comes from the 
multi-modal distributions of power grid measurements, i. e., 
while the power grid is operating normally, there exists mul‐
tiple reasonable distributions for the measurement vector. It 
is infeasible to fit all these reasonable distributions and deter‐
mine which one is the most likely.

To overcome this challenge, AE-based GAN is used to 
capture the multi-modal distributions and generate a diverse 
candidate set of measurement distributions under normal op‐
erational conditions. By theoretical analysis and case studies, 
AE-GAN can generate an infinite number of multi-modal 
distributions that are highly similar with measurement vec‐
tors under normal operational conditions. Meanwhile, the 
AE-GAN model has overcome model collapse [34], even if 
the generation target has multi-modal distributions, which is 
common in other generative models such as GAN.

A. AE-GAN Model

The general GAN consists of two networks, i.e., the gener‐
ator and the discriminator. The discriminator aims to classify 
the generated input, whereas the generator aims to cheat the 
discriminator by generating various distributions for normal/
falsified measurements. These two networks will be trained 
by playing dynamic optimization games against each other 
[35]. The generator will be able to generate data with highly 
similar PDF as the input data.

In AE-GAN model, the decoder in AE will be set as the 
generator in GAN. The AE model approximates the distribu‐
tion of generated measurements to the distribution of normal 
measurements. To generate as many candidate measurements 
as possible, the trained decoder uses Gaussian distribution as 
the input code, as the Gaussian distribution is the most ex‐
tensively used input distribution of generative models. Thus, 
Gaussian noise is set as the reference in the GAN training 
process to approximate the input code of the decoder to 
Gaussian distribution.

Compared with conventional GAN models, the design of 
AE-GAN in Fig. 4 addresses two fundamental challenges in 
generating multi-modal measurement distributions.

1) Model collapse. The training of GAN has brittle conver‐
gence properties due to the model collapse in this problem. 
Model collapse is one kind of GAN training failure incurred 
by the multi-modal distributions of input data [34]. To avoid 
model collapse, we replay the input as Gaussian distribution 
and use the encoder in AE as the generator. The encoder 
maps the multi-modal distributions of power system measure‐
ments to the single-modal distribution. For the GAN part in 
AE-GAN, both the input and the generated data have single-
modal distributions, and the model collapse is avoided.

2) Generate infinite multi-modal candidate data. Since the 
training of GAN approximates the generated data to the real 
input, the decoder is mapping the Gaussian distribution to 
multi-modal distribution of power system measurement data. 
Thus, a well-trained decoder can generate infinite multi-mod‐
al candidate data with infinite Gaussian random samples.

In Fig. 4, the encoder q lr plays as the generator, and an ad‐
ditional discriminator is introduced to the network. 
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Fig. 3.　BCV-based decision maker model.
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In each training step, the normal measurement ylr is sent 
to AE to output generated measurement y͂ lr, then the entire 
AE network is trained one time to minimize (12). Since we 
must enforce the code distribution obeying Gaussian distribu‐
tion, this code will be regarded as the fake input of discrimi‐
nator, denoted as cfake. Then, cfake and the Gaussian random 
sample creal are sent to discriminator D(c), which will output 
the probability, and c is a reliable measurement vector. 
Based on the output result, the entire network is trained 
by [35].

min
qlr

max
D

V (qlr,D)=Ecreal~pGaussian
[lg D(creal )]+

Ecfake~qlr (ylr ) [lg (1 -D(cfake ))] (15)

where pGaussian is a Gaussian distribution. By training with 
(15), the generated distribution will approach Gaussian distri‐
bution, and the Nash-equilibrium is achieved.

B. Localization and Measurement Recovery of FDIA

Among the massive measurements in normal operational 
conditions generated by AE-GAN, we can identify the most 
likely one to approximate the original measurement vector. 
Then, the falsified measurements are replaced by correspond‐
ing variables in the selected measurement vector.

To pinpoint the falsified measurement, we propose an iter‐
ative algorithm for FDIA localization in Algorithm 1, which 
repeats the screening with two actions: ① check suspected 
variables by comparing Lorigin and Lremoved; ② after removing 
suspected variable, compare the distributions of the falsified 
and generated measurements to maximize the accuracy of 
FDIA localization.

Then, a pattern match algorithm for measurement recov‐
ery is proposed in Algorithm 2 with two steps: ① replace 
falsified variables by the reconstructed variables; ② repeat 

the correction of generated measurements to improve recov‐
ery accuracy with the trained AE in the AE-GAN network. 
Note that at this point, the code encoded by recovered mea‐
surements is close to the code decoded by normal measure‐
ments. The repetitive correction is essential to searching the 
optimal distribution among the corresponding codes in the 
candidate set. Finally, we recover state variables by solving 
(3) with the recovered measurements.

