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Adaptive Power Control Based on Double-layer
 Q-learning Algorithm for Multi-parallel Power 
Conversion Systems in Energy Storage Station
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Abstract——An energy storage station (ESS) usually includes 
multiple battery systems under parallel operation. In each bat‐
tery system, a power conversion system (PCS) is used to con‐
nect the power system with the battery pack. When allocating 
the ESS power to multi-parallel PCSs in situations with fluctu‐
ating operation, the existing power control methods for parallel 
PCSs have difficulty in achieving the optimal efficiency during 
a long-term time period. In addition, existing Q-learning algo‐
rithms for adaptive power allocation suffer from the curse of di‐
mensionality. To overcome these challenges, an adaptive power 
control method based on the double-layer Q-learning algorithm 
for n parallel PCSs of the ESS is proposed in this paper. First, 
a selection method for the power allocation coefficient is devel‐
oped to avoid repeated actions. Then, the outer action space is 
divided into n + 1 power allocation modes according to the pow‐
er allocation characteristics of the optimal operation efficiency. 
The inner layer uses an actor neural network to determine the 
optimal action strategy of power allocations in the non-steady 
state. Compared with existing power control methods, the pro‐
posed method achieves better performance for both static and 
dynamic operation efficiency optimization. The proposed meth‐
od optimizes the overall operation efficiency of PCSs effectively 
under the fluctuating power outputs of the ESS.

Index Terms——Double-layer Q-learning, adaptive power con‐
trol, energy storage station (ESS), operation efficiency, power 
conversion system (PCS).

I. INTRODUCTION 

IN recent years, the energy storage station (ESS) has at‐
tracted considerable attention in the generation, transmis‐

sion, distribution, and power consumption parts of the power 
system. The ESS provides various services for the power sys‐
tem, such as peak load shaving and valley load filling, allevi‐

ating the operation pressure, smoothing the power fluctua‐
tion of renewable energy, and improving the reliability of 
the power supply [1]. With the development of energy-stor‐
age technology, the deployment of energy storage in power 
systems is growing rapidly [2], [3]. For ESSs with a large in‐
stalled capacity, a parallel structure with multiple battery sys‐
tems is adopted to improve the operation reliability [4].

In a battery system, the power conversion system (PCS) 
connects the power system to the battery pack (BP) and real‐
izes bidirectional power exchange. The operation efficiency 
of a PCS is related to the exchanged power. For an ESS 
with multi-parallel PCSs, the overall operation efficiency of 
all the PCSs is determined by the power allocated to each 
PCS, which is controlled by the energy management system 
(EMS). In general, the ESS power is allocated via the tradi‐
tional power sharing and hierarchical switching methods in 
practical engineering [5]-[7]. For improving the overall oper‐
ation efficiency of parallel PCSs, these two methods are not 
applicable. Thus, it is necessary to develop an effective pow‐
er control method for improving the overall operation effi‐
ciency of multi-parallel PCSs in ESSs.

Several methods have been proposed for improving the 
overall operation efficiency by managing the operation con‐
figuration of parallel converters. Reference [8] proposed a 
method to improve the selection of an arrangement of con‐
verters based on efficiency considerations. A tertiary control 
method was proposed for improving the overall operation ef‐
ficiency by adjusting the power allocation proportion for par‐
allel DC-DC converters in [9]. Reference [10] proposed a 
steady-state operation point control method for parallel con‐
verter systems, where the power allocation between n paral‐
lel converters was determined via the forward and backward 
substitution methods. Reference [11] optimized the efficien‐
cy of an ESS with two parallel dual active bridge converters 
by switching on/off modules. However, when the ESS re‐
sponds to the stochastic renewable power or power system 
frequency deviations, the ESS power fluctuates significantly, 
and the average power allocated to each PCS during a whole 
day is far lower than 50% of the rated power [12]. The oper‐
ation efficiency of a PCS under low exchanged power is sig‐
nificantly lower than that under the rated power. In fluctuat‐
ing operation situations, the number of operating battery sys‐
tems and the battery charging/discharging status vary dynam‐
ically with time. The methods proposed in [8] - [11] are not 
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suitable for optimizing the operation efficiency of parallel 
PCSs in fluctuating operation situations. Thus, the adaptive 
control method is needed to solve the dynamic operation effi‐
ciency optimization problem for parallel PCSs in fluctuating 
operation situations.

Adaptive power allocation for wind power converters was 
realized offline via exhaustive calculations and online using 
a lookup table for two parallel converters [7]. Intelligent al‐
gorithms, e.g., particle swarm optimization (PSO) and genet‐
ic algorithms (GAs), were used to achieve optimal adaptive 
control for different types of converters [13]-[15]. However, 
the complexity of the nonlinear equation for calculating the 
overall operation efficiency increases with the number of par‐
allel PCSs. For the dynamic nonlinear problem, the adaptive 
method proposed in [7] led to a long calculation time. The 
intelligent algorithms proposed in [13]-[15] had low conver‐
gence speeds and may find local optimal solutions. In [16], 
the performance of several state-of-the-art intelligent algo‐
rithms for solving nonlinear equations was reviewed. Howev‐
er, with the increasing complexity of the nonlinear equa‐
tions, the performance of intelligent algorithms will inevita‐
bly deteriorate owing to the equation roots.

