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Abstract——Most existing distribution networks are difficult to 
withstand the impact of meteorological disasters. With the de‐
velopment of active distribution networks (ADNs), more and 
more upgrading and updating resources are applied to enhance 
the resilience of ADNs. A two-stage stochastic mixed-integer pro‐
gramming (SMIP) model is proposed in this paper to minimize 
the upgrading and operation cost of ADNs by considering ran‐
dom scenarios referring to different operation scenarios of 
ADNs caused by disastrous weather events. In the first stage, 
the planning decision is formulated according to the measures 
of hardening existing distribution lines, upgrading automatic 
switches, and deploying energy storage resources. The second 
stage is to evaluate the operation cost of ADNs by considering 
the cost of load shedding due to disastrous weather and optimal 
deployment of energy storage systems (ESSs) under normal 
weather condition. A novel modeling method is proposed to ad‐
dress the uncertainty of the operation state of distribution lines 
according to the canonical representation of logical constraints. 
The progressive hedging algorithm (PHA) is adopted to solve 
the SMIP model. The IEEE 33-node test system is employed to 
verify the feasibility and effectiveness of the proposed method. 
The results show that the proposed model can enhance the resil‐
ience of the ADN while ensuring economy.

Index Terms——Active distribution network (ADN), resilience, 
disastrous weather event, stochastic programming.
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C. Parameters
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Node indexes

Resilience level of active distribution networks 
(ADNs)

Resilience level of ADNs in resilient state

Resilience level of ADNs in post-event degrad‐
ed state

Scenario index

Time index

Mean of points in ψi

Set of unsupplied load vectors

Scenario of ψi

Cost coefficient vector

Associated cost coefficient vector

Set of lines

Set of nodes

Set of problem constraints

Set of scenarios

Set of lines with switches

Set of time spans

Vector of the first-stage decisions must be 
made before the scenario is known

Vector of decisions made after the first stage, 
or as a result of the scenario realization

Charging and discharging efficiencies of energy 
storage systems (ESSs)

Recovery factor of ESSs

Electricity price during time t

Power factor of ESSs

Failure rate of line (ij)

Failure rate under weather condition a in year x 
of line (ij)

Load level uncertainty for a stochastic scenario, 
which is assumed to follow a normal distribution
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D. Variables

αijst 

ηijst 

μijst0
 

Total annual operation cost of ADNs

Number of typical days throughout one year 
when scenario s is under normal, severe and ex‐
treme weather conditions

Penalty cost for shedding load at node i

Annual cost for hardening distribution line (ij)

Annual cost for adding an automatic switch on 
line (ij)

Power and capacity costs of ESSs

Annual operation-maintenance cost of per unit 
power capacity of ESS

Total annual capital cost of hardening distribu‐
tion lines

Total annual capital cost of upgrading automat‐
ic switches

Total annual cost of deploying ESSs

Total annual equipment deployment cost of ESSs

Total annual equipment operation-maintenance 
cost of ESSs

Energy capacity of ESS at the end of time t

A large constant

Limited investment of ESSs

Number of statistical years of line (ij)

Number of failures of line (ij)

Number of failures of line (ij) caused by 
weather condition a in year x

Probability of occurrence of scenario s

Rated power and capacity of ESSs

Resistance and reactance of line (ij)

Rated apparent power from node i to node j 
during time t in scenario s

Initial state of charge of ESS

The minimum and maximum allowable states 
of charge

Duration of weather condition a in year x of 
the same historical period

Square of voltage magnitude at node i

Squares of lower and upper bound of allowable 
voltage magnitude at node i

A binary variable, which is equal to 1 if the 
state of line (ij) is closed during time t in sce‐
nario s and 0 otherwise

A binary variable, which is equal to 1 if the 
state of line (ij) is damaged during time t in 
scenario s and 0 otherwise

A binary variable, which is equal to 1 if line 
(ij) is operating at time t0 in scenario s and 0 
otherwise
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A binary variable, which is equal to 1 if the 
line switch on line (ij) is closed during time t 
in scenario s and 0 otherwise

A variable that represents the fault state of line 
(ij) during time t in scenario s if it is hardened

A variable that represents the fault state of line 
(ij) during time t in scenario s if it is not hard‐
ened

Benefits of ESSs from peak shaving and valley 
filling

Current of line (ij) during time t in scenario s

Active and reactive load curve values during 
time t

Reference values of active and reactive loads at 
node i

Active charging and discharging power of ESS 
at node i during time t in scenario s

Active and reactive power flows from node i to 
node j during time t in scenario s

Active and reactive power generated by distrib‐
uted generator (DG) connected to node i during 
time t in scenario s

Upper bounds of active and reactive power of 
DG connected to node i

Actual active and reactive loads at node i dur‐
ing time t in scenario s

Active and reactive load sheddings at node i 
during time t in scenario s

Reactive charging and discharging power of 

ESS at node i during time t in scenario s

Binary variables, which are equal to 1 if ESS 
is charging or discharging during time t in sce‐
nario s and 0 otherwise

A binary variable, which is equal to 1 if line 
(ij) is hardened and 0 otherwise

A binary variable, which is equal to 1 if line 
(ij) has an existing switch and 0 otherwise

A binary variable, which is equal to 1 if new 
line switch is added on line (ij) and 0 otherwise

A binary variable, which is equal to 1 if line 
(ij) has switch and 0 otherwise

A binary variable, which is equal to 1 if ESS is 
connected to node i and 0 otherwise

I. INTRODUCTION 

IN recent years, the frequent occurrence of extreme weath‐
er events has battered the power system, causing custom‐

ers to experience different degrees of power outages after 
damaging the power grid infrastructure, and resulting in 
enormous economic losses [1]. In 2017, the hurricane Irma 
led to a power outage of 6.7 million electricity customers 
that account for 67% of all state customers in Florida [2]. In 
February 2021, a large-scale blackout occurred in Texas for 
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four days due to the influence of a snowstorm [3]. Unfortu‐
nately, the frequency and intensity of extreme weather 
events such as floods, hurricanes, and forest fires are fore‐
casted to increase with the acceleration of climate change 
[4]. Most of the distribution networks are designed accord‐
ing to the meteorological conditions of a particular return pe‐
riod, i.e., 50 years, hence, they cannot withstand the damage 
caused by extreme weather events [5]. In order to effectively 
mitigate the impact of various extreme weather events, it is 
necessary to upgrade and update the distribution network 
considering random scenarios referring to different operation 
states of active distribution networks (ADNs) caused by me‐
teorological disaster events.

