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Abstract—Industrial, commercial, and residential facilities are
progressively adopting automation and generation capabilities.
By having flexible demand and renewable energy generation,
traditional passive customers are becoming active participants
in electric power system operations. Through profound coordi-
nation among grid operators and active customers, the facili-
ties’ capability for demand response (DR) and distributed ener-
gy resource (DER) management will be valuable asset for ancil-
lary services (ASs). To comply with the increasing demand and
flexible energy, utilities urgently require standards, regulations,
and programs to efficiently handle load-side resources without
trading off stability and reliability. This study reviews different
types of customers’ flexibilities for DR, highlighting their capa-
bilities and limitations in performing local ancillary services
(LASs), which should benefit the power grid by profiting from
it through incentive mechanisms. Different financial incentives
and techniques employed around the world are presented and
discussed. The potential barriers in technical and regulatory as-
pects are successfully identified and potential solutions along
with future guidance are discussed.
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1. INTRODUCTION

N today’s diverse energy market, the security of energy

supplies and minimizing risks of instability and depen-
dence are essential and require decentralized and diversified
energy management. In this changing landscape of energy
demand, the development of renewable energy sources
(RESs) can count to be a feasible solution. Environmental
concerns and federal and state financial incentives encourage
customers to adopt these technologies. These adoptions lead
to a rising level of distributed generation (DG) and distribut-
ed energy resource (DER) usage integrated into the distribu-
tion systems. Until recently, distribution system operators
(DSOs) could predict each feeder’s typical power consump-
tion curve. However, in recent times, due to the higher level
of DERs, utility companies are facing new challenges in op-
erating and planning active distribution networks (ADNs)
[1]. The uncoordinated integration of DERs has raised the
dynamics and unpredictability of the mated distribution sys-
tems. This phenomenon causes reverse power flow and dete-
riorating power quality (voltage, frequency, and harmonics)
to the customers [2], [3]. The intermittency issues of renew-
able generation also cause disputes regarding the day-ahead
economic power dispatch in energy markets [4].

Besides DGs, customers have been adopting intelligent
functions for flexible loads [5]. The offered controllability al-
lows customers to optimize their energy consumption by
managing load demand and cost savings with energy man-
agement systems (EMSs). Adopting controllable loads for
residential, commercial, and industrial usage, the customers
can become active participants in demand response (DR) for
energy-saving operations such as peak shedding, peak shift-
ing, and load shifting [6]. The US Department of Energy de-
fines DR as “DR is a tariff or program established to moti-
vate changes in electric use by end-use customers in re-
sponse to changes in the price of electricity over time, or to
give incentive payments designed to induce lower electricity
use at times of high market prices or when grid reliability is
jeopardized” [7].

Typical DR algorithms can be distributed at different in-
tensity levels from low to high according to the prioritiza-
tion, users’ comfort constraints, or the maximum power con-
sumption limit, respectively [8]-[10]. Around the world, cus-
tomers have been using EMS solutions at their facilities with
the primary intention of reducing electricity bills. North
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American and European countries are well known for high
levels of DR [11]. These countries already have had open
market programs that encourage customers’ acquisition of
flexible resources. Eurelectric, the European electricity indus-
try association, suggests that the fundamental goals to ensure
the utilization of flexible resources are their efficient integra-
tion, effective operation, appropriate development of net-
works, and a competitive market [12]. For instance, elevated
levels of DR potential allow customers to operate their re-
sources in contribution to the grid operation and not only for
their own benefit. This type of operation becomes beneficial
to both the customer and the grid operator.

The electric power system operators are responsible for de-
veloping and executing the methods to ensure the system sta-
bility under critical events such as power imbalance which
lead to voltage and frequency deviations. These functions
are denominated as ancillary services (ASs) and are crucial
to securing stable and continuous power generation, transmis-
sion, and distribution. Nevertheless, DERs and DR capabili-
ties have created an opportunity to control electrical energy
delivery, not only from the generation, transmission, and dis-
tribution sides but also from the demand side. With the inte-
gration between utility and smart grid-interactive facilities,
customers can use their resources to support the system oper-
ation during critical periods [13]. Smart facilities can include
residential, commercial, and industrial customers with the
adoption of DERs and load automation to better manage en-
ergy consumption based on available generation, tariff pric-
es, and users’ comfort constraints. These resources can pro-
vide a fast local response to the system dynamics to support
the voltage and frequency recovery within safe limits [14]-
[16]. For instance, this customer-side flexibility can reduce
the system investment in improving its equipment. Besides,
they can be efficiently used to energize critical loads entirely
or partially and even neighborhood loads during outage peri-
ods [17], [18].

The customers’ adoption of intelligent and automated de-
vices is usually encouraged by governmental incentives, utili-
ty programs, or environmental actions [19]. The Federal En-
ergy Regulatory Commission (FERC) categorizes DR pro-
grams into incentive-based DR (IBDR) and time- or price-
based DR (PBDR) [20]. FERC’s report shows that most of
the potential peak demand reduction comes from the IBDR
programs. The PBDR provides customers with a dynamic
rate that depends on the value and cost of electricity during
different periods. In contrast, IBDR offers incentives to cus-
tomers willing to reduce their consumption based on the
time and cost of electricity [21]. In [22], a three-stage path
toward fully flexible distribution networks is presented with
short-, mid-, and long-term milestones, starting from control-
lable flexibility levels until resiliency aspects. Similarly, [23]
proposes a multi-stage planning framework that aims to inte-
grate the flexibility available in active elements to transit dis-
tribution network to ADNs. The approach starts by setting
high-level objectives and considers changes at any stage.