Considering the aforementioned issues, the objective of 
this study was to use the Q-learning (QL) algorithm to adap‐
tively obtain the optimal power allocation strategies for 
multi-parallel PCSs. The power allocation problem of the 
ESS under significant power fluctuations is an optimal deci‐
sion problem of a dynamic nonlinear system. The Markov 
decision process (MDP) can be used to describe the dynamic 
decision-making problem, and the reinforcement learning 
(RL) employs the MDP as the framework to express the in‐
teraction with the environment. QL algorithm is a type of 
RL and can obtain the optimal solution for the dynamic non‐
linear system. The adaptive control realized by the QL algo‐
rithm can respond quickly for online control after pre-learn‐
ing. The QL algorithm has been used for the dynamic opti‐
mization of integrated energy systems [17], [18], the auto‐
matic generation control of power systems [19], and the aux‐
iliary regulation of power systems [20], [21].

However, the original QL algorithm uses discrete action 
and state variables, which makes the learning process ineffi‐
cient and convergence difficult for a dynamic nonlinear sys‐
tem with n parallel PCSs. To increase the learning efficien‐
cy, a double-layer QL algorithm for n parallel PCSs is devel‐
oped to realize dynamic decision-making for adaptive power 
control, and the following improvements are made.

First, to avoid repeated actions, the selection of power al‐
location coefficients is simplified according to the system 
constraints.

Then, when a PCS is controlled to cut in or off, the paral‐
lel system will be in the non-steady state and adaptively 
change the power allocations of all the PCSs to ensure a 
high operation efficiency. In the steady state, the optimal op‐
eration efficiency is achieved for the parallel PCSs with the 
power sharing method. In fluctuating operation situations, 
the parallel PCSs may spend more time in the non-steady 
state than in the steady state. Because of these characteris‐
tics, the double-layer QL algorithm is developed as follows.

1) Outer layer: according to the power allocation charac‐
teristics, the power sharing method is helpful for achieving 
the optimal overall operation efficiency of the parallel PCSs 
in the steady states. To obtain the interval values of non-
steady states, the action space of the outer layer is divided 
into n + 1 power allocation modes.

2) Inner layer: in the non-steady interval, the inner layer 
uses the actor neural network to determine the optimal ac‐
tion for the power allocation. Meanwhile, the action reward 
obtained by the inner layer dynamically revises the non-
steady interval values in the outer layer.

In the simulation, a wind power plant is supported by an 
ESS, which was utilized to smooth the wind power fluctua‐
tions. First, after the QL controller is obtained by pre-learn‐
ing within the range of the ESS power, the QL controller is 
subjected to real working conditions. Then, the efficiencies 
of the parallel PCSs are compared between the adaptive pow‐
er control method and traditional methods. Finally, for the 
ESS used to respond to the wind power fluctuations, the 
comparisons of the optimization results between the pro‐
posed double-layer QL algorithm and intelligent algorithms 
are performed.

The remainder of this paper is organized as follows. Sec‐
tion II presents the efficiency model for ESSs. Section III 
presents the proposed adaptive power control method based 
on the double-layer QL algorithm. Section IV presents the 
simulation analysis results obtained using a detailed simula‐
tion model. Conclusions are presented in Section V.

II. EFFICIENCY MODEL FOR ESSS 

A. Structure of ESSs

The structure of an ESS is shown in Fig. 1. The ESS is 
composed of an EMS and multi-parallel battery systems. 
Each battery system includes a PCS, a battery management 
system (BMS), and several BPs [22]. P total is the power out‐
put of the ESS and is defined as the ESS power; i is the in‐
dex for the battery systems; and Pi is the power allocated to 
the ith PCS. P total is allocated to all the parallel PCSs.

After the ESS receives the regulation requirement, the 
EMS generates the control signal for each PCS to allocate 
P total to the battery systems according to the state of charge 
(SOC) values and the rated power of the battery systems. 
During the charging and discharging processes, the power ex‐
change leads to power loss in the conversion of PCSs. Ac‐
cording to the real-time P total, the overall operation efficiency 
of multi-parallel PCSs can be optimized by adaptively allo‐
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Fig. 1.　Structure of an ESS.
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cating Pi to the ith PCS, which can significantly reduce the 
power loss.

B. Objective Function

To realize the adaptive power allocations for multi-parallel 
PCSs in the ESS, the following assumptions are made.

Assumption 1: the values of the battery parameters such 
as the rated capacity and rated power are assumed to be 
identical among all the battery systems.

Assumption 2: the power loss models of the two working 
directions of the PCSs are identical.