As the ADN is still vulnerable to natural disasters, ensur‐
ing the rapidity and effectiveness of fault restoration has be‐
come a research priority in the power industry [6]. After di‐
sastrous weather, the restoration time of ADNs depends on 
rapid and accurate assessment of system damage. At present, 
the ADN usually dispatches inspectors to assess the degree 
of damage and the necessary materials for repairing. If an 
ADN is not fully prepared and lacks situation awareness [7], 
the restoration process will be seriously delayed, and custom‐
ers will experience long-term power outages, which will 
cause national economic loss. As a result, researchers in aca‐
demia and industry have jointly proposed the concept of re‐
silience, that is, the ability of ADNs to prevent and adapt to 
environmental changes, withstand disturbances (including de‐
liberate attacks, accidents, and natural disasters), and quick 
restoration [8]. In addition, resilience enhancement can be 
achieved by minimizing outage duration and maximizing re‐
stored load [9]. The resilience enhancement goals also can 
be fulfilled through upgrading and operating measures. For 
example, hardening line makes it less likely to be damaged 
in disaster. Upgrading automatic switches can quickly redis‐
tribute power to customers and shorten their outage time by 
network reconfiguration [10]. Energy storage system (ESS) 
provides a wide range of applications and additional opera‐
tional flexibility for ADNs to enhance recovery capability in 
emergency situations. In general, enhancing the resilience of 
ADNs can be divided into 4 stages: planning stage (PLS), 
preventive response stage (PRS), emergency response stage 
(ERS), and restoration stage (RTS) [11]. This paper focuses 
on the two-stage programming model for the allocation of 
emergency resources.

In the PLS, taking precautionary measures such as harden‐
ing lines [12], managing vegetation [13], and deploying dis‐
tributed power sources [14] for critical power assets can im‐
prove the robustness of distribution networks and the avail‐
ability of emergency resources. In the ERS, loads can be re‐
stored by the real-time responsive strategies based on the 
available resources. Reference [15] presents a new three-
stage resilience-driven framework for hardening power distri‐
bution systems to determine the capacity and location of the 
ESS for enhancing resilience against earthquakes. Reference 
[16] proposes a two-stage stochastic mixed-integer linear pro‐
gramming (SMILP) to optimize the preparation and resource 
allocation process for upcoming extreme weather events, 
which leads to faster and more efficient post-event restora‐
tion. However, most of these studies focus on planning for 

extreme scenarios only, lacking a comprehensive consider‐
ation of multiple scenarios. And the conventional model [17] 
neglects the issue of multi-stage problem and does not re‐
flect the temporal feature of ESSs in the PLS. Due to energy 
storage that has strong time coupling constraints and is more 
complex to model, single-stage planning, which lacks an in‐
tegrated layout of long-term investment strategies, can easily 
lead to over-investment and idle assets if these factors are 
not taken into account.

In contrast, the two-stage programming divides the plan‐
ning cycle into different stages and solves the optimal solu‐
tion of the model according to the growth of different fac‐
tors during the planning cycle. For the two-stage program‐
ming problem of enhancing the resilience of ADNs, more un‐
certainties in distribution lines and loads caused by disas‐
trous weather events need to be considered. Considering the 
shorter time scale of the emergency support process com‐
pared with the restoration process, uncertainties in the opera‐
tion state of lines, the load level and the initial charge state 
of ESSs can all have impacts on the outcome of dispatch im‐
plementation. Robust optimization and stochastic program‐
ming models are widely used. In terms of robust optimiza‐
tion, [18] proposes to utilize the measures of hardening dis‐
tribution lines and allocating energy storage to enhance the 
resilience of distribution networks against natural disasters. 
Reference [13] establishes a three-level robust optimization 
model considering the upgrading tower, managing vegeta‐
tions, and their combination. The calculation burdens of the 
models in the above literature are relatively small, but the 
optimization results are too conservative due to the small 
probability of the worst case. In addition, important mea‐
sures for strengthening grid such as automatic switches and 
emergency power supply are ignored. In terms of stochastic 
programming, a two-stage stochastic mixed-integer model is 
established and solved by utilizing the progressive hedging 
algorithm (PHA) considering hardening distribution line, up‐
grading automatic switch, and deploying distributed genera‐
tor (DG) in [12]. However, the number of variables involved 
in the above model leads to a more complex model, and the 
scale of DG is not considered.

