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Abstract——Traditional methods for solvability region analysis 
can only have inner approximations with inconclusive conserva‐
tism and handle limited types of power flow models. In this let‐
ter, we propose a deep active learning framework for solvability 
prediction in power systems. Compared with passive learning 
where the training is performed after all instances are labeled, 
active learning selects most informative instances to be labeled 
and therefore significantly reduces the size of the labeled datas‐
et for training. In the active learning framework, the acquisi‐
tion functions, which correspond to different sampling strate‐
gies, are defined in terms of the on-the-fly posterior probability 
from the classifier. First, the IEEE 39-bus system is employed 
to validate the proposed framework, where a two-dimensional 
case is illustrated to visualize the effectiveness of the sampling 
method followed by the high-dimensional numerical experi‐
ments. Then, the Northeast Power Coordinating Council 
(NPCC) 140-bus system is used to validate the performance on 
large-scale power systems.

Index Terms——Active learning, deep learning, power flow solv‐
ability, power flow equation.

I. INTRODUCTION

POWER system under the stochastic power injections of 
renewable energy may exceed the loadability limits and 

result in voltage collapse. Therefore, it is important to quick‐
ly assess if power flow has a solution (i.e., solvable) given a 
set of power injections. The conventional approach is to 
solve the power flow equations numerically using iterative 
methods. However, many real-time operation scenarios de‐
sire non-iterative and analytical approaches to determine the 
solvability. Earlier research focused on solvability conditions 
of decoupled power flow models [1], [2]. The fixed-point 
theorem has been used to obtain the solvability of coupled 
full power flow models in distribution networks [3]. Im‐
provements from [3] have been achieved in [4] - [6]. Refer‐
ence [7] has derived a seminal explicit sufficient solvability 

condition that certifies the existence and uniqueness of solu‐
tions, which dominates earlier works [3]-[6].

Despite these innovative works, state-of-the-art analytical 
condition still cannot handle coupled full power flow models 
with different types of buses. The most recent work in [7] 
can handle a system with only slack and PQ buses. To con‐
sider the generator bus, i.e., PV buses, an assumption has to 
be made: the voltage phasors are constant [8]. However, the 
assumption may fail when systems are close to their steady-
state stability limits [7]. Other results considering PV-bus 
model can be either quite conservative or restricted to sys‐
tems under certain modeling assumptions [9]-[11].

Machine learning techniques have long been employed to 
amend the shortcomings of analytical methods. The recent 
success of deep learning has facilitated its application into 
power flow problems [12] - [17]. References [12] and [13] 
have developed deep reinforcement learning algorithms to 
solve optimal power flow. The N - 1 contingency screening 
using a deep convolutional neural network is presented in 
[14]. Since it focuses on the contingency screening, the load 
power injections are fixed. The security-constrained DC opti‐
mal power flow is solved under the aid of deep learning in 
[15]. References [16] and [17] propose physics-informed 
learning models to solve the power flow. The results are 
promising, but the capability of the model under the full 
power injection space is not demonstrated. In a nutshell, ex‐
isting works cannot be generalized into the solvability prob‐
lem since the AC power flow under the full power injection 
space has not been investigated.

To this end, we propose to use deep active learning for 
solvability prediction that consists of two phases: off-line 
training and online prediction. In the off-line training phase, 
we sample power injections over all permissible ranges. This 
results in very high volumes of samples. Simultaneously, the 
labeling process requires solving the AC power flow prob‐
lem of all samples and demands considerable computation re‐
sources. Therefore, we employ the active learning frame‐
work − a family of machine learning methods which query 
the data instances to be labeled for training by an oracle (e.
g., a human annotator) − to achieve higher accuracy with 
much fewer labeled examples than passive learning for solv‐
ability prediction. Active learning integrates intelligent sam‐
pling and machine learning as a closed loop, and it is valu‐
able in the problems where unlabeled data are available but 
obtaining training labels is expensive. Although sampling to‐
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wards more informative subspaces has been studied in [18], 
closed-loop integration of machine learning and intelligent 
sampling like active learning has not been explored yet. This 
letter innovatively uses deep active learning for solvability 
prediction.