Assumption 3: the self-discharge of the battery is ignored.
The objective function is to maximize the overall opera‐

tion efficiency of the parallel PCSs, which is calculated as:

g =max{ηT (P b
1 P

b
2 P b

i P b
n )} (1)

where n is the total number of PCSs; ηT is the overall opera‐
tion efficiency of the parallel PCSs; and P b

i  is the power allo‐
cated to the ith PCS on the grid side.
1)　Efficiency Model for PCS

For an individual PCS, the operation efficiency is defined 
as:

η(P in )=
Pout

P in

=
P in -P loss

P in
(2)

where P in is the input power of the PCS; Pout is the output 
power of the PCS; η(×) is the operation efficiency of the 
PCS; and P loss is the total power loss of the PCS.

According to the power loss model proposed in [23] and 
actual power loss data obtained from industry, the operation 
efficiency of a PCS can be calculated. The typical efficiency 
curve of a PCS is obtained using the multilinear curve fit‐
ting method, as shown in Fig. 2. The fitting efficiency func‐
tion is a piecewise function given as follows:
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-0.004(P - 0.6)+ 0.986 0.6 <P £ 0.8

-0.006(P - 0.8)+ 0.9852 0.8 <P £ 1.0

(3)

where P is the power input of PCS.

For a PCS, the linear fitting results describe the relation‐
ship between the operation efficiency and the power allocat‐
ed to the PCS. The operation efficiency increases with the al‐
located power increase when the allocated power varies with‐

in the range of [0, 0.6]p. u., and it increases significantly 
when the allocated power increases from 0 to 0.2 p.u.. The 
operation efficiency of the PCS is maximized when the allo‐
cated power is 0.6 p.u., and it decreases slowly when the al‐
located power increases from 0.6 to 1 p.u.. Thus, the power 
allocated to the PCS significantly affects its operation effi‐
ciency.
2)　Efficiency Model for Parallel PCSs

In the case of n parallel PCSs, the overall operation effi‐
ciency of the PCSs during the discharging and charging pro‐
cesses is calculated as:

ηT (P total )=
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(4)

where P total varies within the range of (0, 1)p.u.; ηT (P total ) is 
the overall operation efficiency of the parallel PCSs when 
the ESS power value is P total; Pa and Pb are the total power 
outputs on the battery side and grid side, respectively; P a

i  
and P b

i  are the power outputs of the ith PCS on the battery 
side and grid side, respectively; and ηc

i  and ηd
i  are the opera‐

tion efficiencies of the ith PCS during the charging and dis‐
charging processes, respectively.

According to assumptions 1 and 2, the overall operation 
efficiency of the parallel PCSs is simplified as:

ηT (P total )=
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(5)

C. Constraints of ESSs

1)　Power Balance Constraint
According to the regulation requirement, the ESS power 

allocated by the EMS to each PCS is given as [22]:

P total =∑
i = 1

n

Pi (6)

2)　Battery Power Constraint
According to the conditions of the BP, the battery charg‐

ing and discharging power should satisfy the constraint of 
(8), and the ESS power should be allocated to each PCS 
within the acceptable charging and discharging power range 
of the BP.

-P c
i £P £P d

i (7)

where P d
i  and P c

i  are the rated discharging and charging pow‐
er of the ith battery system, respectively.
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Fig. 2.　Typical efficiency curve of a PCS with respect to allocated power.
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3)　SOC Constraint
The SOC indicates the remaining energy of the BP. In the 

repeating process of charging and discharging, the SOC of 
the BP is constrained as [24]:

SOC min
i £ SOCi £ SOC max

i (8)

where SOCi is the real-time SOC value of the ith battery sys‐
tem; and SOC max

i  and SOC min
i  are the maximum and mini‐

mum SOC values of the ith battery system, respectively. The 
variation range of the SOC is [0.2, 0.8] in this study.

According to the constraints given by (6) and (7), the se‐
lection of the power allocation coefficient can be simplified. 
For the charging and discharging process, this coefficient is 
obtained as:
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where μi is the power allocation coefficient for the ith PCS. 
The maximum power allocation coefficient μ1 varies with re‐
spect to P total, and μ1 ³ μ2 ³ ³ μn. Equation (9) satisfies the 
constraints of (6) and (7). As the parameters are identical 
among the battery systems, repeated selections are avoided. 
Therefore, the selection of power allocation coefficients is 
simplified.

III. ADAPTIVE POWER CONTROL METHOD BASED ON 
DOUBLE-LAYER QL ALGORITHM 

In fluctuating operation situations, the EMS adaptively 
generates the control signal for each PCS according to the 
significantly fluctuating ESS power. The proposed double-
layer QL algorithm adaptively generates the optimal power 
allocation. In this study, to optimize the overall operation ef‐
ficiency of the parallel PCSs, the EMS performs online dy‐
namic decision-making for adaptive power allocation with 
the double-layer QL algorithm.

A. Principle of QL Algorithm

The QL algorithm estimates the Q-value dynamically us‐
ing real-time feedback and the Q-value function according to 
the MDP [25]. The QL algorithm is not a supervised algo‐
rithm based on labeled datasets. In the QL algorithm, the 
agent has no prior knowledge after initialization and takes 
actions to obtain the reward given by a specific environ‐
ment. The agent obtains the optimal action strategy in the 
process of accumulating experience.