All over the world, utilities have been testing and adapt-
ing their agreements to encourage a more significant number
of clients to acquire automation systems and be part of the

ADN operation. However, there is still a lack of standards to-
day for defining the requirements of customers’ EMS con-
trols to be able to join AS, more precisely, how to reward
their successful operation for the sake of the grid reliability.

This study investigates the capabilities of active customers
in performing local ancillary service (LAS) to contribute to
the distribution network operation. A complete analysis of
traditional AS and a range of customer flexibilities that can
be used to perform LAS are described. State-of-the-art
EMSs and financial incentive programs are explored and
compared, highlighting the benefits and suggesting future
guidance on how to solve their drawbacks. The insights
about different countries dealing with the integration of DR
potentials to benefit the grid operation are reviewed and up-
held, along with discussions on why some countries are
ahead of others technology-wise. This study aims to benefit
future researchers on customer participation in the distribu-
tion network operation through ASs.

This paper is organized as follows. Section II delivers a
comprehensive overview of ASs. Section III describes the
available opportunities for customers’ demand and genera-
tion management. Section IV explains how financial incen-
tives can speed up and improve customers’ participation in
EMS:s. In Section V, some of the well-recognized active cus-
tomer management techniques for EMSs and financial incen-
tives are presented and evaluated. Section VI describes appli-
cations worldwide and discusses the existing gaps limiting
the advancement of customer AS. Section VII provides the
conclusion.

II. COMPREHENSIVE OVERVIEW OF ASS

The electric power system uses AS as a power imbalance
control utensil to respond to voltage and frequency devia-
tions, ensuring a secure and reliable operation under differ-
ent competitive electricity market environments [24].
Through these AS functions, transmission system operators
(TSOs) and DSOs can maintain the energy imbalance under
a controllable range where the voltage ¥, and frequency f; of
each bus i contained in the set of buses y, operate within
the standard operational limits, as shown in (1) and (2).

Vmin < Vi < Vmax (l)

Join<Jfi<[max Vi€ Y 2)
where ¥V, are the minimum and maximum limits
for voltage, respectively; and f,,, and f,,, are the minimum
and maximum limits for frequency, respectively. Typically,
Juin 18 59.5 Hz and f,,, is 60.5 Hz for a 60 Hz system, and
Von 18 0.95 p.u. and V,, is 1.05 p.u., as defined by ANSI
C84.1. Voltage and frequency deviations are caused mainly
by a power imbalance, a mismatch between the power gener-
ation and the total power consumption, or plus technical and
non-technical losses [25]. The theoretical complex power bal-
ance constraint is defined as:

DI W Y

ieyg Jew, keyy

Viey,

and V.

max

3)

where v, w,, and y, are the sets of generators, lines, and
loads, respectively; S¢ is the complex power output of gener-
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ator i; SjL is the total complex power loss on line j; and S}
is the total complex power demand for load k. Equation (3)
can be decoupled into active and reactive power balance con-
straints, as shown by (4) and (5), respectively.

S Pi- S Pi— S PP=0

7 A A )
ZQ,G— EQJL_ fo:() (5)
ieyg Jjew, key,

where P and Q are the active and reactive power outputs
of generator i, respectively; PjL and Qf are the active and re-
active power losses on line j, respectively; and P} and Q7
are the active and reactive power demands for load £, respec-
tively.

A. Traditional ASs

Regulating bodies have discussed ASs over the years, but
utilities implement them according to their necessity and op-
eration policies. In the US, FERC is an entity that has been
suggesting best practices for ASs on power systems. Accord-
ing to [26], ASs are those functions performed by the genera-
tion, transmission, and distribution equipment and operators
that support the essential services of capacity generation, en-
ergy transmission, and delivery. Several functions of the elec-
tric power system components can be identified as ASs.
Nineteen types of ASs for electric power systems are present-
ed and described in [27]. Currently, FERC identifies the fol-
lowing six types of ASs [28].

1) Reactive Power and Voltage Control

The reactive power control provides injection or absorp-
tion of reactive power to ensure the system stability and
avoid contingencies that may lead to a voltage collapse. The
literature divides reactive power and voltage control into two
component levels, i.e., system and local levels. Even though
the customer can use correction equipment to regulate reac-
tive and voltage levels locally, only the system operator can
understand the required regulation over the power grid
[29], [30].

2) Loss Compensation

Active power losses can be categorized into technical and
non-technical losses. The technical losses are related to trans-
mitting and delivering the energy to the customer, which
passes through resistive elements and has nonlinear nature.
The non-technical losses are due to the theft of electricity.
Even though reactive power losses are much higher than ac-
tive power losses, DSOs can control the losses by control-
ling the grid voltage levels [31], [32].

3) Scheduling and Dispatch

Scheduling and dispatch are responsible for quantifying
the energy generation required on different time windows.
The scheduling occurs before the real-time operation, look-
ing at months, weeks, days, or hours ahead. The dispatch is
a real-time technical-economic control of all generation and
transmission resources to match the required demand and op-
timize the utilization of primary resources [33], [34].