II. DEEP ACTIVE LEARNING FOR POWER FLOW SOLVABILITY 
APPROXIMATION 

Consider an NB-bus power network with NG generator bus‐
es and ND load buses. Let NB, NG, and ND denote the set of 
all buses, generator buses and load buses, respectively. NPQ 
and NPV represent sets of PQ and PV buses, respectively. 
The AC power flow equations are as follows:

ì

í

î

ï
ïï
ï

ï
ïï
ï

P G
i -P D

i = ∑
jÎNB

ViVj (Gij cos φij +Bij sin φij )    iÎNPQNPV

QG
i -QD

i = ∑
jÎNB

ViVj (Gij sin φij -Bij cos φij )    iÎNPQ

(1)

where P G
i  and QG

i  are the samples of generation active and 
reactive power injections at generator bus i, respectively; 
and P D

i  and QD
i  are the samples of load active and reactive 

power injections at load bus i, respectively; Gij and Bij are 
the line conductance and susceptance, respectively; the volt‐
ages Vi and angles φi at bus i are the system state variables, 
and the angle difference between buses i and j is φij = φi - φj. 
The existence of solutions to (1) depends on the values of 
power injections. Note that in this letter, we relax the feasi‐
bility conditions, i.e., the limits of voltage and line flow rat‐
ing are not considered, although the feasibility scenarios 
such as voltage violation and transmission line overloading, 
occur more frequently than the solvability problem. Hence, 
feasibility constraints are the binding ones in most cases. 
Nonetheless, the solvability problem could provide some in‐
sights when the system is feasible but heavily loaded. In this 
case, a small perturbation can change both the solvability 
and feasibility conditions of the power flow solution. In oth‐
er words, understanding the distance from the current operat‐
ing point or feasibility boundary to the solvability boundary 
can be significant for early warning and remedial actions. 
And characterizing the solvability boundary would be the 
first step toward such an endeavor.

Hence, the goal is to build a classifier using a multi-layer 
perception (MLP) model that can separate the solvable pow‐
er injections from the non-solvable ones. Therefore, the in‐
puts to the deep neural network are power injections defined 
as X =[P G

1  P
G
2   P G

NG
, QG

1  Q
G
2   QG
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ND
]. Let s, NS, and NS denote the sample in‐

dex, sample numbers, and set of sample indices, respective‐
ly. Each sample in X, denoted as xs =X[s:] (the subscript [s,:] 
denotes the sth row of a matrix), will be solved by Power 
System Simulator for Engineering (PSS/E), which will label 
its solvability: 0 indicates that X[s:] is not solvable and 1 oth‐
erwise. It is worth mentioning that our proposed framework 
can handle both PV- and PQ-type generator buses. Proper Q 
limits should be set in PSS/E. To ensure PV-type generator 
buses, we set the reactive power upper and lower limits of 
all generators to be sufficiently large. To ensure PQ-type gen‐

erator buses, we set the reactive power upper and lower lim‐
its of all generators equal to the corresponding samples. We 
denote the classes of non-solvable and solvable as Cq for q =
12, respectively. The label data after one-hot encoding reads:

ì
í
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ïï

Y * =[y*
1 y*

2  y*
NS

]T

y*
s =[y*

s1 y*
s2  y*

sNq
]