In this study, we regard the EMS as an agent to generate 
the control signal. The original QL algorithm continuously 
optimizes the action value function Qk(s, a) in each state in 

the iteration, reinforces the action probability to maximize 
the total expected discount reward, and seeks the optimal 
strategy online. In the kth learning iteration, the agent takes 
action a in state s and then enters the next state s′, obtains 
the immediate reward r, and updates the Q-value of the cor‐
responding position in the Q matrix according to (10).

ì
í
î

ïï
ïï

Qk + 1 (sa)= (1 - α)Qk (sa)+ α(r + γ max
a'ÎA

Qk (s′a′ ))

Qk + 1 (s͂a͂)=Qk (s͂a͂)    "(s͂a͂)¹ (sa)
(10)

where a′ is the action in state s′; A is the action space; s͂ and 
a͂ are the state and action in Q matrix that are not equal to s 
and a, respectively; α is the learning factor (0 < α< 1); and γ 
is the discount rate (0 < γ< 1). References [26] and [27] pre‐
sented the general principles for selecting parameters in the 
QL algorithm, including the discount rate γ and learning fac‐
tor α.

The selection of the action strategy is a crucial part of the 
QL algorithm. The goal of the agent is to select the strategy 
with the maximum reward, i.e., to maximize the Q-value in 
any state. We express the action strategy with the highest Q-
value as the greedy action strategy π*. The greedy action 
strategy π* that maximizes the Q-value in state s in the kth it‐
eration is given by:

π* (s)= arg max
aÎA

Qk (sa)=Qk (sag ) (11)

where ag is the greedy action.
However, selecting the action with the highest Q-value in 

each iterative learning process makes the agent always per‐
form similar actions and find local optimal solutions, and 
the agent does not fully perform all the actions in the action 
set. Therefore, in this study, an action selection strategy 
based on the probability distribution is adopted [26]. The ac‐
tion selection probability matrix Pr is updated according to 
(12) with the updating of the Q matrix. In any state, the se‐
lection probability of the action with the highest Q-value in‐
creases, while the selection probabilities of the other actions 
decrease proportionally (the selection probabilities of all the 
actions are nonzero). The selection probability of the optimal 
action is close to 1 after the learning process.

ì

í

î

ïïïï

ïïïï

Prk + 1 (sag )=Prk (sag )- β(1 -Prk (sag ))

Prk + 1 (sa)=Prk (sa)(1 - β)      "aÎAa ¹ ag

Prk + 1 (sa)=Prk (sa)                 "aÎA"s͂Î Ss͂ ¹ s

(12)

where β is the probability distribution factor; and Prk (sa) 
and Prk (sag ) are the probabilities of conducting actions a 
and ag in state s in the kth iteration, respectively. The initial 
value of Pr(sa) is 1/|A|, where |A| is the dimension of action 
space A, and its range is Pr(sa)Î[01]. The action space A is 
given as:

A =∏
i = 1

n

ai (13)

where ai is the action space of the ith battery system. There 
are n battery systems in total. Let the action number of each 
battery system be M, and |A| =M n. In the power allocation 
problem, M is related to the rated power of each battery sys‐
tem. |A| increases significantly with the number of PCSs, 
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which will cause the curse of dimensionality. Therefore, it is 
necessary to improve the setting of A to resolve the curse of 
dimensionality.

When the QL algorithm is used to solve the optimal pow‐
er allocation problem for parallel PCSs, the agents learn the 
input (i.e., ηT, P total, SOCi, and r) and the output (i.e., action 
strategy π), and continuously enhance the cognition of the 
model and update the Pr and Q matrices online. In the QL 
algorithm, a Q matrix is constantly reinforced in learning.

B. Actor Neural Network

In the optimal power allocation problem for multi-parallel 
PCSs, s is a time-series variable. For continuous state vari‐
ables, the actor neural network μ(s|θ) is used to approximate 
π, and the update method for the strategy function parame‐
ters is given as:

θk + 1 = θk + αμÑθln πθ (skak )δk (14)

where δk is the dominant function in the kth learning itera‐
tion; θk is the hyperparameter of the actor neural network in 
the kth learning iteration; πθ (skak ) is the action strategy in 
the kth learning iteration; and αμ is the learning rate of actor 
neural network. The input of the actor neural network is 
state s, and the output is action strategy π. The parameters 
of the actor neural network are updated according to the 
learning rate αμ.

The update method for the target network parameters is 
given as:

θμ′k + 1 = τθμk + (1 - τ)θμ′k (15)

where τ is the learning rate of the target network parameters 
and τ 1; μ is the optimal strategy; μ′ is the updated optimal 
strategy; and θμk is the hyper parameter of the actor neural 
network in strategy μ.

The actor neural network intends to achieve the optimal 
action to maximize the action value of the current state, 
which is calculated as:

max Lμ =Q(skak|θμ ) || ak = μ(sk|θμ ) (16)

where Lμ is the target of the optimal strategy μ; Q(skak|θμ ) 
is the Q-value obtained by action ak in sk and θμ; and 
μ(sk|θμ ) is the optimal strategy in sk and θμ.