At present, the planning problem with a single stage or a 
certain scenario is generally a small-scale stochastic mixed-
integer programming (SMIP) model, which can be directly 
solved by optimization solvers such as Yalmip or Gurobi. 
The multi-stage planning problem is generally a large-scale 
SMIP model, which is difficult to directly call the solver to 
calculate. Robust optimization is generally solved by Bend‐
ers decomposition algorithm or column-and-constraint gener‐
ation (C&CG) algorithm. The primal problem is decomposed 
into the main problem and the sub-problem to obtain the op‐
timal solution of the primal problem alternately [19]. The 
two-stage stochastic programming model has discrete deci‐
sion variables in the first and second stages, which cannot 
be solved by the Benders decomposition algorithm. The 
PHA is usually used to solve the SMIP problem. The primal 
problem is divided into sub-problems based on the scenario, 
and the sub-problems are solved in parallel, thus reducing 
the computational difficulty. PHA can be adopted as a heuris‐
tic to ensure the convergence and efficiency of the model in 
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the presence of discrete decision variables [20].
Therefore, in order to enhance the resilience of ADNs, 

this paper establishes a two-stage SMIP model to minimize 
the upgrading and operation cost of ADNs by considering 
random scenarios referring to different operation states of 
ADNs. In the first stage, the system planner makes invest‐
ment decisions: hardening existing distribution lines, upgrad‐
ing automatic switches, and deploying energy storage re‐
sources. The second stage is to evaluate the operation cost 
of ADNs to ensure the supply of loads after network recon‐
figuration during meteorological disasters and the optimal 
utilization of ESSs in different scenarios. Besides, a new 
modeling method is proposed to address the uncertainty of 
operation state of distribution lines. Based on historical sta‐
tistics, multiple representative scenarios are generated by Lat‐
in hypercube sampling, and the similar scenarios are reduced 
by adopting a K-means clustering method. The PHA is used 
to solve the proposed model. The contributions of this paper 
are outlined below.

1) The best access point of the ESS in different operation 
scenarios are comprehensively considered to exert its value 
as much as possible by dividing the operation scenarios of 
ADNs into normal, severe, and extreme weather conditions. 
In normal scenarios, the ESS is used to improve the opera‐
tion economics of ADNs. During the fault recovery period, 
the ESS is considered as the emergency power supply to the 
critical loads through network reconfiguration; and in the 
PLS, the safety support of ESSs is played combining with 
the results of the risk assessment of ADNs. Compared with 
existing planning models that only consider extreme scenari‐
os, the proposed model not only enhances the resilience of 
ADNs during meteorological disasters, but also balances 
safety and economy.

2) In the proposed model, a modelling method for describ‐
ing the uncertainty of the operation state of distribution lines 
is constructed to handle the logical constraints among vari‐
ables such as the initial state of distribution lines, the exis‐
tence of automatic switches on the line, the state of switch‐
es, and the fault state of lines in a certain scenario. The pro‐
posed method reduces the multivariate coupled problem of 
operation state of distribution lines to a linear model in a ca‐
nonical representation, which makes the proposed model sim‐
pler and easier to solve.

The remainder of this paper is organized as follows. Sec‐
tion II classifies the operation scenarios of ADNs. Section 
III describes the two-stage SMIP model. Section IV gener‐
ates the scenarios of ADNs and introduces the solution algo‐
rithm of the proposed model. Section V utilizes the modified 
IEEE 33-node test system to verify the proposed model. Fi‐
nally, Section VI concludes this paper.

II. OPERATION SCENARIOS OF ADNS 

For the operation analysis of ADNs, the short-term risk 
level in the future is often predicted by obtaining the exter‐
nal operation environment information and combining with 
the operation parameters of lines, which is called predictive 
evaluation. For the planning analysis, the estimated value 
can be obtained after the data from long-term operation re‐
cords are analyzed, which is called statistical analysis. In 

this paper, the ESS is applied to the planning model to im‐
prove the flexibility of the ADN, and historical statistical da‐
ta are applied to the typical operation scenarios of the ADN 
to simplify the failure rate model [21].

The main causes for the failure of ADNs are insulation 
damage, external force damage, and natural disasters. 
Among natural disasters, mountain fires, thunderstorms, and 
typhoon have greater impacts on ADNs. Therefore, this pa‐
per divides the operation scenarios of ADNs into normal, se‐
vere, and extreme weather conditions. ADN is in a normal 
operation state under normal weather condition, and in a 
fault operation state in response to meteorological disasters 
under severe and extreme weather conditions. Different oper‐
ation states of ADNs throughout the year for comprehensive 
planning are considered in this paper.

A. Participation of ESSs Under Normal Weather Condition

The energy storage technologies currently used in power 
grids can be divided into four categories: electrical energy 
storage, mechanical energy storage, chemical energy storage, 
and thermal energy storage [22]. Battery energy storage, 
which has the advantages of high efficiency, fast response 
speed, and low maintenance cost, has become one of the 
most promising energy storage technologies [23]. The major 
drawback of other energy storage technologies lies in the 
scarcity of available sites and low energy density. So, the de‐
mand for battery energy storage has gradually increased in 
the market due to the advances in battery manufacturing 
technology and improvements in battery life and cost issues 
[24]. Therefore, this paper chooses battery energy storage as 
the research object.

ESS can effectively realize the conversion, storage, and 
utilization of electrical energy, and it is a kind of critical 
means to improve the flexibility, economy, and safety of the 
power grid [25]. By absorbing and injecting electrical energy 
into ADNs, the ESS has the advantages of regulating volt‐
age, peak shaving and valley filling, and decreasing network 
loss. The mismatch between the load demand and the real-
time balance demand of power generation and load is allevi‐
ated. By reasonably adjusting the charging/discharging opera‐
tion mode of the ESS, it can effectively compensate for the 
mismatch between distributed generation output and load de‐
mand of ADNs, and alleviate the real-time balance demand 
between generation and load.

