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Abstract——The operation characteristics of energy storage can 
help the distribution network absorb more renewable energy 
while improving the safety and economy of the power system. Mo‐
bile energy storage systems (MESSs) have a broad application 
market compared with stationary energy storage systems and 
electric vehicles due to their flexible mobility and good dispatch 
ability. However, when urban traffic flows rise, the congested traf‐
fic environment will prolong the transit time of MESS, which will 
ultimately affect the operation state of the power networks and 
the economic benefits of MESS. This paper proposes a bi-level op‐
timization model for the economic operation of MESS in coupled 
transportation-power networks, considering road congestion and 
the operation constraints of the power networks. The upper-level 
model depicts the daily operation scheme of MESS devised by the 
distribution network operator (DNO) in order to maximize the to‐
tal revenue of the system. With fuzzy time windows and fuzzy 
road congestion indexes, the lower-level model optimizes the 
route for the transit problem of MESS. Therefore, road conges‐
tion that affects the transit time of MESS can be fully incorporat‐
ed in the optimal operation scheme. Both the IEEE 33-bus distri‐
bution network and the 29-node transportation network are used 
to verify and examine the effectiveness of the proposed model. 
The simulation results demonstrate that the operation scheme of 
MESS will avoid the congestion period when considering road 
congestion. Besides, the transit energy consumption and the im‐
pact of the traffic environment on the economic benefits of MESS 
can be reduced.

Index Terms——Mobile energy storage system, economic dis‐
patch, bi-level optimization model, road congestion, fuzzy con‐
straint.
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Weights of lower-level model functions

Probability of constraint failure

Engine module constant

Charging and discharging efficiencies of MESS

Weight of MESS

Speed module constant

Weight module constant

Linear output range of fossil-energy DG

Column vector

One-dimensional coefficient vector

Number of branches in power networks 

Error standard coefficients of load on buses i 
and j during period t

Error standard coefficient of RES on bus i dur‐
ing period t

Levelized cost of MESS

Number of buses in power networks

Rated capacity of MESS

Number of fossil-energy DGs

Dimension number of a

Road distance between nodes m and n

Labor cost of staff

Number of MESS charging stations

A large number

The maximum number of MESS cycles

Probability density distribution function satis‐
fied by error variable

Purchase price of power for DNO during period 
t

Purchase price of RES for DNO

Active and reactive power on bus i during peri‐
od t

Active and reactive power on bus j during peri‐
od t

Predicted active and reactive power on bus i 
during period t

Predicted active and reactive power on bus j 
during period t

Active and reactive power of renewable energy 
DG during period t

Predicted active and reactive power of renew‐
able energy DG during period t

Purchase price of power for users during period 
t
The maximum active and reactive power of 
MESS

The maximum and minimum active power of 
fossil-energy DG

The maximum and minimum reactive power of 
fossil-energy DG
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D. Functions

u(×) 
Pr(×) 
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Road saturation between nodes m and n

Triangular fuzzy number of road saturation be‐
tween nodes m and n

Upper- and lower- boundary values of triangu‐
lar fuzzy number between nodes m and n

Number of distributed renewable energy 

Climbing rates of load increase and reduction

Resistance and reactance on branch b

Rated apparent power of MESS

Apparent power capacity of branch b 

SOC of MESS at initial period

The maximum and minimum values of SOC

Speed in energy consumption calculation

Moving speed of MESS on road section be‐
tween nodes m and n during period t

Number of simulation periods

Simulation step size

The maximum and minimum values of second 
normal voltage

Membership calculation of fuzzy numbers

Probability of event occurring

Energy consumption during transit process

I. INTRODUCTION 

WITH the rapid development of wind power and photo‐
voltaics worldwide, a high proportion of renewable 

energy will become normal in future power systems. The 
power system with large penetration of renewable energy 
sources (RESs) will confront the challenges with system 
planning and operation as well as power supply security and 
power quality due to the volatility, randomness, and intermit‐
tency of RESs [1]. With the technological difficulties and 
low capital efficiency, promoting RES consumption through 
a large-scale transformation of the distribution network is 
clearly not practicable. In this context, the energy storage 
system (ESS), which has the potential to decouple electricity 
production and consumption from both time and space di‐
mensions, has emerged as a vital support technology for the 
future power system with a high penetration of RESs [2].

Demand-side management, energy arbitrage, load smooth‐
ing, equipment utilization enhancement, and consumption of 
RESs can all be accomplished by using ESS [3]. Meanwhile, 
it can also be applied to enhance system operation stability, 
adjust frequency, and compensate for load fluctuations [4]. 
The stationary energy storage system (SESS), which is sepa‐
rated into centralized and distributed ESS based on access 
manner, is most extensively utilized at this time. Distributed 
ESS is more favorable in the distribution network with large 
penetration of RESs due to its ability to swiftly obtain on-
site compensation. However, it has greater unit cost than the 
centralized ESS. To boost scheduling flexibility, the distribu‐
tion network operator (DNO) must invest more in construc‐

tion expenditures. The number of electric vehicles (EVs) is 
growing rapidly, and breakthroughs in vehicle-to-grid (V2G) 
and grid-to-vehicle (G2V) technologies are achieved. The 
above conditions make the participation of EVs in power 
system dispatch a technically feasible option [5]. Although 
EVs offer good scheduling flexibility, the reliability and con‐
trollability of this method will be compromised due to differ‐
ent willingnesses of vehicle owners to participate in the 
scheduling plan [6].