(2)

where y*
sq = 1 (q = 12Nq ) indicates that sample s belongs 

to class q. We then apply probabilistic smoothing approxima‐
tions to the discrete label values [19]. It is well known that 
when the targets are one-hot encoded and an appropriate 
loss function is used, an MLP directly estimates the posteri‐
or probability of class membership Cq conditioned on the in‐
put variables xs, denoted by p(Cq|xs ). Denote the MLP classi‐
fier as ys = f (xs; θ)=[ys1ys2 ]=[pθ (C1|xs )pθ (C2|xs )], where 
pθ (Cq|xs ) for q = 12 denotes the posterior probability of 
class membership q given by the classifier under parameter 
θ. The network parameters θ can be calculated using the 
maximum likelihood estimation. Therefore, we minimize the 
negative logarithm of the likelihood function, known as the 
cross-entropy loss, as follows:

L =-
1

NS
∑
s = 1

NS∑
q = 1

2

y*
sq ln ysq (3)

Since the output values of the MLP are interpreted as 
probabilities, they each must lie in the range of (0, 1), and 
they must sum to unity. This can be achieved by using a soft‐
max activation function at the output layer of the MLP.

III. ACTIVE LEARNING FRAMEWORK

Assume that we randomly generate a feature set X that is 
sufficiently large to represent the underlying physical fea‐
tures. In traditional passive supervised learning methods, we 
will generate labels for the entire feature set X, denoted as 
YX, using the simulation software and result parser, which is 
regarded as the oracle. The labeling process is computational‐
ly demanding if the data set is large and becomes intractable 
for high-dimensional problems. This is known as the label‐
ing bottleneck, which occurs not only in power systems but 
also in computer vision, natural language processing, and 
other machine learning tasks. The active learning framework 
can overcome such a labeling bottleneck. The pseudocode of 
the active learning algorithm is formally presented in Algo‐
rithm 1. Obviously, the querying strategy a(××) differentiates 
the active learning from passive learning algorithms. In other 
words, active learning under the random querying strategy 
will be equivalent to passive learning algorithms. The que‐
ries can be either selected in serial (one at a time) or batches 
(several to be labeled at once). Algorithm 1 presents the 
batch-mode active learning. Given the machine learning 
model f, unlabeled pool U, and inputs XÎU, the querying 
strategy can be represented as a function a, which is referred 
to as the acquisition function expressed as:

x* = arg max
XÎU

a ( Xf (×; θ)) (4)

where x* denotes the most informative sample selected by 
the corresponding strategy.
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The query strategy aims at evaluating the informativeness 
of unlabeled instances. There have been many proposed 
ways to formulate such query strategies in the literature [20]. 
Among all, the most widely used and computationally effi‐
cient strategy is uncertainty sampling. In this letter, an active 
learner queries the most difficult instances to classify by the 
deep learning model trained at the current stage. When inter‐
preting the binary classification using a probabilistic model, 
uncertainty sampling queries the instance whose posterior 
probability provided by the classifier is the closest to 0.5 
[20]. In other words, the selected sample is the least confi‐
dent to the classifier. For a general multi-class problem, this 
least confident sampling [20] can be expressed as:

x *
LC = arg max

xÎU
max
q = 12

pθ (Cq|x) (5)

In the case of multi-class classification, this metric omits 
information about the remaining labels. To compensate this 
omission, the margin sampling is introduced as:

x *
M = arg max

xÎU
|| pθ (C2|x)- pθ (C1|x) (6)

Besides the aforementioned metrics, the entropy sampling 
is also widely used to measure the amount of information 
that is encoded and can only be a metric in active learning:

x *
E = arg max

x ( )-∑
q = 1

2

pθ (Cq|x)ln pθ (Cq|x) (7)

As pointed out in [20] and other references, although all 
strategies generally outperform passive baselines, the best 
strategy may be application-dependent. Thus, we apply all 
three strategies to the solvability problem in this letter.

It is worth mentioning that (5) - (7) all entail only a simple 
sorting problem that finds the largest value from a finite set of 
numerical values. Therefore, the computation complexity of 
the sampling strategies is the same. Efficient algorithms to 
solve the sorting problem have been extensively studied, espe‐
cially in the realm of computer science. To select the most in‐
formative samples globally, we will perform this operation on 
all samples. But the algorithm can be flexible to operate on 
randomly grouped subsets of the overall sample set to increase 
the computation time if the entire sample size is too large.