4) Load Following

The generation sector of each control area is required to
maintain enough generation capacity to respond quickly to
the load variation, except during outage periods. Similarly,

the planned reserves will be responsible for supplying the
load variation during contingency moments. In an intercon-
nected system, each control area must maintain suitable gen-
eration and reserve capacity levels [35], [36].
5) System Protection

Power system protection aims to isolate devices with un-
derperformance, fault, or critical conditions. By removing
these elements from the operation, the protection schemes
aim to maintain the remaining system in service. The protec-
tion is used to respond to more significant changes in supply
that may limit the levels of transgress elements’ power, fre-
quency, or voltage [37], [38].
6) Energy Imbalance

Energy imbalance is the natural difference between load
and generation. Due to the various aspects of the electric
power system such as inertia and control delays, energy im-
balance is obvious and impossible to be eliminated. Never-
theless, through ASs, the unbalance can be kept under stable
ranges and mitigated [39].

B. Customers’ ASs

The transition from passive to ADNs has required a high-
er integration between TSOs and DSOs [40]. Different coor-
dination schemes have proposed models for a possible inter-
action between these two sectors by considering the utiliza-
tion of ASs to regulate the point of interconnection between
them [41]-[45]. With the elevated levels of DERs and cus-
tomer-automation systems, DSO has been essential in the
power system reliability and resiliency. Integrating load and
generation flexibilities over the distribution networks has al-
lowed the bi-directional management of ASs. Beyond that,
these DGs have enabled a more comprehensive range of
LASs.

It was possible to observe a high adhesion of industrial,
commercial, and residential customers for automation and
EMSs during the last decade. Besides, DERs have become a
technically and economically feasible solution for small- and
medium-scale facilities. These demand- and generation-side
capabilities have allowed regular customers to become active
agents of the electric power system and take advantage of
their controllability to support the TSO and DSO operation.
Customers’ support can be at different depth levels. Once
the communication between the customers and the DSOs is
established in a reliable and coordinated manner, active facil-
ities can be part of a hierarchical control structure [46]. Inte-
grating utility and customer controls can benefit the electric
power system and defer further grid investments. Custom-
ers’ ASs may include but are not restricted to reactive pow-
er and voltage control, scheduling and dispatch, load follow-
ing, and energy discrepancy.

Smart facilities can manage granular loads, and under a
utility request, this operation can become a granular ancil-
lary service (GAS). The GAS may not significantly impact
the electric power grid when performed by a few facilities,
but mostly when many small facilities or high-demand cus-
tomers perform it. GAS utilization can also be economically
interesting for TSOs and DSOs, as it would avoid the usage
of more expensive traditional ASs. Also, both scheduling



6 JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 1, January 2023

and dispatch are valuable DERs and have demand manage-
ment capabilities. Scheduling can be helpful for energy stor-
age system (ESS) operation and customers’ load utilization
[47]. Similarly, DERs are part of the dispatch service and
support the total demand reduction.

III. AVAILABLE OPPORTUNITIES FOR CUSTOMERS’ DEMAND
AND GENERATION MANAGEMENT

The world’s energy demand growth rate increased from
0.3% in 2015 to 2.2% before the global pandemic in 2020
[48]. Moreover, the increasing concepts of smart facilities,
responsive and controllable loads, and in-site generation
have also allowed flexibility on the demand side [49], [50].
With the worldwide energy efficiency awareness campaign
and increasing energy tariffs, automation techniques have
been being deployed on different levels of electrical consum-
er facilities. Studies have shown that from 1976 to 2014, the
energy savings of building EMS applications increased from
11.39% to 16.22%. During the same period, the energy sav-
ings of traditional EMS applications decreased from 18.89%
to 10.35% [51].

The increasing controllability of customers’ facility levels
also help improve data management and storage. Internet-of-
Things (IoT) is utilized in customers’ automation to solve
the big data challenge. IoT allows easier information ex-
change between customers with aggregators or DSOs. The
agents would be able to receive the customers’ consumption
and scheduling data to compute in real-time grid optimiza-
tions and return commands to the network elements and cus-
tomers.

The LAS capabilities for each customer facility are differ-
ent and can present variable ranges of controllable power,
time of response, and power flow directions. Even though
only a small percentage of customers are mounted with both
load automation and RES, the LAS can be performed by fa-
cilities with at least one of these capabilities and not neces-
sarily both. The load automation enables the DR capability
that commands flexible and switchable loads to adjust the
power demand on different time windows. Behind-the-meter
DER capability complements the load controls once the re-
sultant demand is the difference between their power. Equa-
tion (6) clarifies the relation between DER generation S
and load power consumption S with the resultant de-
mand S?”.

SP=SE—SPER Viey, (6)

Equation (6) is crucial for DR techniques. Usually, S is
not entirely controllable, but only a small percentage of the
facility’s consumption can be managed. This aspect raises
the concept of DR potential, which aims to estimate the lev-
els of available load for power consumption reduction. The
estimation is not a simple task but can be facilitated by the
advancements in integrating metering and communication on
customers’ facilities.

This paper categorizes the customers’ flexibility into four
types according to their load and generation control capabili-
ties, as shown in Fig. 1. Type I only has uncontrollable
loads. Type II is mounted with controllable loads. Type III

has DERs and uncontrollable loads. Finally, Type IV has
both controllable loads and DERs.