In view of these, a kind of dedicated large-scale mobile 
energy storage system (MESS) is gradually emerging. MESS 
can not only meet the dispatch instructions of DNO in time, 
but also has the flexibility of EV dispatch. The detailed 
structure of MESS is given in [7], which is composed of 
truck body and ESS. The ESS is integrated with a battery 
cabinet composed of lithium-ion batteries, battery manage‐
ment system (BMS), control circuit, and energy management 
system (EMS). The benefits that MESS brings to the power 
system are detailed in Supplementary Material A.

Nowadays, the commercial applications of MESS are be‐
coming more abundant. MESS is currently available at 1000 
kW, 5000 kW, and other power levels [8]. In September 
2019, it was announced that a 200 MWh MESS power sta‐
tion would be built in the Zhenjiang port power system, Chi‐
na [9]. In November 2019, the MESS was officially put into 
operation in the Xiong’an New District, China, assisting in 
the expansion of the distribution network [10]. Furthermore, 
the battery box project, jointly completed by the French pow‐
er company and the New Zealand Power Company, was 
completed in November 2020. The project would provide a 
large number of MESS units for construction sites and out‐
door activities in the Netherlands [11]. In December 2020, 
the first mobile shared energy storage emergency power base 
in China (34 MWh in total) was put into operation in Jin‐
hua, China. Through modular, mobile, and shareable energy 
storage forms, the tasks of optimal power sharing and power 
quality supervision in the region were realized [12].

With the increasing application of MESS projects, the re‐
lated theoretical research is getting more and more ad‐
vanced. Currently, theoretical research on MESS mainly fo‐
cuses on two aspects. 

One is the application of MESS in the restoration of the 
distribution network after a disaster or the improvement of 
distribution network resiliency. Aiming at the restoration of 
the distribution network after natural disasters, [13] coordi‐
nates and optimizes various emergency repair resources. In 
order to solve the problem of rapid recovery after large-area 
power failure in the distribution system, [14] proposes a 
joint dispatch scheme of MESS dispatch, microgrid power 
generation, and distribution network reconstruction. In [15], 
a two-stage framework is designed to realize the elastic path 
and scheduling of mobile power resources, including EVs, 
MESSs, and mobile emergency generations, so as to en‐
hance the distribution network resiliency. A rolling optimiza‐
tion model is proposed in [16], which describes load uncer‐
tainty and the status of branches in transportation network or 
power networks as scenario trees.

The other is the economic scheduling problem of MESS 
in the distribution network. In [7], MESS is operated with 
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the objective of maximizing the profitability of the DNO 
and improving the voltage quality. Given that the MESS in‐
vestor and DNO are two distinct entities, [17] developes a 
bi-level day-ahead dispatch model for MESS with voltage 
control. In [18], the output power and route of the MESS 
are optimized by establishing linear equations of the distance 
and time of the movement. As a coupling point between 
transportation and power networks, the operation scheme of 
MESS is impacted by the states of both. However, most of 
the aforementioned literature ignores the influence of the 
traffic environment on MESS scheduling. With the surge in 
urban traffic, the road congestion will greatly affect the mov‐
ing speed and transit time of MESS. Although [18] quanti‐
fies the delay time caused by road congestion, it does not 
consider the effect of road congestion on the moving speed 
of MESS. Furthermore, the transit model defined in [18] has 
specific requirements for the transit time matrix. This re‐
quirement indicates that the transit time matrix should be ob‐
tained from the transportation network that satisfies the consis‐
tency condition. If this condition is unsatisfied, then the opti‐
mized result is not the optimal operation strategy of MESS.

Based on the above background, this paper establishes a 
bi-level programming model to develop the economic dis‐
patch of MESS under the coupled transportation-power net‐
works. The general situation of the coupled networks is 
shown in Fig. B1 of Supplementary Material B. The upper-
level model is an economic dispatch model with chance con‐
straints. According to the state of the power networks, the 
upper-level model formulates the operation plan of MESS 
and transfers it to the lower level. The lower-level model is 
a fuzzy route planning model considering road congestion. 
Based on the state of the transportation network, the route 
scheme of MESS is updated and returned to the upper level 
along with the energy consumption. Finally, the bi-level pro‐
gramming model is solved iteratively by the column-and-con‐
straint generation (C&CG) algorithm to obtain the optimal 
operation scheme of MESS. The main contributions of this 
paper are as follows.

1) A new transit model of MESS is established. The mod‐
el does not require whether the transportation network satis‐
fies the consistency condition. For the transportation net‐
work that does not satisfy the consistency condition, the up‐
per-level model can still obtain the optimal solution.

2) The uncertainty of road congestion in a time-varying 
traffic environment is considered. In this paper, the road satu‐
ration parameter, which reflects the degree of road conges‐
tion, is considered as a fuzzy number and is processed by the 
expectation value method. On this basis, a route planning 
scheme with stopping strategy is proposed. With the premise 
of avoiding road congestion and ensuring time satisfaction, the 
energy consumption in the transit process is minimized, thus 
further optimizing the operation economy of MESS.

The rest of this paper is arranged as follows. Firstly, Sec‐
tion II describes the bi-level optimization model for econom‐
ic dispatch of MESS. Secondly, solution methods are given 
in Section III. Furthermore, case studies and results are giv‐
en in Section IV. Finally, Section V provides the conclusion.