To simplify the model, this paper mainly considers the 
benefits of the ESS from peak shaving and valley filling un‐
der normal weather condition:

F ESS
arb =∑

tÎ T

ηt∑
iÎN

(P dis
ist -P ch

ist )Dt (1)

B. Participation of ESSs Under Severe and Extreme Weather 
Conditions

Under meteorological disasters, the resistance and recov‐
ery process of the ADN [26], as shown in Fig. 1, can be di‐
vided into the following stages. The first stage (0-te) repre‐
sents resilient state before the disaster. The second stage (te-
tpe) represents event progress, during which the ADN is af‐
fected by extreme disasters and large-scale power outages 
are gradually caused. The third stage (tpe-tr) represents post-
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event degraded state, and the ADN is in the preparation state 
after the disaster occurs and before the ADN takes recovery 
measures. In this stage, the ADN may be completely out of 
power. It may also rely on itself to maintain power supply to 
part of loads, and the ADN is ready for emergency recovery. 
The fourth stage (tr-tpr) represents restorative state, which is 
a stage for the system to take emergency measures to restore 
critical loads first. In this stage, according to the importance 
of load, various resources are coordinated to restore the pow‐
er supply to the loads, so as to reduce the impact on society. 
The fifth stage (tpr-tir) represents infrastructure recovery state. 
In this stage, according to the restoration plan, the damaged 
power distribution equipment is gradually repaired, the infra‐
structure restoration is carried out, and finally the complete 
recovery of the load is realized.

There are two special problems of ESS planning when 
considering the meteorological disasters. First, compared 
with distributed power generation, ESS planning has strong 
time coupling constraints, so its modeling is more complex. 
Second, the limited investment budget will limit the exten‐
sive allocation of ESSs. An ESS can provide a short-term 
emergency response to pick up the load and reduce econom‐
ic losses during the fourth stage. After an ADN enters infra‐
structure recovery, the grid maintenance personnel will take 
recovery measures such as transferring supply, and ESSs 
may not be able to continue discharging due to its own ca‐
pacity limitations, so this paper only considers the participa‐
tion of ESSs in the emergency response state.

Aiming at responsiveness and catastrophic severity in dif‐
ferent states during the resilience recovery process, the evalu‐
ation index, i.e., load loss rate (LLR) [8], is employed to re‐
flect the resilience of distribution networks, as shown in (2). 
It is the integral of the declining part of the resilience index 
and the time axis between te and tpr. In other words, the 
greater the ability of ADNs to recover quickly after a disas‐
ter, the greater the resilience and the smaller the LLR.

LLR = ∫
te

tpr∑
iÎN

cd
i P c

ist dt »∑
tÎ T
∑
iÎN

cd
i P c

istDt (2)

III. TWO-STAGE SIMP MODEL 

A. Objective Function

The objective of this paper is to improve the benefits of 

ESSs in terms of peak shaving and valley filling and to re‐
duce the cost following two aspects: ① investment cost of 
hardening distribution lines, upgrading automatic switches, 
and deploying ESSs; and ② the cost of load shedding in re‐
sponse to extreme disasters during the emergency period.

Correspondingly, the objective function of the planning 
model (in unit of year) is as follows:

min{Ch +Csw +CESS +Φ(s)} (3)

C h = ∑
(ij)ÎL

ch
ij x

h
ij (4)

C sw = ∑
(ij)Î SW

csw
ij xsw1

ij (5)

The cost of ESSs includes equipment deployment cost 
C ESS

eq  and annual operation maintenance cost C ESS
om , as shown 

in (6)-(8). The equipment deployment cost of ESSs is related 
to the configured capacity and the maximum discharge power.

C ESS = (1 - γESS )C ESS
eq +C ESS

om (6)

C ESS
eq =∑

iÎN

(cP P ESS
eq + cE E ESS

eq )xESS
i (7)

C ESS
om =∑

iÎN

com P ESS
eq xESS

i (8)

Since the operation conditions of ADNs are divided into 
different scenarios, the annual operation cost of ADNs is the 
lowest sum of the operation cost C D (s) in different scenari‐
os, as shown in (9). The operation cost of ADNs in scenario 
s is the cost of load shedding minus the benefits of ESSs in 
terms of peak shaving and valley filling in (10).

Φ(s)=min
ì
í
î

ü
ý
þ

ωs∑
sÎ S

p(s)CD (s) (9)

CD (s)=∑
tÎ T
∑
iÎN

cd
i P c

istDt -F ESS
arb (10)

B. Constraints

1)　PLS Constraints

xsw0

ij + xsw1

ij = xsw
ij (11)

∑
iÎN

xESS
i £N ESS

(12)

2)　Line Fault State Constraints
Based on the failure rate of historical statistics, the fault 

state of distribution lines in a scenario is obtained by sam‐
pling. It is worth noting that hardening existing distribution 
lines can only reduce the failure rate, but cannot fully ensure 
normal operation. To manage the risk in a more realistic 
way, when a line is hardened, the failure rate is assumed to 
be 1/10 of that before the hardening. The uncertainty of line 
fault state is decoupled by two independent parameters, 
which can be generated in advance to represent the line fault 
state weather it is hardened.

ηijst = (1 - xh
ij )ξ

0
ijst + xh

ijξ
1
ijst (13)

3)　Logic Constraints
At present, most ADNs are not fully automated, that is, 

not all lines have automatic switches. In addition, the tie line 
of ADNs does not participate in the normal operation. The 
initial state of the distribution line, whether there is an auto‐

0 te tpe tr tpr tir t

R

Resilient state

Event progress

Restorative

 state

Infrastructure

 recovery state

R0

Rpe

Post-event 

degraded state

Fig. 1.　Resistance and recovery process of ADN.
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matic switch on the line, and the fault state of the line in a 
certain scenario will affect the final operation state of the 
line, which makes it difficult to model the actual state of the 
line. In order to solve this problem, this paper establishes 
the logical relationship between variables, as shown in the 
Table I, and formulates the logical constraints, as shown in 
(14)-(19).