—— Uncontrollable power flow; ——— Controllable power flow

Fig. 1. Categories of customers’ flexibility.

A. Typel

In Type 1, the local users are responsible for turning on
and off the facility appliances according to their preferences
and necessities. This behavior is passive and repetitive but
can slightly change over weekdays, but it is mainly different
on weekends and holidays. Nowadays, smart meters have en-
abled a reliable electrical measurement at the customers’
point-of-connection with the utility, which facilitates the bill-
ing calculation using IoT and big data analysis and process-
ing [52], [53]. With smart meters, the utility can collect pow-
er consumption information over time and perform load fore-
casting with higher accuracy to plan their operations [54],
[55]. Even though there are several discussions on data pri-
vacy with smart meters [56], by using these measurement de-
vices, utilities can better understand and identify the custom-
ers’ consumption behavior [57]. The load behavior can be
affected by several internal and external factors, which can
be related to the residents’ culture and weather conditions
[58]. As soon as the utility models the consumers’ character-
istics, it is possible to predict their behavior under different
tariff structures [59], [60]. The utility uses these historical
load consumption data and weather patterns for their load
forecasts [61], [62]. In [63], low-energy housing profiles
from Australia are shown, and their patterns and estimations
are discussed. Figure 2 presents the data from [63] intending
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to illustrate customers’ load pattern change over the week-
days and weekends and year seasonality.

Active power (p.u.)

1 4 7 10 13 16 19 22 24
Time (hour)
——Weekdays; ——Weekends

(@

Active power (p.u.)
(=]
N

1 4 7 10 13 16 19 22 24

Time (hour)
—o—Year; ——Summer; —Autumn; —Winter; —— Spring

(b)

Fig. 2. Customers’ load pattern change over weekdays and weekends and
year seasonality. (a) Weekdays and weekends. (b) Year seasonality.

B. Type Il

The facilities of Type II have controllability on the con-
sumption side but no DER. The level of controllable loads
can differ from facility to facility. These controllable loads
are typically interconnected to a central EMS. One of the
main objectives of the customer’s DR is to optimize residen-
tial power consumption under dynamic tariffs during high-
price periods [64], [65]. This central unit can be connected
through an agent to provide measurements and receive LAS
requests. During the power outage, the utility can request the
smart facilities’ load reduction to ensure the grid voltage
and frequency stability and the power quality to all custom-
ers [66], [67]. However, the customer’s management will be
tied to its available DR potential.

The advanced research on DR techniques has enabled a
smart utilization of the facility loads based on several goals,
i.e., energy efficiency, load shedding, load shifting, etc. [68].
Even though the DR is mainly performed by controlling
loads, electric vehicles (EVs) can be a useful resource in this
process [69]. EV charging can be based on facility consump-
tion or dynamic tariff prices. Figure 3 shows the comparison
of load consumption under three well-established practices
of DR: load efficiency, shedding, and shifting controls. Load
efficiency control intends looks to perform the usual tasks
that the users perform with less energy but without affecting
their day-to-day activities or comfort levels. Load shedding
control is the capacity to limit the consumption of facility
loads under a certain level, independently of the users’ de-
sires [70]. Load shifting control is the ability that EMS has
to know the users’ behavior and the grid limitations to
schedule and shift the utilization of non-crucial loads. This

technique makes the load consumption curve smoother, re-
ducing the peaks and valleys.

1.0
= L
2 0.8
E: 0.6
<)
204
o
5
5 0.2F
<

0 L L L L L L L y
1 4 7 10 13 16 19 22 24
Time (hour)
—No control; —Load efficiency control
——Load shedding control; —Load shifting control
Fig. 3. Comparison of load consumption under load efficiency, shedding,

and shifting controls.

Even though each kind of device has its own flexibility
and controllability characteristics, heating, ventilation, and
air conditioning (HVAC), water heaters, and fans have been
some of the most studied devices for DR [71]-[75]. Due to
the slow intrinsic dynamics presented in thermal behavior,
the short-term interruption of these elements is usually unno-
ticed by the users [76]. Beyond that, the temperature can be
modeled as a storage system, where it is possible to both
“charge” and “discharge” or “heat” and “cool” [77]. Lights
are another load that can have their intensity managed to pro-
vide AS to the power grid with reduced the impact on the us-
ers’ notice [78].

C. Type 11

In the search to improve the reliability and security of the
energy supply by diversifying the energy matrix, DERs have
proven to be a reliable and feasible alternative. Due to the
required size and implementation cost, photovoltaics (PVs)
have been the most used technology on customers’ facility
levels, bringing more independence and reducing their ener-
gy expenses. However, DERs have also brought several is-
sues and challenges to the operation and control of the distri-
bution networks, like harmonics, voltage and frequency vari-
ations, and power fluctuation [79].

Figure 4 illustrates the impact of PVs on a customer’s re-
sultant demand profile based on a consumption profile,
known as the duck curve.

The California Independent System Operator was one of
the first agents to expect and face the duck curve, even
though it became more impactful than expected [80], [81].
By this, different agents and countries started to intensely
study how economic and technical incentives can affect the
levels of PV integration on customers’ facilities and their ef-
fects on the grid [82].