II. BI-LEVEL OPTIMIZATION MODEL FOR ECONOMIC 
DISPATCH OF MESS

With the rapid growth of EVs, electrified transportation 
with EVs as the core is driving the coupling between the 
transportation network and power networks, and the deep 
coupling between them also provides the conditions for the 
wide application of MESS. In this paper, the main work of 
MESS is to transit and perform charging/discharging between 
different charging stations in the transportation network. Be‐
fore building the model, it is necessary to clarify the meaning 
of the coupled transportation-power networks. To show the dif‐
ference, “bus” is used for the power networks, while “node” 
is used for the transportation network. The specific model of 
the coupled networks is shown in Supplementary Material C.

A. Upper-level Problem

First and foremost, this paper treats DNO as an MESS in‐
vestor. Considering the intermittent power generation of 
RESs and the investment cost of MESS, fossil-energy distrib‐
uted generations (DGs) are added to the distribution network 
for auxiliary adjustment such as gas turbines and diesel gen‐
erations. It should be noted that MESS and fossil-energy 
DGs are the assets of DNO. RESs are owned by the private 
company, from whom DNO purchases renewable energy.
1) Objective Function

max oup = iDNO -C grid
op -C MESS

op -C DG
op -C RES
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úúúúαg( )PgtTs

2
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t = 1
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r = 1

R
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The objective function is to maximize the profit of DNO, 
as shown in (1).
2) Power Flow Constraints

This paper adopts the linear dist-flow branch power flow 
model [19] based on radial distribution networks, which is 
widely used in the optimal operation of distribution net‐
work [20].

Pbt = ∑
"b′ÎNbb′= ( )jj′ j′¹ ij′ÎNi

( )Pb′t +Pjt +P ch
lt +P dh

lt -Pgt -Prt

"bÎNbb = ( )ij ijÎNitÎNtlÎNlgÎNgrÎNr (7)

Qbt = ∑
"b′ÎNbb′= ( )jj′ j′¹ ij′ÎNi

( )Qb′t +Qjt +QMESS
lt -Qgt -Qrt (8)

vjt = vit - 2 ( rb Pbt + xbQbt ) (9)

vmin £ vit £ vmax (10)

In (7)-(10), the square of voltage on buses i or j is repre‐
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sented by a single variable vit or vjt to ensure the linearity of 
the equation. Specific linear dist-flow power flow equations 
are given in Supplementary Material C.
3) Operation Constraints of MESS

The operation constraints of MESS consist of two parts: 
ESS operation model and transit model. The ESS operation 
model limits the state of charge (SOC) [21], the number of 
cycles, and the charging/discharging power [22].

( P ch
lt +P dh

lt ) 2
+ (QMESS

lt ) 2
£ ( SMESS ) 2

(11)

0 £P ch
lt £P MESS
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2EMESS ( )ηch P ch
lt - ηdh P dh

lt +∑
t = 1
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l = 1

2M∑
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2M
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    (20)

Equation (17) guarantees the MESS cycles. In [7], the equa‐
tion for calculating the number of MESS cycles is given. But 
unlike the fuel-consuming truck in [7], this paper assumes that 
the truck consumes the electricity. Therefore, an item 

∑
t = 1

T∑
l = 1

2M∑
l′= 1

2M

zl′lt E
EC
l′lt is added, which is used to calculate the en‐

ergy consumption of MESS during its transit. For the same 
reason, this term is added to both (19) and (20). Note that as 
a parameter of the upper-level model, E EC

l′lt is obtained by op‐
timizing the lower-level model.

The transit models of [7] and [17] are nonlinear models, 
which affect the solution efficiency. In order to eliminate the 
nonlinearity, [18] builds a linear transit model for MESS 
based on [23]. However, the linear model requires that the 
transit time matrix must be obtained through a transportation 
network that satisfies the consistency condition [24].

In short, a transportation network satisfying the consisten‐
cy condition means that vehicles that depart earlier would ar‐
rive at their destinations earlier than those that depart later. 
Since the linear transit model has high data requirements for 
the transit time matrix, it cannot solve the scenarios where 
the transportation network does not satisfy the consistency 
condition, e.g., when road congestion or traffic accident oc‐
curs. For this reason, a novel transit model is developed in 
this paper, which does not have high data requirements for 
the transit time matrix.
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Detailed explanations of (21)-(25) are given in Supplemen‐
tary Material D.
4) Operation Constraints of DG 

In this paper, DGs of two energy types are considered. 
One is in the form of renewable energy, and the other is in 
the form of fossil energy. The output of fossil-energy DGs is 
the only factor that is constrained. To ensure that the equa‐
tion is a convex one, the output power of fossil-energy DGs 
is constrained to be linear [22]. The specific linear range 
equation can be found in Fig. B2 of Supplementary Materi‐
al B.

( )PgtQgt ÎΦDG (26)

υg P DG
min £Pgt £ υg P DG

max (27)

υgQDG
min £Qgt £ υgQDG

max (28)

Pgt - rup £Pg ( )t + 1 £Pgt + rdown
(29)

5) Chance Constraints
Due to the uncertainty of RESs and load forecasting, the 

chance constraint method is used to deal with the random‐
ness of both. It is assumed that the actual power of RESs 
and load can be divided into two parts: predicted value and 
error value. At the same time, the power factors of RESs 
and load are assumed to be constant.