Algorithm 1: iterative algorithm for FDIA localization

Create k generated measurement, GMÎRm. Use random Gaussian sample 
and trained decoder in AE-GAN.

for each GM in k steps:
Compute original distribution difference Lorigin between GM and at‐

tacked measurement AM as: Lorigin =  GM -AM
2
.

for each i in m steps:
Remove GM(i) in GM as GM'; and remove AM(i) in AM as AM'.
Compute removed distribution difference Lremoved between GM and 

AM when removing the i element: Lremoved =  GM' -AM'
2
.

if Lorigin - Lremoved ³ τ1

Define attacked location AL and let AL(i)= 1.

end
end
Return the sequence number of nonzero variables in AL, remove the 

variables based on the index in GM and AM as GM' and AM'.
Compute the distance Ldistance between the rest of GM and AM: 

Ldistance =  GM' -AM'
1

if k =1
τ2 = Ldistance; define searched attacked location SAL and let 

SAL =AL; define reconstructed measurement in localization 
RML and let RML =GM(k).

else if τ2 > Ldistance

τ2 = Ldistance; SAL =AL; RML =GM(k).

end
end
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VI. CASE STUDIES 

In this section, we evaluate the proposed attack model and 
the defense methodology against FDIA.

A. Experimental Setup

Our evaluations are conducted on a computer with 16 GB 
RAM, an Intel i7-8750H CPU, and an Nvidia RTX 2070 
GPU. The dataset is generated by the proposed convex opti‐
mization models (8) and (9) with the power system simula‐
tion tool MATPOWER and the optimization modeling tool 
CVX. The proposed methodology is implemented with Py‐
Torch.

B. General Setup of Dataset

1) Normal Cases
We test our methodology using IEEE 57-bus system, 

IEEE 118-bus system, and IEEE 300-bus system from MAT‐
POWER, and a synthesized 415-bus system with 627 branch‐
es based on a part of the China Southern Grid (CSG). Power 
flow calculations are performed on these systems to obtain 
base cases.

We diversify normal operational cases as follows: ① per‐
form Monte-Carlo simulations to conduct (configurable for 
training, validation, and test) line switch to the base cases; 
② vary the bus power injection by 50% to 150% of the 
base case values; ③ perturb the bus power injection by 
white noise with the variance of 1% of the base case values.
2) FDIA Cases

Cases with falsified measurements by FDIA are generated 
by overlaying the injection data a and introduced error c, 
both determined by (8) and (9) on normal operational sam‐
ples.
3) Dataset for Training AE and AE-GAN

We combine the normal cases and FDIA cases into a data‐
set for training and evaluating AE and AE-GAN models. To 
ensure that some topology changes are unseen in the test 
stage, we construct training and validation datasets with 5% 
line switching, while the test dataset is constructed with up 
to 8% line switching. The sizes of datasets for training, vali‐
dation, and test are set to be 80%, 10%, and 10%, respective‐
ly. We do not conduct additional normalization for the data-
set because the measurements and states are recorded as per-

unit value.
Each item in the dataset includes features and a label as 

in Table I, depending on the training purpose.

C. Case Study I: Impact of Proposed Attack Model

We study the performance of our FDIA model based on 
two aspects: the ability to bypass the BDD; and system-wide 
impact with limited resources and access to meters.

We categorize attacks into three levels: strong attack (SA), 
moderate attack (MA), and weak attack (WA). The intensity 
of attacks is measured by the magnitude of introduced error 
c, determined by the parameter k in models (8) and (9). In 
untargeted FDIA, the total estimated error is set as k times 
larger than the sum of absolute values of real estimation. In 
targeted FDIA, the attacked points are randomly selected 
and the error on selected points is set as k times larger than 
base values. The ranges of k are shown in Table II.

1) The performance of bypassing the BDD: BDD works if 
and only if the residual threshold detection model (5) works 
successfully. Comparing the deference of residuals between 
normal and attacked scenarios, we can evaluate whether the 
attacked measurements can bypass BDD.

We conduct simulations on IEEE 118-bus and 300-bus sys‐
tems. Each level of attack has been simulated 1100 times. 
We average the normal operational residual (NOR) and the 
difference caused by SA, MA, and WA of targeted, and un‐
targeted attack models in Table III. The NOR and difference 
caused by attacks are calculated by:

NOR =max (| z -Hx̂ | ) (16)

dNOR =NOR -max ( )|| (z + a)-H(x̂ + c) (17)

We can see that the differences of FDIA attack at each lev‐
el are far less than the NOR, indicating the proposed FDIA 
models are able to bypass BDD.