The studies and solutions of ESS technologies have been
advancing for overcoming the impacts and inflexibility of
the PV generation characteristic. The ESS controllability al-
lows customers to model their demand profile. As DERs are
mostly inverter-based-resources (IBRs), they have the power
electronics capability to model and shape the desired current
curve, enabling PF and reactive power support. The installa-
tion of PV systems shows that this DG can reduce the resul-
tant demand and voltage drop over the grid by generating ac-
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tive power [83]. To compensate for the reactive power, the
IBRs can perform reactive power support during their active
power injection, correct the reactive power issues on a facili-
ty and neighborhood level, and improve the voltage levels as
an LAS. Figure 5 shows the usual volt-var control of IBR at
different voltage levels.

1.0

N
o

Active power (p.u.)

S
o

S

4 7 10 13 16 19 22 24
Time (hour)
——Consumption; —Demand (with generation)

Fig. 4. Impact of PVs on a customer’s resultant demand profile.

Reactive power
(based on Oy,q,)
(V1.02) (75,05 _~—Deadvand
O
o}
(V501 (V.01
n n 1
v, v, Vs Vy Vy Vs Ve  Voltage
Fig. 5. Usual volt-var control curve of IBR under different voltage levels.

At low voltage levels of operation, the inverter provides
reactive power to the power grid, becoming capacitive. At
higher voltage levels, it may absorb reactive power, becom-
ing inductive. The injection or absorption of reactive power
is based on the inverter’s limitations Q.. According to the
control project, different voltage deviations V,, V,, V5, V,,
Vs, and V, from the nominal V, will define which level of re-
active power the inverter should support (Q,, Q,, or none).
By providing or consuming reactive power, the inverter may
reduce its active power injection to respect the nominal pow-
er of the inverter.

Similarly, IBDR can perform frequency response by using
Hertz-Watts control. The IBR can adjust the amount of ac-
tive power injected into the system according to the frequen-
cy level. The control curve may vary according to the type
of generation resource. While PV and wind systems are usu-
ally operated on their maximum power point (MPP), storage
systems can have an adjustable amount of energy consumed
or injected based on their reserves. Figure 6 shows the usual
Hertz-Watts control curve of IBR at different frequency lev-
els. The IBR reduces the amount of power injected into the
system at over-frequency levels. Otherwise, the IBR increas-
es its amount of energy injected if any reserve is available at
under-frequency levels. An inversed control architecture can
be considered for EVs, where the charging level increases in
over-frequency moments, and in under-frequency moments,

the discharging level increases. In this case, the injection or
absorption of active power is based on the inverter’s limita-
tions P,,.. According to the control architecture, different fre-
quency deviations f,, 5, f5, f1, /5, and f; from the nominal fre-
quency f; will define which levels of active power the invert-
er should support (P, P,, or P;).

Active power

(based on P, ,,) Deadband
Gry Gry

(4P
(f3-P)

i (fs:P1) (fe:P1)

" " 1

A Lo A A /s
Fig. 6. Usual Hertz-Watts control curve of IBR under different frequency
levels.

f¢ Frequency

D. Type IV

By smartly managing both load and generation, it is possi-
ble to have a reliable operation with energy cost savings and
perform LAS without compromising the users’ comfort con-
straints. The facilities of Type IV are mounted with load au-
tomation and DERs (most commonly PV systems). Having
an ESS on Type IV customers is also common, which brings
more flexibility to both sides.

The fast advancement of EV technologies have provided
the mechanisms for bi-directional EVs. Their integration into
the power system brings challenges such as feeder conges-
tions, transformer overloads, undue circuit faults, structural
limitations, and power quality issues [84]. Nevertheless, cus-
tomers’ acquisition of an EV enables a new opportunity for
demand modulation. By managing the charging and discharg-
ing of the ESS, the DR techniques can maximize the penetra-
tion of RES into the power grid [85]. In [86], the proposed
reactive power support technique shows that bi-directional
EVs can optimally provide reactive power support without
significantly compromising the active power consumption or
injection.

The opportunity to control the consumption and the injec-
tion of energy into the power grid facilitates the mitigation of
challenges related to Types II and III customers, which are to
be tied to affect the customer’s comfort or be dependent on
the generation behavior. Figure 7 clarifies the capability of
Type IV customers to shape their demand profile over the op-
eration day. Modulating loads and ESSs can improve the PV
injection without creating sharp slopes from the duck curve.
Also, lowering peak demand reduces the overall cost of invest-
ments for network upgrades [87]. Beyond that, high-demand
customers have agreements with the local utility about the
amount of power they can consume and their maximum peak
demand. The integration of DR and DER management can ef-
ficiently coordinate their peak demand to avoid any transgres-
sion that may result in penalties.
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Fig. 7. Capability of Type IV customers to shape their demand profile
over operation day.

Even though customers’ facilities are primarily projected
to operate in interconnected mode, some research and new
solutions have enabled them to operate in islanded operation
mode. The capability in islanded operation mode reduces the
customers’ dependence on the power supply of utilities.
This capability of operation mode transfer becomes even
more interesting in outage scenarios, where the utility is not
able to supply all the customers. In islanded operation mode,
the total consumption must match the available generation to
avoid instability. This aspect is a crucial constraint to ensure
stability and prevent complete backouts on the facility,
which only Type IV customers can perform.