Prt =P 0
rt + b*

rtξrt (30)

Pit =P 0
it + b*

itξit (31)

Qrt =PrtQ
0
rt /P

0
rt (32)

Qit =PitQ
0
it /P

0
it (33)

Affected by the randomness of RESs and load, voltage 
and current may exceed the limits. Therefore, the correspond‐
ing chance constraints are constructed to describe this phe‐
nomenon. The chance constraints of branch power flow are 
shown in Supplementary Material E.

Pr ( vit £ vmax ) ³ 1 - ε (34)

Pr ( vit ³ vmin ) ³ 1 - ε (35)

B. Lower-level Problem

After the lower-level model gets the operation scheme of 
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MESS from the upper-level model, it needs to re-route each 
transit process of MESS to reduce energy consumption as 
much as possible. Therefore, the lower-level model is essen‐
tially a time-dependent route planning model.

To quantify the energy consumption of MESS during road 
congestion, the energy consumption model given in [25] is 
adopted. As shown in (36), energy consumption is deter‐
mined by three factors: speed s, transit distance d, and 
weight σ. 

EEC( )dsσ =ωσd + ζ
d
s
+ψds2 (36)

Since the road congestion is often accompanied by fre‐
quent acceleration and deceleration of vehicles, the change 
in speed will affect the energy consumption. To visually de‐
pict this variation, Fig. 1 shows the the relationship between 
energy consumption and speed, where Va and Vb are two dif‐
ferent reference speeds.

It is clear that either too high or too low speed leads to 
high energy consumption, especially at low speeds. In order 
to ensure that MESS can keep the driving speed with low en‐
ergy consumption during the transit, a route planning 
scheme that includes a stopping strategy is proposed. In Fig. 
2, the speeds of road section between nodes m and n at dif‐
ferent periods are given.

The transit comparison of MESS on road section between 
nodes m and n with and without stopping strategy is given 
in Fig. 3.

It can be found that the route planning, including the stop‐
ping strategy, keeps the MESS moving at a good speed. To 
balance the relationship between the transit time and energy 
consumption, the arrival time of MESS tarr is extended into a 
fuzzy time window and the membership function of fuzzy 
numbers is used to describe the time satisfaction of arriving 
at the charging station. By setting three objective functions 
in the lower-level model, (37) denotes the time satisfaction, 
(38) denotes the transit time, and (39) denotes the energy 
consumption, and the energy consumption is minimized 
while ensuring time satisfaction.

min o1 =-σ ( )tarr (37)

min o2 = tarr - T st (38)

min o3 =EEC( )dmntsmntσ =

∑
(mn)ÎNm

∑
tÎNt

( )ωσdmnt + ζ
dmnt

smnt
+ψdmnt s

2
mnt     (39)

In order to obtain the speed parameter smnt, it is neces‐
sary to quantitatively evaluate the road congestion condition 
of each road section at each time period. Since there is no 
unified international standard for the quantitative analysis of 
road congestion, this paper will adopt the Evaluation Index 
System of Urban Traffic Management issued by the Ministry 
of Public Security of China [26]. The evaluation of road con‐
gestion includes various quantitative indexes such as road 
section saturation, traffic flow density, queue length, and con‐
gestion duration [26]. To simplify the evaluation process, 
road section saturation qmn is used as a single factor index 
to evaluate road congestion. The index is the ratio of traffic 
flow on a road section to the capacity of that road section. 
The traffic flow of a road section can be predicted based on 
historical traffic flow data by a Bayesian time-series model 
[27], online support vector regression [28], neural network 
model [29], or other methods [30]. When the index exceeds 
the set threshold, the road section is judged to be in road 
congestion. The corresponding congestion levels are derived 
based on specific values, and the quantitative relationships 
are shown in Table BI of Supplementary Material B. Consid‐
ering the influence of various uncertainties in the transporta‐
tion network, the predicted road saturation is described as a 
fuzzy number to reflect its volatility. On the basis of the 
fuzzy programming method proposed in [31], the arrival 
time of each transit and road section saturation are regarded 
as a trapezoidal fuzzy number and a triangular fuzzy num‐
ber, respectively. The specific meanings are explained in 
Supplementary Material F.

The route planning constraints are:

Traveled

distance

Time

d
m, n

Period 1

1Ts 2Ts0 3Ts 4Ts 5Ts 6Ts 7Ts

Stopping strategy

Traveled

distance

d
m, n

Period 1

Time1Ts 2Ts0 3Ts 4Ts 5Ts 6Ts 7Ts

(b)

(a)

Fig. 3.　Transit comparison of MESS with and without stopping strategy. 
(a) With stopping strategy. (b) Without stopping strategy.
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consumption

0 V
a

V
b

Fig. 1.　Relationship between energy consumption and speed.
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Fig. 2.　Time-dependent speed profile.
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∑
" ( )mn ÎNm
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" ( )mn ÎNm
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ì

í
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ïïïï
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1       m =V st

0      m ¹V stm ¹V en

-1    m =V en

(40)

0 £ dmnt £ Lmnumnt    "(mn)ÎNmtÎNt (41)

umnt £Umn £∑
tÎNt

umnt    "(mn)ÎNmtÎNt (42)

∑
tÎNt

dmnt =Umn Lmn    "(mn)ÎNm (43)

hmnt =
60dmnt
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    "(mn)ÎNmtÎNt (44)

∑
"(mn)ÎNm

hmnt £ 60Ts    "tÎNt (45)

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

em£60Tst-hmnt+60TsT ( )1-umnt               "(mn)ÎNmtÎNt

fn£60Ts( )t-1 +hmnt-60TsT ( )1-umnt     "(mn)ÎNmtÎNt

fn³em+∑
tÎNt

hmnt -60TsT ( )1-Umn              "(mn)ÎNmtÎNt

(46)

0 £ fm £ em    "mÎNm (47)

tarr = fm    m =V en (48)

hmnt ³ 0    "(mn)ÎNmtÎNt (49)

EEC( )dmntsmntσ £ ( S SOC
T st - S SOC

T en ) EMESS (50)

The specific meanings of the above constraints are ex‐
plained in the Supplementary Material G.