C. Analysis of Characteristics

Figure 3 presents the optimal power allocation strategy for 
two PCSs, which is obtained using the original QL algo‐
rithm. In interval A, P total is less than 0.465 p. u. and only 
PCS 1 operates. In interval B, when P total varies from 0.465 
to 0.5 p.u., PCS 2 operates with a constant power, and the 
power allocated to PCS 1 increases linearly with respect to 
the ESS power. When P total varies from 0.5 to 0.6 p.u., PCS 
1 operates with a constant power, and the power allocated to 
PCS 2 increases linearly with respect to P total. In interval C, 
P total is equally divided between the two PCSs.

Interval B can be regarded as the non-steady state when a 
new PCS cuts in. In the steady state, the optimal operation 
efficiency for the parallel PCSs is achieved with the power 
sharing method [10].

D. Power Control Method Based on Double-layer QL Algo‐
rithm

According to the characteristic of the optimal power allo‐
cation process presented in Section III-C, a double-layer QL 
algorithm is proposed herein. The agent in the double-layer 
QL algorithm includes two layers of learning units. The out‐
er layer obtains the interval values of non-steady states, and 
the inner layer uses an actor neural network to determine the 
optimal action for power allocation. Meanwhile, the non-
steady interval values in the outer layer are dynamically re‐
vised according to the reward obtained by the inner layer. 
The overall structure of the agent is shown in Fig. 4.

1)　Action Space
The action space A is formed by n + 1 working modes, 

which include n multi-PCS sharing modes and one adaptive 
allocation mode. It is given as:

A ={MS1MS2MSnMA} (17)

where MSi denotes that the parallel system is operating in 
the power sharing mode of PCS i, and the power allocated 
to each PCS in this mode is equal to P total /n; and MA de‐
notes that the system is operating in the adaptive mode, 
where the actor neural network selects the power allocation 
proportion within the power constraint of the battery accord‐
ing to (9). In action MA, the actor neural network updates 
the parameters according to (14), where δ(k) is used as the 
new reward and punishment information to determine the up‐
dating direction of the action probability. It is calculated as:

δ(k)= rk (sMA)-max{r(sMS1 )r(sMS2 )r(sMSn )}  (18)

where rk (sMA) is the reward obtained by action MA in state 
s in the kth learning iteration; and r(sMSi ) is the reward 
which is obtained by action MSi in the first few learning iter‐
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Fig. 3.　Optimal power allocation strategy for two PCSs.
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ations.
The reward value of the inner layer action is used to ob‐

tain Qk + 1 (sMA) in the outer layer, and the Q matrix in the 
outer layer is updated according to (19). The Q-value under 
a =MA is updated only when Qk + 1 (sMA) exceeds Q-value 
for all sharing modes.

Qk + 1 (sMA)=

ì

í

î

ï
ïï
ï

ï
ïï
ï

(1 - α)Qk (sa)+ α(rk + γ max
a'ÎA

Qk (s′a′ ))

Qk + 1 (sMA)> max
aÎA

Qk (sa)

Qk (sMA)    Qk + 1 (sMA)£ max
aÎA

Qk (sa)

  (19)

where rk is the reward in the kth learning iteration.
2)　State Space

One crucial characteristic of RL is judging the action per‐
formed in the environment. In the optimal overall operation 
efficiency problem for parallel PCSs, the action selection is 
directly related to Pi, and the power allocation strategy is 
changed according to the ESS power. For the algorithm to 
adaptively follow the power fluctuations, the ESS power in 
a time period for power allocation is defined as a state s in 
the state space S, and ε is defined as the sampling accuracy. 
The ESS charges when P total is negative and discharges when 
P total is positive. The dimensions of the Q matrix are 
(2P total /ε + 1, n + 1).
3)　Reward Function

In the optimal efficiency problem, there is no correlation 
between states, and the Q-value is only related to the corre‐
sponding state. In the process of RL, a larger reward is bet‐
ter. Thus, the overall operation efficiency can be set as the 
reward function r. However, if the overall operation efficien‐
cy ηT is directly set as the reward function, the differences 
among the reward values are small, and do not reflect the ac‐
tion performance. Therefore, the efficiency is transformed in‐
to the range of 0-100. Then, r is calculated as:

r = (ηT - η
min
T )

100
ηmax

T - ηmin
T

η*
(20)

where ηmax
T  and ηmin

T  are the maximum and minimum values 
of ηT, respectively; and η* is the immediate efficiency value.

After A, S, and r are determined, Algorithm 1 is used for 
the training and application of the double-layer QL control‐
lers.

E. Optimal Power Allocation Process

To achieve SOC balance among the battery systems, the 
principle of SOC priority is followed in this study, i. e., the 
battery system with the lowest SOC is charged first, and the 
battery system with the highest SOC is discharged first. The 
allocated power is determined by multiplying the power allo‐
cation coefficients μ1μ2μn of the output of the QL con‐
troller from pre-learning by P total. According to SOCi (t), 
when discharging, the maximum power is allocated to the 
battery system with the highest SOC. When charging, the 
maximum power is allocated to the battery system with the 
lowest SOC, and so on. The SOC variation is calculated in 
each time period for power regulation according to (21), and 
SOC balance between different battery systems is achieved.