IV. CASE STUDY 

We use the IEEE 39-bus system and Northeast Power Co‐

ordinating Council (NPCC) 140-bus system [21] to demon‐
strate the approach. The structure of the deep neural network 
is shown in Fig. 1, where FC is the fully connected layer; 
ReLU is the rectified linear unit; X is the feature dataset; n 
is the feature number; p is the sample number; Zi is the inter‐
mediate output of neural networks; and Y is the prediction. 
The PSS/E software and the Newton method are used to la‐
bel the sample. The labelling process is to obtain the power 
flow solution given a set of power injections. The power in‐
jections are the inputs (features) for the predictor, and the 
convergence flag is the label. In this paper, we use PSS/E 
software with built-in Newton method to obtain the conver‐
gence flag. Theoretically speaking, the certificate from the 
PSS/E software is not a sufficient and necessary condition of 
solvability. However, considering the fact that the sufficient 
and necessary conditions for full model power flow solvabili‐
ty with mixed PV and PQ buses are still open problems, we 
believe that labels from the most widely used tool in the 
power community could provide sufficient trustworthy re‐
sults to guide system operators.

During the training, we also face the data imbalance issue 
as the number of unsolvable samples is larger than that of 
solvable samples. The classification accuracy, which is the 
most-used metric for evaluating classification models, can be 
misguiding under this circumstance, as high metrics cannot 
guarantee prediction capacity for the minority class. Here, 
we employ the under-sampling strategy to resolve this issue. 
With under-sampling, we randomly remove a subset of sam‐
ples from the class with more instances to match the number 
of samples coming from each class. In the active learning al‐
gorithm, the under-sampling step takes place after the Oracle 
labels all selected samples.

A. Two-dimensional Solvability Region of IEEE 39-bus Sys‐
tem

First, we illustrate a two-dimensional case for visualiza‐
tion purposes. In this case, we uniformly sample active pow‐
er loads at buses 3 and 4 from -3000 MW to 3000 MW. Be‐
fore the training starts, all samples are normalized. We allo‐
cate 80% samples for training and 20% samples for testing. 
The active learner randomly selects 100 samples from the 
training dataset to label for the initial training phase and que‐
ries ten instances in each iteration using the margin sam‐
pling strategy. The algorithm terminates if the averaged test‐
ing accuracy of the last four iterations is greater than 95% 
or the algorithm reaches 30 iterations. The margin sampling 
strategy terminates after seven iterations, and achieves 
95.3% accuracy with only 170 labeled samples. While the 
random strategy fails to meet the accuracy criterion after 30 
iterations, achieving only 94.6% accuracy with 400 labeled 

Algorithm 1: batch-mode active learning

input: labeled set L, unlabeled set U, query strategy a(××), query batch 
size B, labeling oracle Oracle(×), deep neural net f (×; θ), neural network 
training function Train(××)

1: A¬Æ                       //Initialize the set to store acquisition instances
2: repeat
3:  θ¬(Lf (×; θ))                              //Train the model using current L
4:  for i¬ 1 to B do
5:    x *

i ¬ arg max
U

a(Uf (×; θ))  //Query the instance from the unlabeled set

6:    y*
i ¬(x *

i )                                     //Label the acquisition instance
7:    L¬L⋃ x *

i y
*
i                                  //Add the labeled query to L

8:    U¬U - x *
i                              //Remove the labeled query from U

9:    A¬A⋃ x *
i y

*
i                              //Store the acquisition instance

10:  end
11: until some stopping criterion
output: trained deep neural net f (×; θ), all acquisition instances A

FC1
+

ReLU

FC2
+

ReLU

X(n, p)

Output
+

Softmax

Z1(n, 100) FC3
+

+

ReLU

FC4

ReLU

Z2(n, 200) Z3(n, 200)

Z4(n, 50)Y(n, 2)

Fig. 1.　Structure of deep neural network.
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samples. Samples that are queried by the active learner are 
plotted as the filled dots, as shown in Fig. 2, where the deci‐
sion boundary of the neural network is illustrated using the 
colored areas. Meanwhile, labeled dataset plotted as the un‐
filled dots in the background indicates that the estimation is 
not conservative. As can be observed, the margin sampling 
strategy precisely selects the instances at the solvability 
boundary, indicating significantly high sampling efficiency.