III. SOLUTION METHODS 

Through the above modeling, it can be found that the up‐

per-level model is a stochastic programming with chance 
constraints, and the lower-level model is a multi-objective 
programming with fuzzy parameters. To facilitate the prob‐
lem solving, the models will be transformed to deterministic 
forms.

Referring to the methods in [32] and [33], the approxima‐
tion of the chance constraint for the upper model can be cal‐
culated. When the random variable obeys a symmetrical dis‐
tribution or even a Gaussian distribution, the chance con‐
straint (51) can be rewritten as (52).

Prξ~P{aTξ + b̂ > 0} £ ε (51)

b̂ + 2ln ( )1
ε ∑

l̂ = 1

L̂

a2
l £ 0 (52)

Specific derivation process of the approximation process‐
ing can be found in Supplementary Material E.

Thus, the chance constraints in the upper-level model can 
be transformed to deterministic forms. It is assumed that the 
errors in RES output and load prediction are symmetrically 
distributed and independent of each other. According to (7)-
(8) and (30)-(33), a linear equation between the voltage and 
the above error variables can be derived.

vjt = v0
jt - 2{rb(b*

jtξjt - b*
rtξrt ) +

xb[ b*
jtξjtQ

0
jt /P

0
jt - b*

rtξrtQ
0
rt /P

0
rt ]} =

v0
jt - 2 é

ë( rbb*
jt + xbb*

jtQ
0
jt /P

0
jt ) ξjt - ( rbb*

rt + xbb*
rtQ

0
rt /P

0
rt ) ξrt

ù
û

(53)

Substitute (53) into the chance constraint (52), and then 
transform it into the following deterministic equations.

v0
jt - vmax + 2ln ( )1/ε { }é

ë
ù
û-2 ( )rbb*

jt + xbb*
jtQ

0
jt /P

0
jt

2

+ é
ë

ù
û2 ( )rbb*

rt + xbb*
rtQ

0
rt /P

0
rt

2

£ 0 (54)

-v0
jt + vmin + 2ln ( )1/ε { }é

ë
ù
û2 ( )rbb*

jt + xbb*
jtQ

0
jt /P

0
jt

2

+ é
ë

ù
û-2 ( )rbb*

rt + xbb*
rtQ

0
rt /P

0
rt

2

£ 0 (55)

Similarly, the chance constraints of branch power flow 
can also be transformed deterministically. See Supplementa‐
ry Material E for specific steps.

After the deterministic conversion, the error variable is no 
longer included, so v0

jt can be replaced by vjt. Obviously, the 
transformed constraints are the contraction of the original 
constraints, which reflect the robustness of the chance con‐
straints.

Since the former part of (23) has a value of 1 or 0, it can 
be considered as a binary variable. Therefore, (23) contains 
the product of two variables and is a nonconvex constraint. 
To eliminate the nonconvexity, (23) is linearized by adding 
the artificial variable r rep

lt  and using the big M M big method.

0 £-r rep
lt + ylt £M big

ì
í
î

ïï
ïï

ü
ý
þ

ïï
ïï

1 - round ( )∑
l = 1

M∑
l′= 1

M ( )1 - zll′t ( )2M - 1

  (56)

-M big × round ( )∑
l = 1

M∑
l′= 1

M ( )1 - zll′t ( )2M - 1 £ r rep
lt (57)

r rep
lt £M big × round ( )∑

l = 1

M∑
l′= 1

M ( )1 - zll′t ( )2M - 1 (58)

By adding r rep
lt  in (23), we can obtain:

xl ( )t + 1 = r rep
lt + round ( )xlt + xl ( )t + 1

2.1
(59)

For the lower-level model, it is necessary to deal with the 
fuzzy number q͂mn and the multi-objective function. Firstly,  
the expected interval and the expected value of the triangu‐
lar fuzzy number are presented through the membership 
function [34]. The details are as follows.
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ï
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ï

ï
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ï
ï

ï

ï
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mn
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1 q͂mn = qmn

qup
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qup
mn - qmn
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(60)

The expected interval is:

q͂mn =

ì

í

î

ïïïï

ï
ïï
ï

1
2 ( )qdown

mn + qmn

1
2 ( )qup

mn + qmn

(61)

The expected value is:

q͂mn =
1
4 (qdown

mn + 2qmn + qup
mn ) (62)

The fuzzy number of road section saturation q͂mn can be 
transformed by the expected value of q͂mn, and then the 
speed of MESS in the corresponding road section can be ob‐
tained according to the Table BI of Supplementary Materi‐
al B.