DSOC = μP totalDT/C0 (21)

where DT is a time period; and C0 is the rated capacity of 
the battery systems.

Algorithm 1: training and application workflow for the proposed control‐
method based on double-layer QL algorithm

Result: optimal power allocation for parallel PCSs learned and utilized
if in the training mode then
  Initialize Q, Pr, μ( |s θ) and k = 0
  while true do
    Enter a current state s randomly, and select the action a(k) according to 

Pr(s)
    Observe the immediate reward given by (20) and correct the next state
    if a = MSi then
      Update Q and Pr according to (10) and (12), respectively
    else if a = MA then
      Update Q and Pr according to (19) and (12), respectively
      Calculate δ(t) using (18), and then update the network parameter θ ac‐

cording to (14)
    end
    Judge whether the Q matrix is a Q* matrix composed of the optimal Q 

If not, assign the next state to the current state and set k = k + 1
  end
else
  Load the trained network weights and learned control strategy
end

If the SOC of a battery system exceeds the constraints giv‐
en by (8) under the control of the EMS, this battery system 
stops working, and the EMS reallocates the ESS power. The 
flowchart of the optimal power allocation in each time peri‐
od is presented in Fig. 5.

IV. SIMULATION ANALYSIS 

In this section, the optimal allocation of the ESS power to 
four parallel PCSs is taken as an example to validate the fea‐
sibility of the adaptive power control method based on the 
double-layer QL algorithm. First, the adaptive power control 
method is obtained by the QL controller with pre-learning. 
Then, the QL controller is applied to a simulated scenario 
for conducting static and dynamic comparisons with existing 
methods. In the simulation, an ESS is utilized to smooth the 
power fluctuations caused by a wind power plant.

Start

Obtain the current optimal power allocation

 coefficient of QL controller

Are SOC constraints met?

Charge and discharge the battery system according

 to the assigned target power and update the SOC

Y

End

N

Read the correlation coefficient of the ESS

 and the regulating target

Allocate the target power to the battery systems 

according to the SOC priority principle

When SOC exceeds 

the limit, the battery 

system stops working

Fig. 5.　Flowchart of optimal power allocation in a time period.
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A. Simulation Parameters

To validate the double-layer QL algorithm for solving the 
optimal operation efficiency problem for n parallel PCSs, the 
simulation is conducted for an ESS with four independent 
adjustable lithium battery systems. Each battery system con‐
tains a PCS. The rated power and the battery capacity of 
each battery system are 1.5 MW and 1 MWh, respectively. 
The initial SOCs of the battery systems are 55%, 65%, 60%, 
and 50%. The parameter values of the PCSs are presented in 
Table I.

For the four parallel PCSs, the action space of the outer 
layer Aout is divided into five action modes in accordance 
with (22), and |Aout| is equal to 5.

aÎAout ={MS1MS2MS3MS4MA} (22)

P total is standardized within the variation range of [–1, 1]p.u.. 
When P total is positive, the ESS is in the discharging state. 
When P total is negative, the ESS is in the charging state. ε is set 
to be 0.001 p.u.. The dimension of S is 2001, and the dimen‐
sion of the Q matrix is (2001, 5).

The training parameter values of the double-layer QL algo‐
rithm are presented in Table II. These values are obtained 
via simulation experiments, and they make the algorithm 
have good performance in solving the problem of optimal 
power allocation for multi-parallel PCSs.

In Table II, the outer learning factor α represents how 
much trust is given to the Q-value in the kth learning itera‐
tion, and the outer discount factor γ represents how much 
reservation is taken for the optimal Q-value obtained in the 
previous iteration. The previous action has little effect on the 
follow-up actions in the power allocation problem; thus, α is 
set to be 0.99, and γ is set to be 0.0005 [26], [27].

According to the typical efficiency curve shown in Fig. 2, 
the overall operation efficiency of multi-parallel PCSs varies 

within the range of [94%, 99%]. The probability that the effi‐
ciency under MA exceeds that under MSi is low, and the Q 
matrix is updated only when the efficiency under MA ex‐
ceeds those under all other sharing modes. Therefore, to rein‐
force action MA at each effective learning iteration, the re‐
ward value is set to be 100r when a =MA, where r is given 
by (20). The obtained reward function R is given as:

R =
ì
í
î

ïï1724ηT - 1624.14                 a =MSi

100 ´(1724ηT - 1624.14)    a =MA
(23)

B. Pre-learning

As the agent of the double-layer QL algorithm has no pri‐
or knowledge, a large number of trial-and-error learning iter‐
ations are performed in the early stage to interact with the 
environment. The agent accumulates experience to reinforce 
the intensity of the action that can yield the maximum re‐
ward value in the environment. Without pre-learning, the bat‐
tery system will be switched on and off unreasonably in the 
actual environment, which negatively affects the security and 
stability of the system. The continuous change of state will 
also make it difficult for the double-layer QL algorithm to 
learn effectively. Thus, the QL controller can only be applied 
in the actual environment after pre-learning [28].