2) System-wide impact assessment. We compare the per‐
formance of our model and the conventional FDIA model 
[6] on IEEE 118-bus and 300-bus systems. The results are 
shown in Table IV, indicating that the proposed attack mod‐
els can affect more state variables with less compromised 
meters, as compared with the conventional model.

Algorithm 2: pattern match algorithm for measurements recovery

Define recovered measurement RM and let RM = AM.
RM = RML for nonzeros in SAL
Define final reconstructed measurement in recovery FRMR and let 

FRMR = RM.
for each i in k steps:

Use AE to generate new recovered measurement NRM as: 
NRM = plr (qlr (RM)) and let RM =NRM for nonzeros in SAL.

Return the index of nonzero variables in SAL and remove the variables 
corresponding to the serial number in NRM and AM as NRM' and 
AM'.

Compute the distance between the rest of NRM and AM: 
Ldistance =  NRM' -AM'

1
.

if τ2 > Ldistance: τ2 = Ldistance; FRMR = RM.
end

end

TABLE I
FEATURES AND LABEL OF DATASET

Dataset

AE feature extractor

AE-BCV detector

AE-GAN

Feature

z, x

z, x

z

Label

Not applicable

FDIA or not

Positions of falsified measurement

TABLE II
CATEGORY OF FDIA INTENSITY

Attack level

SA

MA

WA

Range of k

10 £ k £ 40

5 £ k < 10

2 £ k < 5
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D. Case Study II: Accuracy of FDIA Detection

We evaluate the accuracy of FDIA detector as follows. ① 
We test our detectors under various attacks, including target‐
ed and untargeted attacks at three intensity levels. ② For the 
sake of robustness, we train only one detector for each pow‐
er system for all types of attacks. Meanwhile, several types 
of attacks unseen in the training process are included in the 
test process to verify the robustness of the proposed model. 
③ We only use normal measurements to train AE. Using on‐
ly normal measurements in the training can effectively com‐
press the sample space of AE, which facilitates and acceler‐
ates the training. To train the BCV, normal measurements, 
targeted, and untargeted attacks are considered. Half of the 
training dataset is generated on the base topology, and the 
other half is based on topological changes with up to 5% 
line outages. We also limit the intensity level of the attack 
for training, where only SA is used in the training dataset. 
However, we test our detectors using WA, MA, and SA. In 
other words, the AE-BCV detector can detect less tangible 
FDIA events in realistic attack scenarios.

The detailed structure and the parameters of the AE-BCV 
detector are listed in Appendix A. The confusion matrices of 
the proposed detectors are listed in Table V, with over 95% 
accuracy on test systems. For a comprehensive comparison, 
we train two other detectors based on ANN and SVM and 
test them with the same datasets. From the comparison 
shown in Table VI, we observe that the proposed model out‐
performs the other two models.

To evaluate the robustness of the proposed detectors, we 
focus on the accuracy of the test using unseen test samples.
The performance of detectors against unseen MA and WA is 
listed in Tables VII and VIII. We observe that the AE-BCV 
detector still outperforms other two detectors with unseen 
milder attacks. Meanwhile, we also observe that the advan‐

tage of AE-BCV expands as the intensity of the attack de‐
creases. These observations indicate that the AE-BCV detec‐
tor is more robust to the unseen test samples.

We also make a rough comparison of the detection accura‐
cy between the proposed AE-BCV detector and the detection 
models in [13], [14] with the IEEE 118-bus system, as the 
details of the model design of these models are not consis‐
tent. We notice that the state-of-the-art deep-learning-based 
methods achieve over 90% correct rates on the IEEE 118-
bus system (92% in [13], and up to 98% in [14]). For un‐
seen topological changes, the proposed detector can still 
achieve over 90% correct rate on the IEEE 118-bus system 
with an approximately equivalent performance [13], [14], as 
shown in Tables VII and VIII.

E. Case Study III: FDIA Localization and Data Recovery

We first visualize the training process of the AE-GAN to 
show that the Nash-equilibrium is achieved. Next, we ana‐
lyze the performance of the localization algorithm. Finally, 
detailed cases of measurement recovery are demonstrated.