Secondly, the efficiency coefficient method is used to con‐
vert multiple objectives into a single objective, i.e., each ob‐
jective function is normalized. Since o1 is in the range of 
[0,1], only o2 and o3 are treated.

onorm
2 =

o2 - omin
2

omax
2 - omin

2

(63)

onorm
3 =

o3 - omin
3

omax
3 - omin

3

(64)

odown = λ1o1 + λ2onorm
2 + λ3onorm

3 (65)

In the above equations, 0 £ λ1 £ 1, 0 £ λ2 £ 1 - λ1, and 0 £
λ3 £ 1 (λ3 = 1 - λ1 - λ2) are used to control the ratio of the 
three functions.

Finally, the upper-level problem is transformed into a 
mixed-integer second-order cone programming problem, and 
the lower-level problem is transformed into a mixed-integer 
programming problem. The bi-level programming problem 
can be summarized as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

max oup = iDNO -C grid
op -C MESS

op -C DG
op -C RES

op

s.t.  (7)-(9) (11)-(22) (24)-(29) (54)-(59)

min odown = λ1o1 + λ2onorm
2 + λ3onorm

3

s.t.  (40)-(50)

(66)

Given that the lower-level model contains binary vari‐
ables, it is impossible to convert the bi-level model into a 
single-level model through strong duality theory or Karush-
Kuhn-Tucker (KKT) optimality conditions. Hence, according 
to the methods in [35] and [36], the bi-level model is decom‐
posed into the master problem and subproblem, and the 
C&CG algorithm is used to solve the problem. The specific 
solution procedure is shown in Supplementary Material H.

IV. CASE STUDIES AND RESULTS 

A. Test Networks and Case Study Conditions

The coupled transportation-power networks consisting of 
an IEEE 33-bus distribution network and a 29-node transpor‐
tation network [37] are chosen as the test network to verify 
the validity of the above model. The network topologies are 
shown in Figs. B3 and B4 of Supplementary Material B.

The detailed information about the coupled networks is as 
follows. The rated capacity and rated voltage of the power 
networks are 10 MVA and 12.66 kV, respectively; the power 
networks has 33 buses and 32 branches; and the transporta‐
tion network has 29 nodes and 49 roads. The mapping rela‐
tionship between power networks buses and transportation 
network nodes is shown in Table BII of Supplementary Ma‐
terial B. The mapping relationship between road sections 
and nodes in the transportation network is shown in Table 
BIII of Supplementary Material B.

According to the load characteristics, the areas are divided 
into residential, suburban, industrial, and commercial areas. 
And the load curves, wind power output curves, and photo‐
voltaic output curves for each zone are generated by the 
methods in [38]-[40], as shown in Figs. B5 and B6 of Sup‐
plementary Material B. Since the planning of charging sta‐
tions and the configuration of MESS capacity are not part of 
the discussion in this paper, the method in [41] is used to 
solve these problems. The results of charging station plan‐
ning show a total of three charging stations: charging station 
1 located on bus 2 (node 2), charging station 2 located on 
bus 17 (node 14), and the charging station 3 located on bus 
33 (node 27). The capacity configuration of MESS results in 
2.5 MW/5 MWh. Since there are few single MESSs with 
such a large capacity on the electricity market, the same ca‐
pacity is achieved by configuring five MESSs all with a rat‐
ed capacity of 500 kW/1 MWh. The five MESSs are consid‐
ered as a whole during the development of the dispatch plan.

Regarding the setting of the chance constraint parameter 
in the upper-level model, the probability of not satisfying the 
inequality constraint is set to be 0.05, i.e., ε = 0.05. The sam‐
ple values of the forecasting error of load and the output er‐
ror of RESs are randomly generated from two normal distri‐
butions N(0, 0.06). These two normal distributions are inde‐
pendent of each other and both take values in the range of 
[-11]. In addition, the electricity price is shown in Fig. 4.

The planning results of the lower-level model include the 
energy consumption of a single MESS in a single transit, but 
the final energy consumption is generated by multiple MESSs 
in multiple transits. Therefore, the lower-level model needs to 
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Fig. 4.　Electricity price.

1732



SUN et al.: BI-LEVEL OPTIMAL OPERATION MODEL OF MOBILE ENERGY STORAGE SYSTEM IN COUPLED TRANSPORTATION-ELECTRICITY...

be cycled through the optimization several times to generate 
the final energy consumption. In addition, the saturation of 
each road section at each time period based on the predicted 
traffic flow is shown in Fig. B7 of Supplementary Material B.

The optimization models are implemented in MATLAB 
with the YALMIP toolbox [42], on a computer with an Intel 
i7-10710U processor and 16 GB RAM of memory. To solve 
the involved mixed-integer programming problems, GURO‐
BI 9.0 is used [43]. The convergence gap φ is set to be 
0.5%. More basic data is shown in Table BIV of Supplemen‐
tary Material B.

B. Case Study Results

Based on the established mathematical model and the de‐
signed solving process, the optimal scheduling scheme can 
be solved. The iteration and computation time are shown in 
Table I. In addition, the number of subproblems to be solved 
in each iteration depends on that of MESS transits. Based on 
the solution results, the analysis is carried out in three as‐
pects: economy, energy consumption in the transit process, 
and comparison of transit models.

1) Economic Analysis
Firstly, the index parameters of the original system and 

the system with MESS are analyzed from the economic 
point of view. According to the data in Table II, it can be 
seen that the daily profit of the system with MESS increases 
from $6355.1 to $7226.5. And the maximum/minimum/aver‐
age voltage and voltage standard deviation show the im‐
provement of voltage quality brought by MESS. According 
to the voltage comparison in Fig. 5, it is clear that the addi‐
tion of MESS has maintained the system voltage within the 
safe fluctuation range at all times.