The results of a pre-learning comparison between the orig‐
inal QL algorithm and the double-layer QL algorithm are 
presented in Table III. Herein, “average efficiency” refers to 
the average of the overall operation efficiency of the four 
parallel PCSs with different P total values (P total is updated by 
pre-learning), which is obtained under the optimal power al‐
location after pre-learning. It can be observed from Table III 
that the proposed double-layer QL algorithm obtains the opti‐
mal solution in a shorter time by reducing the required num‐
ber of iterations for pre-learning.

Figure 6 shows the variations in the average efficiency 
with different values of n in the pre-learning process of the 
double-layer QL algorithm. Samples are selected every 2000 
learning iterations. The double-layer QL algorithm finally 
converges to the optimal solutions.

With a specific value of n, the average efficiency increas‐
es with the number of iterations until the optimal average ef‐
ficiency is reached. The optimal average efficiency increases 
with the number of parallel PCSs, because the available ca‐
pacity of the system increases. With an increase of n, the re‐
quired number of iterations for the double-layer QL algo‐
rithm increases. The simulation results shown in Fig. 6 con‐
firm that the proposed double-layer QL algorithm completes 
the training of the controller and obtains the optimal power 
allocation result within a limited number of iterations. Ac‐
cording to the characteristics of optimal power allocation, it 

TABLE I
PARAMETER VALUES OF PCSS

Parameter

Rated grid voltage (V)

Allowable grid voltage (V)

Rated grid frequency (Hz)

Maximum DC power (MW)

DC voltage range (V)

Maximum input current (kA)

Maximum operation efficiency (%)

Value

380

380 ×(1 ± 7%)

50

1.5

250-850

2.5

98.7

TABLE III
PRE-LEARNING COMPARISON BETWEEN ORIGINAL QL ALGORITHM AND 

DOUBLE-LAYER QL ALGORITHM

Algorithm

Original QL

Double-layer QL

Iteration number

>10000000

658801

Time cost for 
pre-learning (s)

2948.00

150.74

Average 
efficiency (%)

98.251

98.379

TABLE II
TRAINING PARAMETER VALUES OF DOUBLE-LAYER QL ALGORITHM

Training parameter

Sampling time

Outer learning factor α

Inter learning factor αμ
Outer discount factor γ

Sampling accuracy ε

Probability distribution factor β

Value

2000

0.99

0.001

0.0005

0.001

0.01
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is clear that a larger number of parallel PCSs corresponds to 
a shorter non-steady interval. Thus, increasing the number of 
parallel PCSs has a small effect on the convergence of the 
proposed double-layer QL algorithm.

C. Comparisons of Static Efficiencies of Parallel PCSs

In practical applications, the EMS generates the control 
signal to allocate the ESS power to the parallel PCSs accord‐
ing to the power control method. Two traditional power con‐
trol methods are introduced below.

1) Power sharing method: the ESS power is equally allo‐
cated to all parallel PCSs.

2) Hierarchical switching method: according to the target 
power, the PCSs are cut in or off stepwise. When a new 
PCS is controlled to cut in, all the other operating PCSs are 
working with the rated power.

As shown in Fig. 7(a), the four PCSs share the same allo‐
cated power with the power sharing method, and the power 
allocated to each PCS increases linearly with an increase in 
P total. Figure 7(b) shows the power allocation for the four 
parallel PCSs with the hierarchical switching method. The 
power allocated to the cut-in PCS increases linearly with an 
increase in P total until the rated power is reached. The power 
allocation for four parallel PCSs obtained via the proposed 
adaptive power control method using the double-layer QL al‐
gorithm is shown in Fig. 7(c), which verifies the characteris‐
tics of power allocation described in Section III-C. The opti‐
mal power control method is identical for the charging and 
discharging processes, as the power allocation has similar 
characteristics. The sum of P1, P2, P3, and P4 is P total, and 
P1 ³P2 ³P3 ³P4. When the ESS power varies within the in‐
tervals of A, C, E, and G, the parallel PCSs operate under 
MS1, MS2, MS3, and MS4, respectively. When the ESS power 
varies within the intervals of B, D, and F, the parallel PCSs 
operate under MA.

In Fig. 8, the static operation efficiency of the four paral‐
lel PCSs with the proposed method is compared with those 
for two traditional methods. The static operation efficiency 
is the overall operation efficiency of the parallel PCSs under 
each P total.

Among the three methods examined, the proposed method 
always achieves the highest efficiency. When P total is lower 
than 0.233 p. u., the efficiency of the proposed method is 
equal to that of the hierarchical switching method, where on‐
ly one battery system operates. When P total varies between 
0.233 and 0.6 p.u., the efficiency of the proposed method is 

significantly higher than those of the other methods. When 
P total is higher than 0.6 p. u., the efficiency of the proposed 
method is equal to that of the power sharing method. There‐
fore, with the proposed method, the overall operation effi‐
ciency of the four parallel PCSs is optimal with changes 
in P total.