φijst £ xsw
ij (14)

φijst + ηijst £ 1 (15)

αijst - xsw
ij M £(1 - ηijst )μ ijst0

£ αijst + xsw
ij M (16)

αijst - (1 - xsw
ij )M £ φijst £ αijst + (1 - xsw

ij )M (17)

0 £P c
ist £P d

ist (18)

0 £Qc
ist £Qd

ist (19)

If a fault occurs on a normal line, the line will be out of 
service. If no fault occurs, the actual running state of the 
line is determined by the state of the line switch, i.e., if the 
switch is closed, the line is in operation, and if the switch is 
open, the line is out of service. If there is no switch on a 
normal line, the line is out of service when a fault occurs. 
The above results correspond to all cases (μijst0

= 1) in Table 

I. Lines with an initial state of non-operational (μijst0
= 0) 

have the same logical variables as normal lines in most cas‐
es. It is worth noting that a standby line without an automat‐
ic switch will not be in operation state even if no fault oc‐
curs, i. e., it cannot participate in emergency support. Con‐
straint (14) represents that a line with an automatic switch is 
the only way to discuss whether the switch is closed or not. 
Constraint (15) represents that once a fault occurs on a line, 
the line with an automatic switch must be cut off. Constraint 
(16) represents that a normal line that does not have an auto‐
matic switch determines the final operation state by the fault 
state. Constraint (17) represents that the final operation state 
of a line with automatic switch is determined by the close or 
open state of the switch. Constraints (18) and (19) limit the 
upper and lower load cut limits, respectively.
4)　Power Balance Constraints∑

"( jk)ÎL

Pjkst - ∑
"(ij)ÎL

(Pijst - I 2
ijstrij )=

P g
jst +P dis

jst -P ch
jst - (P d

jst -P c
jst ) (20)

∑
"( jk)ÎL

Qjkst - ∑
"(ij)ÎL

(Qijst - I 2
ijst xij )=

Qg
jst +Qdis

jst -Qch
jst - (Qd

jst -Qc
jst ) (21)

5)　Transmission Capacity Constraints
P 2

ijst +Q2
ijst £ αijstS

max
ijst (22)

Since (22) is a nonlinear constraint, the linearization meth‐
od [27] can be expressed as follows:

-αijstS
max
ijst £Pijst £ αijstS

max
ijst (23)

-αijstS
max
ijst £Qijst £ αijstS

max
ijst (24)

- 2 αijstS
max
ijst £Pijst +Qijst £ 2 αijstS

max
ijst (25)

- 2 αijstS
max
ijst £Pijst -Qijst £ 2 αijstS

max
ijst (26)

6)　Voltage Constraints
vist - vjst ³ 2(rij Pijst + xijQijst )- (r 2

ij + x2
ij )I

2
ijst + (αijst - 1)M

(27)

vist - vjst £ 2(rij Pijst + xijQijst )- (r 2
ij + x2

ij )I
2
ijst + (1 - αijst )M

(28)

vmin
i £ vist £ vmax

i (29)

7)　Reconfiguration Constraints∑
( jir )ÎL

f k
jirst

- ∑
(irj)ÎL

f k
ir jst =-1    "kÎN\ir (30)

∑
( jk)ÎL

f k
jkst - ∑

(kj)ÎL

f k
kjst = 1    "kÎN\ir (31)

∑
( ji)ÎL

f k
jist - ∑

(ij)ÎL

f k
ijst = 0    "kÎN\ir"iÎN\{irk} (32)

ì
í
î

ïï

ïï

0 £ f k
ijst £ λijst

0 £ f k
jist £ λjist

    "kÎN\ir (33)

∑
"(ij)ÎL

(λijst + λjist )=N - 1 (34)

λijst + λjist = βijst (35)

αijst £ βijst (36)

Constraints (30) - (36) always ensure the radiality of the 
ADN, and a specific explanation can be found in [28].
8)　Operation Constraints of DG

ì
í
î

ïï
ïï

0 £P g
ist £P gmax

i

0 £Qg
ist £Qgmax

i

(37)

9)　Operation Constraints of ESSs
Constraint (38) limits the inability of ESSs to be charged 

and discharged simultaneously. Constraints (39) and (40) lim‐
it the charging and discharging rates of ESSs, respectively. 
Constraints (41) and (42) are the charging state constraints 
of ESSs. Constraints (43) and (44) are the reactive power 
constraints of ESSs. Constraint (45) limits the initial charg‐
ing state of ESSs.

uESSch
ist + uESSdis

ist £ xESS
i (38)

0 £P ch
ist £ uESSch

ist P ESS
eq (39)

0 £P dis
ist £ uESSdis

ist P ESS
eq (40)

E ESS
ist =E ESS

ist - 1 + βch P ch
ist -P dis

ist /βdis (41)

TABLE I
LOGICAL CONSTRAINTS BETWEEN VARIABLES

μijst0

1

0

xsw
ij

1

0

1

0

ηijst

1

0

0

1

0

1

0

0

1

0

φijst

0

0

1

0

0

1

αijst

0

0

1

0

1

0

0

1

0

0
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SOCmin ×E
ESS
eq xESS

i £E ESS
ist £ SOCmax ×E

ESS
eq xESS

i (42)

-θP ch
ist £Qch

ist £ θP ch
ist (43)

-θP dis
ist £Qdis

ist £ θP dis
ist (44)

E ESS
ist0

= SOCt0
×E ESS

eq xESS
i (45)

SOCt0
 is 0.5 under normal weather condition. It is as‐

sumed that the SOC of ESSs can be adjusted before a disas‐
ter occurs.
10)　Other Constraints

εist = 1    "iÎ{NrNg } (46)

ρ ist ³
1

N ESS + 1
∑
iÎN

xESS
i     "iÎN\{NrNg } (47)

ρ ist £∑
iÎN

xESS
i     "iÎN\{NrNg } (48)

σist ³
1
M (∑(ij)ÎL

εjst αijst + ∑
( ji)ÎL

εjst αijst )     "iÎN\{NrNg }

(49)

σist £ ∑
(ij)ÎL

εjst αijst + ∑
( ji)ÎL

εjst αijst    "iÎN\{NrNg } (50)

ì

í

î

ïïïï

ïïïï

εit ³ ρ it

εit ³ σit

εit £ ρ it + σit

    "iÎN\{NrNg } (51)

Constraints (46)-(51) are energized constraints, and a spe‐
cific explanation can be found in [29].