IV. FINANCIAL INCENTIVES

Electric power system planners and operators have been de-
veloping incentive-based programs to encourage users to tran-
sition from traditional to intelligent facilities so they can be-
come assets during critical operation periods. These plans are
primarily based on a time-varying energy price that reflects
the need for customers’ support to the grid during specific pe-
riods [88]. According to the agreement, customers are provid-
ed with the time-of-use pricing, critical peak pricing, variable
peak pricing, real-time pricing, and critical peak rebates. The
customers’ participation and successful response during these
periods are reflected in their electricity bills [89], [90]. Any of
these approaches present a significant improvement in the effi-
ciency of energy resource utilization by focusing on the partici-
pation of the consumer side in the transactive energy market.
Figure 8 presents an overview of customers’ interaction with
DSOs and energy markets through aggregators.

In the US, the incentives to implement DR resources into
the wholesale market have been carried out by the FERC, re-
gional grid operators, and utility companies. EMS studies
based on real-time data monitoring, environmental impacts,
techno-economic analysis, and the IoT-based performance
have been analyzed in detail in [91], [92].

Direct load control programs have been deployed over the
globe, which enables the local utility to control the cycle of
air conditioners and water heaters on and off during critical
periods in exchange for a financial incentive [93]. Reference
[78] proposes a mathematical model for the cost of meeting
AS requirements using HVAC systems. The formulation can

also anticipate the capabilities of HVAC systems in provid-
ing ASs during different periods.

Operation Generation

requirements

Market clearing
price

Generation availability Generation cost

DSOs Energy markets

Operation constraints Market clearing price

Measurernents and
AS reserves

Aggregated

Aggregator flexibility

Commands and rewards Load flexibility

Customers

Fig. 8. Overview of customers’ interaction with DSOs and energy markets
through aggregators.

Beyond the direct control from the utilities, smart facili-
ties can have their local control to respond based on time-
varying tariffs and reduce their energy bills while perform-
ing LAS. The IBDR takes the retail energy price to schedule
the load utilization and manages its operation in real time
[94]. Besides that, Type IV customers can add the DER oper-
ation as a constraint and efficient support in the AS process
to obtain more credits and thus reduce their total energy
bills. The customers’ DR intensity must follow the dynamic
prices, respecting the agreements not to receive penalties due
to transgressions. Meanwhile, several studies have investigat-
ed the best approach to defining dynamic prices and increas-
ing customers’ participation in ASs. In [95], a novel non-co-
operative game technique is utilized to determine tariff pric-
es and force the demand-side ESS operations to increase up
to 67% of PV energy penetration into the power grid. Even
though the energy price can be predicted on a daily and
hourly window ahead, it changes in real time according to
the availability of energy and operation constraints of the
power grid. In [96], a real-time deep neural network ap-
proach enables the service provider to purchase customers’
energy resources under different grid operating conditions.
Currently, most of the customers at a distribution level are
under flat rates instead of dynamic energy prices. In [97], a
coupon-incentive-based DR program is proposed to over-
come the inflexibilities at a flat rate. In this approach, cou-
pons are provided by the load service entities to customers
with the primary goal of encouraging their DR during specif-
ic periods voluntarily.

The IBDR enables better operation planning. As soon as
the incentive-based program is established, it is possible to
quantify the DR potential in the power grid and even predict
the contribution of each active customer [98], [99]. By this,
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the AS approach can be performed by both grid and custom-
er agents. Even though integrating utility and facilities
through IBDR programs seems interesting for both sides,
this data and command interaction introduces the concerns
regarding customers’ privacy. A privacy-preserving scheme
is proposed in [100]. The scheme utilizes cryptographic prim-
itives to preserve customer privacy while enabling the pro-
vider to compute individual demand curtailments and rewards.

V. ACTIVE CUSTOMER MANAGEMENT

tion with the minimum impact on their daily behavior and
supply constraints; and (2) the motivation from utilities can
encourage the customers’ participation. These two challeng-
es must be studied and optimally solved to ensure a fair and
reliable interaction between grid agents and customers.

A. EMS Control

Table I presents an overview and comparison of several
management solutions proposed in the literature for consum-
ers’ participation in smart grids, along with their key consid-
erations and contributions. It should be noted that Y and N

The active customers’ participation in the smart grids has
two main challenges: (D customers support the grid opera-

TABLE I

in Table I imply yes and no, respectively.