The training dataset for AE-GAN only contains normal 
measurements z. And the testing set for localization and re‐

TABLE V
CONFUSION MATRIX FOR GENERAL FDIA DETECTION

Bus

57-bus

118-bus

415-bus

Correct rate (%)

96.7

98.5

97.5

False positive (%)

0.6

0.1

0.2

False negative (%)

2.7

1.4

2.3

TABLE VI
AVERAGE PERFORMANCE OF DETECTORS UNDER VARIOUS FDIA

Detector

AE-BCV

SVM

ANN

Accuracy (%)

57-bus

96.7

86.0

86.7

118-bus

98.5

93.3

92.8

415-bus

97.5

88.5

87.2

TABLE VII
PERFORMANCE OF DETECTORS AGAINST UNSEEN MA

Detector

AE-BCV

SVM

ANN

Accuracy (%)

57-bus

98.4

94.0

87.6

118-bus

99.2

94.0

93.2

415-bus

97.6

92.4

90.0

TABLE VIII
PERFORMANCE OF DETECTORS AGAINST UNSEEN WA

Detector

AE-BCV

SVM

ANN

Accuracy (%)

57-bus

90.8

50.8

60.4

118-bus

95.2

80.0

78.8

415-bus

93.2

62.8

60.4

TABLE III
NORMAL RESIDUAL AND DIFFERENCE CAUSED BY UNTARGETED FDIA

Test system

IEEE 118-
bus

IEEE 300-
bus

NOR

2.570

0.128

dNOR

WA

5.3×10-8 (TA)

6.9×10-8 (UA)

5.1×10-8 (TA)

3.4×10-7 (UA)

MA

3.7×10-8 (TA)

9.6×10-7 (UA)

8.9×10-8 (TA)

8.4×10-8 (UA)

SA

4.3×10-8 (TA)

2.8×10-8 (UA)

1.1×10-8 (TA)

6.3×10-8 (UA)

Note： TA represents targeted； and UA represents untargeted.

TABLE IV
COMPROMISED METERS AND AFFECTED STATES OF TWO MODELS

Test system

IEEE 118-bus

IEEE 300-bus

FDIA model

Conventional model

Untargeted FDIA

Targeted FDIA

Conventional model

Untargeted FDIA

Targeted FDIA

No. of compro‐
mised meters

60-140

33-34

18-49

50-140

9-12

10-50

No. of affected 
states

10

117

10-48

10

299

10-35
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covery only consists of measurements under untargeted at‐
tacks. We assume that each sample in the testing set has 
been identified as “under attack” by the detector. The topolo‐
gy change has been considered in the testing set, up to 8% 
line outages may occur based on the base topology. We have 
prepared a test set for all kinds of attacks.

1) The visualization of the AE-GAN training: it is crucial 
to train the discriminator and the generator at the same pace 
and maintain the confrontation between these two models. 
Otherwise, the equilibrium will not be achieved.

Figure 5 shows the training loss in IEEE 118-bus system, 
visualizing the training process of two models. The loss de‐
notes the error between the outputs and expected results of 
the model in (12). To show the curve more intuitively, we 
use moving average of loss (MAL) for a sliding window of 
10 steps to reflect the overall trend of the loss curve. For 
both curves, the quicker they decrease, the faster they are 
trained. After the first 200 steps, the curve of the discrimina‐
tor decreases, whereas the curve of the generator increases, 
showing that they are in different training paces. However, 
the trends of the two curves reverse after 200 steps. Finally, 
the training pace of the two models gradually balances and 
reaches Nash-equilibrium.

2) The performance of FDIA localization. The recovery 
process aims to minimize the search error measured by the 
distance to Ldistance. Figure 6 shows Manhattan distance versus 
iteration of IEEE 118-bus system. We observe that Manhat‐
tan distance curves decrease, indicating the recovery algo‐
rithm can effectively discover more accurate measurements 
and make improvements on the localization results. The re‐
covered measurement of IEEE 118-bus system is shown in 
Fig. 7. The FDIA localization results of IEEE 118-bus sys‐
tem and CSG 415-bus system are shown in Table IX, where 
the correct rate, positive false rate, and negative false rate in 
the table are normalized by the number of attack/unattacked 
points, rather than the number of total measurements.
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Fig. 6.　Manhattan distance versus iteration of IEEE 118-bus system.

3) The performance of measurement recovery. As shown 
in Table X, the mean error of recovered measurements 
caused by FDIA drops significantly. For z( j0 )= 0, we will 
set z( j0 )= mean(|z|). Otherwise, |a( j0 )/z( j0 )| will become infi‐
nite. Therefore, the adverse impact of FDIA is mitigated.

F. Computation Time

The computation time is listed in Table XI. 

It is shown that, despite that the offline training of the 
classifier and the AE-GAN model are time-consuming, the 
computation time for online classification, localization, and 
recovery is short. Therefore, the proposed methodology is ef‐
ficient for online defense against FDIA.
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Fig. 5.　Moving average of training loss in IEEE 118-bus system.