IV. SCENARIO GENERATION OF ADNS AND SOLUTION 
ALGORITHM 

Due to the uncertainty of faulty lines and load state, the 
SMIP model proposed in this paper is an optimization prob‐
lem that contains all random scenarios. To ensure a balance 
between computational accuracy and efficiency, this paper 
first obtains fault probabilities of lines based on historical 
statistics, then adopts Latin hypercube sampling to generate 
representative operation scenarios, and finally uses K-means 
clustering to reduce the scenarios.

A. Scenario Generation

In this paper, a large number of scenarios of ADNs are 
generated by sampling. The scenario generation considers 
two uncertain factors.
1)　Uncertainty of Load State

Based on historical statistical load data, the load data of 
typical days are selected as the base load profiles. Assume 
that all nodes adopt the same typical load curve, which can 
be expressed as follows:

P d
ist = τ i (s)M

P (t)Pi (52)

Qd
ist = τ i (s)M

Q (t)Qi (53)

2)　Line Failure Rate
The failure rates of ADNs are determined based on time 

and weather-dependent fault statistics [30]. Assuming that 
there are m lines of a certain voltage level, the calculation 
method of the distribution line failure rate [21] is shown 

in (54).

λij =
Nij

Lijnij
(54)

The calculation method of typical daily failure rate under 
different weather conditions is as follows:

λaxij =
365
Tax

Naxij

Lij
(55)

After calculating λaxij, the fault state of the line is ob‐
tained according to the sampling result. That is, if a random 
number between 0 and 1, i. e., U(01)£ λaxij,　ξ

0
ijst = 1, other‐

wise,　ξ 0
ijst = 0; if U(01)£ 0.1λaxij, ξ

1
ijst = 1, otherwise, ξ 1

ijst = 0.

B. Scenario Reduction

Among the scenarios generated by sampling, the number 
of some scenarios is small while the number of other scenari‐
os is large. First, the failure rate of lines is low under nor‐
mal weather condition, so most of normal scenarios are ex‐
actly the same. Second, the fault locations in severe and ex‐
treme scenarios may be the same, and even if the fault loca‐
tions are different, the unsupplied loads obtained by the sec‐
ond-stage optimization are close to each other. Therefore, this 
paper adopts K-means clustering to reduce the scenarios [31].

The unsupplied load DC D
i (s) at node i can be obtained by 

solving the two-stage problem in scenario s, as shown in 
(56). Then, the unsupplied load vector DC D (s) can be ex‐
pressed as (57).

DC D
i (s)=∑

tÎ T

P c
istDt (56)

DC D (s)=[DC D
1 (s) DC D

2 (s)  DC D
N (s)] (57)

K-means clustering aims to partition the NS-dimensional 
vector [DC D (1)DC D (2)...DC D (NS )] into k (k<NS) sets 
ψ1ψ2...ψk so as to minimize the within-cluster sum of dis‐
tance σ(k):

σ(k)= arg min∑
i = 1

k ∑
DCÎψi

 DC - μi

2
= arg min∑

i = 1

k

||ψi ×Var(ψi )

 (58)

Var(×) is the function of calculating variance. After the 
clustering, if a set ψi contains multiple scenarios, one scenar‐
io among ψi can be randomly selected. The probability of 
this representative scenario p̂(ω) is the sum of all scenarios 
within this cluster:

p̂(ω)=∑
sÎ φi

p(s) (59)

p(s)= 1/NS (60)

σ(k0 )- σ(k0 + 5)< 0.2(σ(k0 - 5)- σ(k0 )) (61)

The value of k is 20-40 with a step of 5. When k satisfies 
(61), k0 be regarded as a proper value because it indicates 
that σ(k) begins to saturate. Eventually, the reduced k scenar‐
ios are fed back into the SMIP problem.

C. PHA

The two-stage SMIP model established in this paper can 
be expressed as follows:
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min
x

ì
í
î
cT x +∑

sÎ S

p(s)( f T
s ys )

ü
ý
þ

(62)

s.t.

(xys )ÎQs "sÎS (63)

x implicitly implements the non-anticipative constraints 
that avoid allowing decisions to depend on the scenario. By 
introducing copies of x, the block-angular structure leads to 
the so-called scenario formulation of the SMIP model:

min
x
∑
sÎ S

p(s)(cT x + f T
s ys ) (64)

s.t.

ì
í
î

(xys )ÎQs

x(1)= x(2)= ... = x(Ns )
    "sÎ S (65)

x(1)= x(2)= ... = x(Ns ) represents the non-anticipative con‐
straint, which guarantees the first-stage decision vector x in‐
dependent of scenarios. Finally, this scenario formulation 
((64) and (65)) decomposes the large-scale SMIP problem in‐
to scenario subproblems with the non-anticipative con‐
straints. The PHA is used to solve the large-scale SMIP prob‐
lem due to the uncertainty of multi-scenario. The steps are 
as follows.

Step 1: k = 0.
Step 2: for all s ∈ S, x (k)

s := arg min
xys

(cT x+ f T
s ys ):(xys )ÎQs.

Step 3: x̄(k)=∑
sÎ S

p(s)x (k)
s .

Step 4: for all s ∈ S, w (k)
s = ρ(x (k)

s - x̄(k) ).
Step 5: k = k + 1.
Step 6: for all s ∈ S , x (k)

s = arg min
xys

(cT x +w (k - 1)
s x + ρ/(2||x -

x̄(k - 1)||2 )+ f T
s ys ): (xys )ÎQs. 