B. Solvability Prediction Under Full Power Injections of 
IEEE 39-bus System

Second, a high-dimensional scenario is illustrated. Except 
for the slack bus (Generator 39 at bus 10), active and reac‐
tive power outputs of all generators are sampled uniformly 
between the dispatchable limits. Meanwhile, active and reac‐
tive power demands of all loads are sampled using normal 
distributions, which use the base values as the means and ad‐
mit 50% standard deviation. We have in total 57 features. 
All samples are normalized, among which 80% are allocated 
for training and 20% for testing. In the active learning, 2000 
samples are randomly selected for the initial training phase 
followed by 2000-sample query iterations. We perform ten it‐
erations and compare all the aforementioned sample strate‐
gies, including random (baseline), least-confident, margin, 
and entropy. We conduct five runs with different random 
seeds and illustrate the results in Fig. 3, where the solid 
lines indicate the mean values and the shaded areas repre‐
sent the standard deviations. All three active learning strate‐
gies have the similar performance, and are all superior to the 
random sampling. Compared with the random strategy, ac‐
tive learning achieves mostly 5% improvement in accuracy. 
The actual accumulated size of training dataset after under-
sampling is plotted in Fig. 4. In the initial step, all strategies 
randomly select 200 samples, which admit to approximately 
400 samples after being under-sampled. Then, active learner 
can build up a more balanced training dataset, as the actual 
accumulated sizes of training dataset are larger than the ran‐
dom ones. This, from another aspect, verifies that the active 
learner can sample towards the decision boundary and poten‐
tially resolve the data imbalance issue.

C. Solvability Prediction Under Full Power Injections of 
NPCC 140-bus System

We employ the NPCC 140-bus system to validate the scal‐
ability of the proposed method [21]. The NPCC 140-bus sys‐
tem contains 45 generators and 82 loads. Therefore, we have 
in total 254 features. In this case, the PV-type generator bus 
is considered. Similarly, 5000 samples are generated and 
equally separated for training and testing. During the active 
learning, we use 100 samples for the initial training, and que‐
ry 100 samples in each iteration. The training epoch is 50 
and the learning rate is 5 ´ 10-3. We conduct three runs for 
each sampling strategy. The out-of-sample testing accuracies 
of different sampling strategies of NPCC 140-bus system are 
illustrated in Fig. 5, where the solid lines indicate the mean 
values and the shaded areas represent the standard devia‐
tions. As can be observed, with the same number of sam‐
ples, the testing accuracies using active learning are about 
4% higher than that using random sampling.
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Fig. 2.　Queried instances by margin sampling strategy that precisely se‐
lects instances at solvability boundary.
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Fig. 3.　Testing accuracy of different sampling strategies of IEEE 39-bus 
system.
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V. CONCLUSION 

This letter proposes the deep active learning framework  
for solvability prediction in power systems with full AC 
power flow models. In this problem, sampling over the full 
power injection space is necessary, which results in a high 
volume of data to be labeled. To achieve higher labeling and 
training efficiency, active learning is employed, where the 
most informative instances are selected to be labeled. This al‐
lows to achieve higher accuracy with much fewer labeled ex‐
amples. 

The sampling effectiveness is first visualized in a two-di‐
mensional case. Then, four different sampling strategies are 
compared in the high-dimensional solvability prediction. The 
results indicate that active learning significantly outperforms 
passive methods and can resolve the data imbalance issue.
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