OVERVIEW AND COMPARISON OF DIFFERENT MANAGEMENT SOLUTIONS FOR CONSUMERS’ PARTICIPATION IN SMART GRIDS

Reference DR RES Decision Agent Consumer Goal Contribution Year
. R - - o 210
[101] v v Electricity Multiagent General Market-based appr'oach to coordinate Reduction of 12%-34% on energy 2018
market profit-based entities costs
.. s . . o
[102] v v Electricity Local Residential Load shifting w1t¥1 the surplus power Reduction of 46% on the load 2019
market of the customer’s PV curve ramp rate
. . . o H0
[103] v % RES Local Residential Maximize the RES generatlon and Reduction of 15%-20% on the 2019
serve as an AS for the grid purchased energy unbalance
Cost, discom- Optimal bi-directional enerey tradin Reduce up to 22.9% of the total
[104] Y Y  fort, and inter- Aggregator Residential P . energy € load and 45.2% of the energy 2019
. and appliance scheduling
ruption cost
Coordinate HVAC, IT workload, and
. . battery energy storage system o
[105] v N Incentlye and Local Industrial e.lnd (BESS) to adiust the power con- Thermal.de\./latlons of data center 2018
price commercial . are maintained under 0.60 K
sumption of data centers and per-
form DR
Control of PV converters to balance Reduce up to 15.5% network
. . consumers’ demanded currents and  power losses on high radiance
[106] N Y Power Local Residential to compensate the demanded reac- days and 66.5% network power 2019
tive power losses on low radiation days
Perform DR under a utility’s request DR algorithm presented up to
[107] Y N Power DSO General with efficiency and reduce compu-  80% reduction in the required 2021
tational time controller computational time
Elecriity | P ement 1o addrese grid overond. T 1%20% consumers
[108] Y Y Multiagent Residential . Lo cost savings while minimizing 2020
market ing and cost optimization preserv- g .
. s storage device degradation
ing consumers’ privacy
. . . Show the ability of different
. . Optimize multi-energy storage, substi- . o -
Electricity Commercial . . kinds of flexibility to improve
[109] Y N Aggregator . . tution, curtailment, and power fac- . 2019
market and residential : . the network constraints caused
tor manipulation . . .
by adoption of electric heating
Reveal the residential DR benefits The approach ,1s ef.ﬁ(.:len.t when
Load forecast- . . through an optimal load aggrega- the Lcustomers participation l.ev-
[110] Y Y . Aggregator Residential . . LS el is less than 80%, reducing 2020
ing tion and active DR participation un- .
generation costs and load pro-
der rewards .
file deviation
Thermostatically controlled loads
Novel modeling and control frame- provide load shifting and over-
Distributed ~ Commercial works to evaluate the underlying all energy efficiency, reducing
[t Y N Temperature agents and residential ~ capability of thermostatically con- 319 kW from 1000 heteroge- 2021

trolled loads

neous air conditioners causing
an average increase of 3.8 F

Some existing control strategies for facility management
are based on proportional-integral-derivative (PID) control,
on and off state values, and rule-based controls. Each of
them has its own limitations and constraints that impact the
system flexibility. The current techniques utilized for ad-
vanced EMS control are primarily based on fuzzy control,
model predictive control (MPC), and deep learning control.

Fuzzy control was firstly introduced in the 1960s, followed
by MPC in the 1980s. Even though machine learning has
been studied since the late 1940s, the deep learning control
was only introduced in the 1980s. Only in the 1990s were
digital control devices used for control. At that time, no stan-
dards or guidances were defined for digital communication.
While the current EMSs available in the market have reason-
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able performances, the first step to achieve an ADN with co-
ordinated customer participation and efficient contribution to
the system operation is to standardize EMS control integra-
tion, performance, and response time. Together with this, ac-
tive customers can become a reliable source of ASs.

B. Financial Incentives

Financial incentives provided by the DSOs are a crucial
aspect of improving the customers’ advancement in building
automation and DERs, besides engaging in LAS programs.
Financial incentives have two key characteristics. The first
one is encouraging customers to acquire DERs and automate
their facilities. The second one is to encourage active cus-
tomers’ participation in LASs in response to the power sys-

tem needs and operation improvement.

Table II presents an overview and comparison of different
types of financial incentive approaches to encourage the cus-
tomers’ participation in energy markets for energy commer-
cialization and LASs. Customers should be able to operate
their resources according to their choice to improve their reli-
ability or reduce costs. However, financial incentives for AS
operation must depend on DNO’s need and available DR po-
tential. If demand reduction is highly required, the incentive
should be inversely proportional to the available DR poten-
tial of the system. By this, reliable approaches for DR poten-
tial estimation must be developed and validated to comple-
ment calculation techniques for financial incentives.

TABLE 11
OVERVIEW AND COMPARISON OF DIFFERENT TYPES OF FINANCIAL INCENTIVE APPROACHES

Reference DR RES Decision Agent Consumer Goal Contribution Year
. The blockchain algorithm creates
Reactive power . . An ap Proach . remuneration of purchase-offer ~ couples  where
[112] N Y L DSO Residential ~ reactive power integrated into . .. . 2019
provision . promises are digitally signed and
the blockchain .
physically performed
Changes in Coupon incentive program to in- o
system and/or ~ Load serving duce DR for a future period in Up. to 3.2'91 A] cost of energy reduc-
[113] Y N . General P . . tion is achieved, as well as the 2013
adverse weather  entity (LSE) anticipation of intermittent gener- o .
o . . . 61.36% of loss reduction
conditions ation and/or price variations
Increasing AS prices and installa-
Optimal bidding strategy for cus- tion rate of EVs can increase AS
[114] N Y Power DSO Residential ~ tomers’ energy trading as AS But increasing installation of PV 2020
tool systems does not necessarily in-
crease the service provision
Reinforcement learning and deep Win-win strategy is used for both
R neural network algorithm to bal-  service provider and customers
[115] Y N Power Aggregator  Residential ance energy fluctuations and en- Up to 45.0% reduction on payment 2019
hance grid reliability cost is achieved
DR model involving the utility As soon as customers have higher
[116] v N Power Aggregator General and 'el'as't1c1ty of customers for elastllclty, .retallers can make few- 2017
maximizing the benefits of retail- er incentive payments and re-
ers ceive more benefits
Reduce costs and improve reliabili- LSE revenue Increases with - the
ty, as well as increase customer population of customers .
[117] Y N Power LSE General a}(,:,ce tance of a DR program b For customers’ load share bigger 2017
i °p . - prog Y than 60%, the LSE benefit is less
imiting price volatility .
sensitive
A deep contextual bandit algo-
Load servin rithm is proposed to address the Solution improves system reliabili-
[118] Y N Market price entitics & General uncertainty of electricity con- ty, reduces energy cost, and con- 2021
sumption with an optimal pric- trols the power system ramp rate
ing policy
Discomfort Determining an efficient and fair The given incentive varies based
level and eco- Microgrid incentive for customers’ partici- on the discomfort level of partici-
[119] Y Y nomic value of owner General pation in the DR scheme within  pants and the economic value of 2021
load microgrid system loads
Optimize customer actions for the The methodology can.ldentlfy opti-
Consumer . mal customer behaviors when the
[120] Y N . Not defined General maximum expected rewards un- . 2021
behavior . schedule of DR events is uncer-
der uncertain event schedules tain
Propose and compare  two ap- Revenue from ancillary service ac-
proaches to optimize microgrid counts for 12.03% of operatin
[121] N Y Set of variables ~ Not defined Commercial  dispatch, i.e., one with or with- . 70 P € 2021
Y . costs; and battery state of charge
out participation in real-time AS . :
(SoC) remains higher
markets
Financial incen- Optimal customers’ responsive- Revenue peak of the aggregator is
[122] Y N Aggregator  Residential ~ ness under different incentives obtained when economic-oriented 2021