Step 7: x̄(k)=∑
sÎ S

p(s)x (k)
s .

Step 8: for all s ∈ S, w (k)
s =w (k - 1)

s + ρ(x (k)
s - x̄(k) ).

Step 9: g(k)=∑
sÎ S

p(s)||x (k)
s - x̄(k)||.

Step 10: if g(k)< ϵ, where ϵ is the termination threshold, go 
to Step 5; otherwise, terminate.

The size of ρ in the PHA directly affects the convergence 
and solution speed of the model [32]. In this paper, ρ is set 
to be proportional to the unit cost of the decision vari‐
able [33].

V. CASE STUDY 

The test is conducted based on the modified IEEE 33-
node test system to verify the validity of the proposed mod‐
el, using MATLAB R2018b with YALMIP toolbox on a com‐
puter with an Intel Core i5-8400 processor and 16 GB of 
memory. The SMIP model is solved by Gurobi 9.5.1. The 
mixed-integer programming (MIP) gap is set to be 1%. The 
single time span is set to be 15 min.

A. Modified IEEE 33-node Test System

The modified IEEE 33-node test system is shown in Fig. 
2. The system reference capacity is 10 MVA, and the refer‐
ence voltage is 12.66 kV. The allowable range of node volt‐
age is 0.9 to 1.1 p.u.. A DG with an output range of 0 to 0.5 

MW is connected to node 2. It is assumed that the life time 
of the three measures (hardening distribution lines, upgrad‐
ing automatic switches, and deploying ESSs) is 10 years. 
Without considering interest rates, the annual capital cost of 
purchasing and deploying each measure is 1/10 of the initial 
investment cost. The span of two consecutive poles is 50 m 
[13]. The basic load shedding cost is 100 ¥/kWh, and the 
weight is generated by a random number. The critical load 
shedding penalty cost is much higher, which is set to be 
1000 ¥/kWh [34]. The maximum rated power and capacity 
of the ESS deployed are 300 kW and 600 kWh, respectively. 
The maximum number of ESSs allowed to be deployed in 
ADNs is 6, the discharge efficiency is 0.9, and the range of 
SOC is 0.05 to 0.95. The recovery factor of ESSs is 0.2. 
Other parameters are shown in Table II.

B. Experiment Results

1)　Scenario Generation and Reduction
It is assumed that there are 300 typical days of normal 

weather condition, 10 occurrences of severe weather condi‐
tion, and 5 occurrences of extreme weather condition 
throughout the year. Each occurrence of the severe and ex‐
treme weather conditions may last for 1 to 3 days. Since this 
paper discusses the emergency response period under disas‐
trous weather conditions, a typical day is considered to repre‐
sent the severe and extreme weather conditions, respectively. 
Besides, the emergency period is assumed as 2 hours during 
a fault.

The load curves of each typical day under different weath‐
er conditions are shown in Fig. 3, and the time-of-use tariff 
for customers is shown in Table III. We use thunderstorm 
weather to represent severe weather and use typhoon to rep‐
resent extreme weather. The failure rate in thunderstorm 
weather is shown in Appendix A Table AI, which is from the 
annual statistics [35] of a certain area in southern China. 
The failure rates of distribution lines in typhoon weather are 
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Potential switch location

DG

Critical load;

Fig. 2.　Modified IEEE 33-node test system.

TABLE II
POSITIONS AND COST OF DIFFERENT MEASURES

Measure

Hardening lines

Upgrading automatic 
switches

Deploying ESSs

Candidate position

All line sections

Pre-selected lines

All nodes

Value

ch
ij = ¥42000

csw
ij = ¥106000

cP = 800  ¥/kW, cE =
1005  ¥/kWh, cop = 64  ¥/kW
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obtained from the statistical value of a certain region [36]. 
After obtaining the failure rate of each distribution line, the 
fault states of the lines are determined by Latin hypercube 
sampling.

Since the number of scenarios for solving the proposed 
SMIP model should be at least 50 [13], this paper generates 
50 random scenarios for normal weather, severe weather, 
and extreme weather, respectively. The number of faulty 
lines in different scenarios is shown in Table IV.

TABLE IV
NUMBER OF FAULTY LINES IN DIFFERENT SCENARIOS

Normal weather

Number of 
scenarios

32

18

Number 
of faulty 

lines

0

1

Severe weather

Number of 
scenarios

8

10

14

13

4

1

Number 
of faulty 

lines

2

3

4

5

6

7

Extreme weather

Number of 
scenarios

7

9

13

11

9

3

Number 
of faulty 

lines

7

8

9

10

11

12

As failure rates of distribution lines are low under normal 
weather condition, there is no faulty line in most scenarios. 
Even if a fault occurs on the line, the ADN could operate 
normally by operating the automatic switch to disconnect the 
fault and resupply the load, so 50 scenarios under normal 
weather condition are simplified into one scenario, i. e., the 

normal operation of the ADN in a typical day (24 hours). 
However, the number of faulty lines is large under severe 
and extreme weather conditions, and the ADN cannot solve 
the load shedding problem by itself, so ESSs can be consid‐
ered for emergency support. But considering the capacity 
limitation of ESSs, this paper only considers the emergency 
response period before grid maintenance.

After 50 failure scenarios for severe and extreme weather 
conditions are clustered, respectively, the sensitivity of with‐
in-cluster sum of distance σ(k) for different distances k is 
shown in Fig. 4. Then, the numbers of representative failure 
scenarios of severe and extreme weather conditions are 25 
and 30, respectively.

2)　Planning Result
The penalty factor ρ of PHA is set to be 10000, being 

slightly smaller than csw
ij . After 87 iterations, the planning re‐

sults of the proposed method are successfully obtained, as 
shown in Table V and Fig. 5. 