D. Comparisons of Dynamic Operation Efficiencies of Paral‐
lel PCSs

The historical wind power data of 16 wind turbines of a 
wind farm for 1 day are selected as reference data for the 
simulation. The rated power of each wind turbine is 1 MW, 
and the sampling period is 1 min. MATLAB is used to ana‐
lyze the power output data of the wind farm, and five-layer 
wavelet packet decomposition is utilized to obtain the expect‐
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Fig. 6.　Average efficiency with different values of n in pre-learning pro‐
cess of double-layer QL algorithm.
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ed power of the wind farm for grid connection [29]. The ac‐
tual output curve of the wind power for 1 day and the ex‐
pected output curve are shown in Fig. 9.

To avoid frequent battery charging and discharging, only 
the low-frequency power component obtained via the wave‐
let packet decomposition is taken as the expected power out‐
put of the ESS [30]. The time period for power allocation is 
1 min. The target power curve for ESS charging and dis‐
charging is shown in Fig. 10. The positive and negative pow‐
er values correspond to the charging and discharging states, 
respectively. Clearly, the wind power induces significant 
power fluctuations of the ESS. The average target power of 
charging/discharging is determined by calculating the aver‐
age of all the positive/negative power values. The average 
target power for the whole day is –0.616 MW for charging 
and 0.621 MW for discharging. The average target power of 
charging/discharging is significantly lower than the maxi‐
mum charging/discharging power for the whole day.

Figure 11 presents the SOC variation curve of the four 
battery systems with the smoothing of the wind power fluctu‐
ations, where BSi represents the ith battery system. Clearly, 
the charging and discharging of the four battery systems are 
controlled according to the SOC priority principle, and the 
different initial SOC values of the four battery systems ini‐
tially cause an SOC imbalance. After 21 min, the SOC grad‐
ually tends to be balanced, and it always varies within the 
range of [20%, 80%].

When the charging and discharging target power shown in 
Fig. 10 is satisfied, the dynamic operation efficiency is the 
real-time overall operation efficiency of the four PCSs in a 
whole day. The dynamic operation efficiencies of the four 

PCSs with the proposed method, the power sharing method, 
and the hierarchical switching method are compared in Fig. 
12, where η3 - η1 is the dynamic operation efficiency differ‐
ence between the proposed method and the power sharing 
method, and η3 - η2 is the dynamic operation efficiency dif‐
ference between the proposed method and the hierarchical 
switching method. When the ESS power is lower than 60% 
of the total rated power of the four PCSs, the operation effi‐
ciency of the parallel PCSs is significantly higher for the 
proposed method than for the power sharing method. Only 
when the ESS power is lower than 23% of the total rated 
power of the four PCSs, the operation efficiency with the hi‐
erarchical switching method is equal to that with the pro‐
posed method. Therefore, when the ESS power varies be‐
tween 23% and 60% of the total rated power for a long 
time, the effectiveness of the proposed method is significant‐
ly higher than those of the two traditional methods.
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For the ESS with parallel PCSs, the average dynamic op‐
eration efficiency and the average execution time with differ‐
ent power control methods are presented in Table IV. The av‐
erage dynamic operation efficiency is the average value of 
the overall operation efficiency of the parallel PCSs for a 
whole day. The average executive time is the average value 
of the simulation time cost at each time step. Compared 
with the traditional hierarchical switching and power sharing 
methods, the adaptive methods using GA and PSO have 
higher operation efficiencies. However, if the number of par‐
allel PCSs is increased, the average dynamic operation effi‐
ciencies of the adaptive methods using GA and PSO are 
comparable to or worse than that of the hierarchical switch‐
ing method. For the proposed method, the average execution 
time is significantly shorter than those of the other adaptive 
methods, and the average dynamic operation efficiency is 
higher than those of all the other methods. This is because 
GA and PSO may find local optimal solutions with the in‐
creasing number of parallel PCSs, whereas the proposed 
method obtains the optimal solution in a relatively short 
time after pre-learning and updates the power allocations on‐
line for real-time control.

The proposed method can optimize the operation efficien‐
cy of the PCS parallels at any time under fluctuations in the 
ESS power. This method reduces the power loss and is eco‐
nomically beneficial for long-term operation of the ESS.

V. CONCLUSION 

An adaptive power control method based on the double-
layer QL algorithm for the multi-parallel PCSs in an ESS is 
proposed for achieving the optimal operation efficiency of 
the PCSs. The proposed method allows the ESS power to be 
adaptively allocated to parallel PCSs in fluctuating situa‐
tions. The following conclusions are drawn.

1) The proposed method optimizes the overall operation 
efficiency of four parallel PCSs in fluctuating operation situ‐
ations.

2) Compared with the original QL algorithm, the proposed 
double-layer QL algorithm obtains the optimal solution in a 
shorter time by reducing the required number of iterations 

for pre-learning. Moreover, increasing the number of parallel 
PCSs has a small effect on the convergence of the proposed 
double-layer QL algorithm.

3) Compared with adaptive power control methods using 
different intelligent algorithms, the proposed method achieves 
the best performance without falling into the local optimiza‐
tion.
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