tive

for aggregator’s decision-making

customers are around 74%
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VI. APPLICATIONS WORLDWIDE AND EXISTING GAPS
LIMITING CUSTOMER AS ADVANCEMENT

The automation and integration of facilities’ EMS and
DER have received special attention in the last decade, and
some countries have been more advanced than others. In
[11], a complete review of DR applications for LAS world-
wide is performed.

A. Europe

Many European countries have created programs to en-
courage DR participation from customers. However, despite
these programs and their high potential, the levels of DR in
countries like Belgium, Denmark, and Finland remain low.
The lack of open markets primarily causes this delay in cus-
tomers’ DR participation.

B. North America

The US and Canada TSOs allow customers’ DR to access
the AS markets. Different system operations have created
similar and aligned rules that standardize the operation and
integration of DR applications to the system operation uni-
formly.

C. Asia and Oceania

In these continents, DR is partially allowed to access AS
markets. TSOs have created different programs to encourage
the customers’ participation in DR. Countries like Australia,
China, South Korea, and Singapore have already been utiliz-
ing customers’ DR as AS, while New Zealand and Japan
are still planning and investigating their potential programs.

D. Africa and Latin America

Countries in Africa and Latin America are still developing
DR programs to enable customers’ participation in AS.
None has already had well-established programs, but some
countries are already investigating the best ways to create
and apply these programs.

E. Future Considerations

A common challenge for all countries that have already
had or are developing their LAS programs is the lack of
standardization. Currently, with manageable levels of DERs
integrated, LAS is still in a stage where the proposed pro-
grams can be tested and adjusted to different countries and
system needs. However, as customers become more active
participants in load management and adopt DERs, the LAS
may become more feasible and required by the DSOs. This
level will need more well-defined and guided standards and
regulations to ensure the safe operation, integration, and par-
ticipation of LAS, as well as to provide a fair reward for the
customers’ contributions. Besides the regulatory challenges,
the LAS also presents technical barriers. The LAS may only
be beneficial when the actions are well-coordinated between
the utility or local aggregator and the customer [123]. There
is a need for modernizing the electric power system and inte-
grating reliable bi-directional communication links between
customers and DSOs. However, this need brings other indi-
rect challenges such as data privacy, cyber-security, interac-
tion of energy markets, and big data management.

VII. CONCLUSION

The advancement of IoT-enabled controllable loads and
DER technologies have enhanced customers’ participation in
grid ASs. These solutions provide economic benefits to the
customers through flexibly managing resources to benefit
from dynamic energy prices and increase their energy supply
reliability during outage periods. The coordination between
load and generation management with energy storage should
be used for an efficient model of customer demand and dai-
ly behavior.

Nevertheless, customers’ independent control can bring
higher ambiguities and dynamics to the electric power sys-
tems. This issue calls for an urgent requirement for well-es-
tablished coordination between customers and DSO. With bi-
directional communication, both customers and DSO can get
benefits. The flexibility of the active facilities is a great op-
tion for ASs. Focusing on the distributed LASs over the
power grid, the DSOs can provide financial incentives to the
aggregators and customers. The DSOs can also avoid using
the traditional and more expensive ASs without compromis-
ing the system stability and reliability levels. This bi-direc-
tional coordination will allow more advanced grid automa-
tion techniques such as self-healing, microgrid formation,
and energy communities with interactive energy markets.

A comprehensive review of active customers’ flexibility
for DR as LAS is provided, along with an investigation of
existing management techniques, incentive programs, and
worldwide applications. Several critical aspects of smart
grids in the near future are also escalated, which require so-
lutions and improvements to normalize active customers’
participation in power grid operation. The biggest roadblock
to this issue is not technological but mostly regulatory. Sev-
eral countries have adopted strategies and programs to en-
courage active customer DR participation in power grid us-
age. Yet, the lack of uniform standards and regulations pre-
vents the rapid growth of these techniques, which could be
beneficial for future energy management solutions.
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