TABLE XI
COMPUTATION TIME

Type

IEEE 118-bus

CSG 415-bus

Detection

Training 
time (s)

441.56

594.44

Classification 
time (s)

0.011

0.013

AE-GAN 
(s)

324.85

406.39

Localization 
and recovery 

time (s)

14.69

25.47
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Fig. 7.　Recovered measurements of IEEE 118-bus system.

TABLE IX
FDIA LOCALIZATION RESULT WITH VARIED INTENSITY OF ATTACK

Type

IEEE 118-bus

CSG 415-bus

Intensity of 
attack

SA

MA

WA

SA

MA

WA

Correct
rate (%)

83.92

84.96

80.37

85.69

85.16

81.28

Positive 
false rate (%)

6.91

11.36

12.90

7.31

9.07

11.63

Negative 
false rate (%)

16.08

15.04

19.63

14.31

14.84

18.72

TABLE X
ERROR OF MEASUREMENTS BEFORE OR AFTER RECOVERY WITH 

VARIED ATTACK INTENSITY

Type

IEEE 118-bus

CSG 415-bus

Intensity of 
attack

SA

MA

WA

SA

MA

WA

Error (mean |a/z|) 
caused by FDIA

16.50

5.70

3.15

21.69

5.99

2.68

Error (mean |a/z|) 
after recovery

0.85

0.61

0.46

0.92

0.53

0.32
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It is seen that the computation time increases slightly as 
the scale of the power system expands. On one hand, the 
AE-BCV detector is designed to capture the deep characteris‐
tics of joint PDF of (x̂z). Therefore, FDIA can be detected 
if the falsified measurements cause the density of joint prob‐
ability derivate from normal distributions. As a result, the 
training dataset for the AE-BCV detector is not necessarily 
large. On the other hand, note that the size of the neural net‐
work in the AE-BCV detector and AE-GAN (as shown in 
Appendix A) is medium, the training time of these neural 
networks depend primarily on the size of training dataset. 
Therefore, the training time will increase mildly as the size 
of the power system grows.

VII. CONCLUSION 

To address the challenges of FDIA, we design a deep-
learning-based methodology for detecting and locating FDIA 
using DC power flow and recovering the falsified measure‐
ment/state variables. Importantly, we aim to improve the gen‐
eralization of the proposed methodology with uncertainty un‐
der operational conditions.

To this end, we first propose two attack models to demon‐
strate the system-wide impact of massive FDIA even with 
limited access to meter and sensors. Second, we design a ro‐
bust AE-BCV detector to learn the deep feature of the joint 
probability function of state variables and measurements, 
and then classify FDIA by the MAP rule. The proposed de‐
tector outperforms the existing methods with over 95% de‐
tection accuracy for FDIA, even if the system structure, i.e., 
the operational topology of the power grid in the application 
context, is unseen to the detector in the training stage. Third, 
we design an AE-GAN to generate a diverse dataset contain‐
ing measurement samples under the normal operational con‐
ditions. Subsequently, we design a pattern match algorithm 
to recover falsified measurements from the dataset based on 
Manhattan distance. From comprehensive case studies, the 
proposed methodology achieves an 80% localization accura‐
cy and recovers the state variables close to the true values.

The advantages of the proposed methodology are as fol‐
lows. First, the proposed AE-BCV detector can be directly 
applied with AC power flow model, as we train the joint 
probability distribution of states and measurements. Second, 
the proposed AE-GAN can generate a sufficiently large can‐
didate set for falsified measurement localization without 
model collapse.

Our future research can be extended in the following as‐
pects. First, the attack model can be modified to consider 
AC power flow model. Second, the algorithmic efficiency 
for localization and recovery can be improved by construct‐
ing a refined candidate set. Third, the proposed methodology 
can be applied in the context of dynamic SE with asymmet‐
ric information possessed by cyber attackers and defenders.

APPENDIX A 

A. Detection Test Based on a Large Test System

This case is to verify the scalability of the model. The 
1354-bus system in MATPOWER is used in the simulation. 

The topological changes are not considered, whereas other 
setting is the same as that in case studies. The positive false 
rate is 0.1% and the negative false rate is 4.7%.

B. Detailed Structure and Parameter Setup

The detailed structure and the parameters of the AE-BCV 
detector and AE-GAN are listed in Table AI and Table AII. 
The values of τ1 for localization are 0.01 for IEEE 118-bus 
system and 0.5 for CSG 415-bus system.
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