Figure 6 shows that MESS transits three times a day. 
MESS transits from charging station 3 to charging station 2 
at 03:00, from charging station 2 to charging station 3 at 
09:00, and from charging station 3 to charging station 1 at 
19: 40. It is not difficult to find that the departure time of 
MESS tries to avoid the morning peak (07:30-09:00) and the 
evening peak (17: 30-18: 30), which are common periods of 
road congestion.

The charging or discharging of MESS is not only driven 
by the electricity price, but also by the net load of the sys‐
tem. The net load of the system can be understood by ob‐
serving the output of fossil-energy DGs. 

For example, the output of fossil-energy DGs is generally 
at its peak during periods with large values of net load. And 
the output of fossil-energy DGs is generally at a trough dur‐
ing periods with small values of net load. As shown in Fig. 
7, the output of fossil-energy DGs is low between 00:00 and 
06: 00, indicating that the value of net load is small during 
this period. During this period, the difference between the 
electricity price sold P sell and the electricity price bought 
P buy is larger. The above phenomenon suggests that MESS is 
charged between 00: 00 and 06: 00 to ensure the economy 
while mitigating voltage fluctuations in the system. In con‐
trast, between 07:00 and 08:00, the value of net load is high‐
er and the difference between P buy and P sell is larger. There‐
fore, MESS is discharged between 07: 00 and 08: 00, which 
not only makes high profits but also raises the system volt‐
age. The reasons for charging or discharging MESS during 
the rest of the time period are consistent with the previous 
narrative and will not be repeated. The operational status of 
MESS with stopping strategy is shown in Fig. 8. In addition, 
it can be observed from Fig. 9 that the MESS performs ener‐
gy arbitrage while also providing reactive power support to 
the power system.
2) Analysis of Transit Energy Consumption

To get a clear picture of the impact of the stopping strate‐
gy, specific path of each transit process, total energy con‐
sumption, and transit time are given in Tables III and IV. It 
should be noted that since the simulation step Ts of the up‐
per-level model is 1/3 hour (20 min), and the difference be‐
tween the arrival time and departure time should be an inte‐
ger multiple of Ts. The comparison of the parameters in Ta‐
ble III and Table IV shows that the energy consumption with 
the stopping strategy can be reduced by 191.9870 kWh. As a 

3

2

1

0
00:00 06:00 12:00 18:00 24:00

Time

C
h
ar
g
in
g

st
at
io
n

Fig. 6.　Diagram of MESS transit with stopping strategy.

TABLE I
ITERATION AND COMPUTATION TIME

Itera‐
tion

3

Total calcula‐
tion time (s)

2389.76

Single calculation time 
of master problem (s)

390.28

Single calculation time 
of subproblem (s)

68.52

TABLE II
INDEX PARAMETERS OF ORIGINAL SYSTEM AND SYSTEM WITH MESS

System

Original 
system

System 
with MESS

Profit 
($)

6355.1

7226.5

The maxi‐
mum volt‐
age (kV)

13.6960

13.2879

The mini‐
mum voltage 

(kV)

12.0064

12.0320

Average 
voltage 

(kV)

12.7617

12.6617

Voltage 
standard 
deviation

0.2901

0.2629
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Fig. 5.　 Voltage comparison between original system and system with 
MESS.
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commercial use of MESSs, the value of the reduced energy 
consumption will grow.

The process of transit No. 2 is used as an example to fur‐
ther observe when MESS adopts a stopping strategy to avoid 
road congestion. Tables V and VI show the transit distances 
of MESS for each road section during the process of transit 

No. 2 with stopping strategy and without non-stopping strate‐
gy, respectively. It is clear that between 9:00 and 10:00, road 
congestion will occur in the road sections near node 27, i.e., 
charging station 3. With the stopping strategy, MESS will 
not continue to move when MESS is transferred to node 25. 
MESS will continue to move to node 27 only after the road 
congestion has been alleviated. However, under the non-stop‐
ping strategy, MESS will continue to move to node 27 at a 
slow speed.

The traversal method is used to determine the weights of 
each objective function in the lower-level model, and the tra‐
versal step is 0.01. Taking the process of transit No. 2 as an 
example, 300 optimal solutions are obtained by traversing 
the weights of the three objective functions. These 300 opti‐
mal solutions can be categorized into three types, as shown 
in Table VII. It is not difficult to find that in the first type of 
solution, i.e., type I, λ1 and λ2 are larger, resulting in higher 
energy consumption o3. However, the third type of solution, 
i. e., type III, has a higher λ3, resulting in a longer transit 
time o2. In summary, the type II solution has the best weight 
and will be used as the final weight, i. e., λ1 = 0.3, λ2 = 0.3, 
and λ3 = 0.6.

TABLE III
TRANSIT PROCESS WITH STOPPING STRATEGY

Transit 
No.

1

2

3

Transit route 
(node No.)

14→24→23→22→
27

14→21→25→26→
27

2→1→4→7→20→
22→27

Energy 
consumption 

(kWh)

16.9965 × 5

23.3546 × 5

26.5428 × 5

Departure 
time

03:00

09:00

19:40

Arrival 
time

03:40

10:20

20:20

Transit 
time 
(min)

21.77

66.40

31.95

TABLE IV
TRANSIT PROCESS WITHOUT STOPPING STRATEGY

Transit 
No.

1

2

3

Transit route 
(node No.)

14→24→23→26→
27

14→21→25→24→
23→22→27

2→1→4→7→20→
22→27

Energy 
consumption 

(kWh)

17.9510 × 5

49.8512 × 5

37.4891 × 5

Departure 
time

03:00

09:00

19:40

Arrival 
time

03:40

10:00

20:20

Transit 
time 
(min)

21.41

54.50

27.81

TABLE V
TRANSIT DISTANCE OF ROAD SECTION WITH STOPPING STRATEGY

Road section

14→21

21→25

25→26

26→27

Transit distance of different time (km)

09:00-09:20

8.70

3.18

09:20-09:40 09:40-10:00 10:00-10:20
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Fig. 9.　MESS reactive power with stopping strategy.
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TABLE VI

ROAD SECTION TRANSIT DISTANCE WITHOUT STOPPING STRATEGY

Road section

14→21

21→25

25→24

24→23

23→22

22→27

Transit distance of different time (km)

09:00-09:20

8.7000

3.1800

4.9500

3.6000

3.3000

0.1249

09:20-09:40

1.6667

09:40-10:00

1.2085

10:00-10:20
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3) Comparison of Transit Models
Finally, the differences between the transit model in [18] 

and the transit model in this paper are compared. Section III 
illustrates that the data in the transit time matrix are updated 

during the iteration process. The update process of the ma‐
trix data is shown in Fig. 10, where the rows of the matrix 
represent the time period and the columns of the matrix rep‐
resent the transit direction. 

The original transit time matrix is obtained by performing 
path planning with the non-stopping strategy. The original 
transit time matrix ensures the shortest transit time for 
MESS. Since the lower-level model uses the stopping strate‐
gy for route planning, its optimized transit time will be larg‐
er than the value in the original transit time matrix. There‐
fore, the transit time matrix after the data update will not sat‐
isfy the consistency condition, and the transit model in [18] 
may not obtain the optimal solution.

The simulation step is set to be 1 hour considering the 
speed of solution. The transit time matrix 1 is considered as 
the original transit time matrix, as shown in Table BV of 
Supplementary Material B. The transit time matrix 2 is ob‐
tained by changing one of the data on the basis of matrix 1, 
as shown in Table BVI of Supplementary Material B. Substi‐
tuting matrix 1 into the upper-level model of this paper, the 
transit scheme of MESS is obtained, as shown in Fig. 11(a). 
The system profit is $7219.7, as shown in Table VIII. Substi‐
tuting matrix 2 into the upper-level model of this paper, the 
optimized transit scheme of MESS and system profit are un‐
changed, as shown in Fig. 11(b) and Table VIII, respectively. 
Substituting matrix 1 and matrix 2 into the transit model in 
[18], the optimized transit scheme of MESS and system prof‐
it are significantly different, as shown in Fig. 11 and Table 
VIII, respectively. The changes in the transit scheme and sys‐
tem profit confirm the above view that the transit model in 
[18] is valid only when the transportation network satisfies 
the consistency condition.

V. CONCLUSION 

The increasing number of DGs in the form of RESs in the 
distribution network provides favorable conditions for the 

TABLE VII
PARAMETER INDEX OF VARIOUS SOLUTIONS

Type of solution

I

II

III

λ1 

0.05-0.85

0.02-0.82

0.02-0.05

λ2 

0.12-0.91

0.01-0.57

0.87-0.90

λ3 

0-0.25

0.11-0.80

0.07-0.09

o1 

1

1

0.4655

o2 

54.50

66.40

103.24

o3 

49.8512

23.3546

19.5533

1 1 1

1 1 1

1 1 1

…

…

…

Period

9 

Period

10 

Period

11 

Period

9 

Period

10 

Period

11 
…

Stations 1 to 2

… … … …

Stations 1 to 3

Stations 2 to 3

…

Original transit time matrix

1 1 1

1 3 1

1 1 1

…

…

…

…

… … … …

Transit time matrix

Transit time matrix is

updated according to

optimization results

of lower-level model.

Fig. 10.　Update process of transit time matrix.
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Fig. 11.　 Comparison of MESS route under different transit models. (a) 
Transit time matrix 1. (b) Transit time matrix 2.

TABLE VIII
COMPARISON OF DIFFERENT TRANSIT MODELS

Transit model

Reference [18]

This paper

Reference [18]

This paper

Transit time matrix

Transit time matrix 1

Transit time matrix 1

Transit time matrix 2

Transit time matrix 2

Profit ($)

7219.7

7219.7

7219.7

7136.2
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commercial application of MESS. As a coupling point be‐
tween power networks and transportation network, the opera‐
tional scheme of MESS needs to consider the status of both. 
This paper proposes a bi-level optimal operation model of 
MESS in coupled transportation-power networks. The upper-
level model is an economic scheduling problem for MESS 
with chance constraints. The lower-level model performs 
multi-objective fuzzy path planning for MESS based on the 
optimization result of the upper-level model. Finally, the fi‐
nal optimal operation solution of MESS is obtained by itera‐
tive solution of the upper-level and the lower-level models. 
The verification and analysis of the algorithm show that the 
optimized operation solution of MESS in this paper avoids 
the most congestion-prone road sections during each time pe‐
riod, and reduces the energy consumption of MESS during 
transit while ensuring the stable operation of the distribution 
network.
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