The results show that the first measure involves an invest‐
ment cost of ¥840000 to harden distribution lines L1-2, L2-3, 
L4-5, L7-8, L16-17, L2-19, L19-20, L3-23, L23-24, and L24-25; the second 
measure involves an investment cost of ¥42400 to deploy au‐

TABLE V
PLANNING RESULTS OF PROPOSED METHOD

Cost (¥)

Hardening 
lines

840000

Upgrading automatic 
switches

42400

Deploying 
ESSs

519840

Cost of load 
shedding (¥)

205977

Benefit of 
ESSs (¥)

1092711

Hardening line; Optimal switch location; Potential switch location
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Fig. 5.　Optimal results of proposed method.
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Fig. 4.　Sensitivity of within-cluster sum of distance.
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Fig. 3.　 Typical load curves of each typical day under different weather 
conditions.

TABLE III
TIME-OF-USE TARIFF FOR CUSTOMERS

Session

1

2

3

Time

00:00-08:00

08:00-14:00

17:00-19:00

22:00-24:00

14:00-17:00

19:00-22:00

Tariff (¥/kWh)

0.3377

0.6648

1.0900
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tomatic switches on L9-15, L12-22, L18-33, and L25-29; and the 
third measure involves an investment cost of ¥519840 to de‐
ploy ESSs at nodes 4, 7, 13, 18, 31, and 32. Over the course 
of a year, the third measure benefits ¥1092711 through peak 
shaving and valley filling under the normal weather condi‐
tion. Due to disastrous weather conditions, the number of 
faulty lines is higher, so even though the investment cost is 
higher, the emergency supply of load needs to be picked up 
as much as possible after the lines are hardened and automat‐
ic switches are upgraded. After the three measures are 
planned, the cost of load shedding for the year is ¥205977.

Figure 6 shows the planning results of structures involv‐
ing reconfiguration during the failure period for scenario-9 
under severe weather condition and scenario-16 under ex‐
treme weather condition.

In scenario-9, L2-3 and L19-20 are no longer faulty after line 
hardening, only L13-14, L27-28, and L29-30 are faulty, and the au‐
tomatic switches on lines L25-29, L9-15, and L18-33 have been up‐
graded and are able to close quickly to participate in the op‐
eration of the distribution network, so that all loads are re‐
covered. In scenario-16, L2-19, L3-23, and L24-25 are no longer 
faulty after line hardening, but there are still 6 lines, i. e., 
L9-10, L14-15, L20-21, L26-27, L28-29, and L32-33, that are faulty and 
the automatic switches on L12-22 and L18-33 are closed and 
eventually most of the loads are recovered. It can be ob‐
served from Fig. 6 that three isolated islands of the ADN are 
formed. The load is recovered by ESS4 at nodes 15, 16, 17, 
18, and 33 in island 1, the load is recovered by ESS5 and 
ESS6 at nodes 29, 30, 31, and 32 in island 2, and the load is 
recovered by ESS3 at nodes 11, 13, 14, and 22 in island 3. 

The load at nodes 10, 12, and 21 is cut down. Due to the ca‐
pacity limitation of ESS3, it is no longer able to continually 
provide enough power supply at node 22. The SOC of ESS3 
in scenario-16 is shown in Fig. 7, which reflects the need 
for large-scale energy storage applications in a way to fur‐
ther improve the security of the distribution network. In sum‐
mary, the planning results can ensure the ADN operates nor‐
mally under most of severe weather conditions, and recover 
most of the loads under extreme weather conditions and 
avoid further economic losses.

3)　Comparison of Different Cases
Case 1: only hardening distribution lines and upgrading 

automatic switches without ESSs.
Case 2: hardening distribution lines and upgrading auto‐

matic switches responding to extreme weather condition, and 
deploying ESSs only at critical load nodes.

Case 3: using the proposed method, i.e., considering hard‐
ening distribution lines, upgrading automatic switches, and 
deploying ESSs.

The optimal planning results of the three cases are shown 
in Table VI. And the optimal planning results of Case 1 are 
shown in Fig. 8.
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Fig. 6.　Planning results of structures involving reconfiguration during fail‐
ure period for scenario-9 and scenario-16. (a) Scenario-9 under severe 
weather condition. (b) Scenario-16 under extreme weather condition.

TABLE VI
OPTIMAL PLANNING RESULTS OF DIFFERENT CASES

Case

1

2

3

Objective

2463256

794794

515506

Cost (¥)

Hardening
 lines

2184000

924000

840000

Upgrading 
automatic 
switches

53000

53000

42400

Deploying 
ESSs

433200

519840

Cost of 
load 

shedding 
(¥)

186256

295186

205977

Benefit 
of ESSs 

(¥)

910592

1092711
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Fig. 8.　Optimal planning results of Case 1.

15 30 45 60 75 90 105 120
Time (min)

0

20

40

60

80

100

S
O

C
 (

%
)

Fig. 7.　SOC of ESS3 in scenario-16.

103



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 1, January 2023

It can be observed that if only hardening distribution lines 
and upgrading automatic switches are considered, although 
the cost of load shedding can be effectively reduced and the 
resilience of the ADN can be enhanced, the overall invest‐
ment cost is larger without ESSs. Therefore, the planning re‐
sults are less economical. The optimal planning results of 
Case 2 are shown in Fig. 9. It can be observed that the plan‐
ning costs are still larger compared with the proposed meth‐
od. ESSs are deployed only at critical load nodes 7, 14, 18, 
30, and 31, which results in not only less benefit under the 
normal weather condition, but also more non-critical loads 
being cut down under disaster conditions, resulting in larger 
load cutting costs. With a comprehensive consideration of nor‐
mal, severe, and extreme weather conditions, reasonable plan‐
ning of hardening lines, upgrading automatic switches, and de‐
ploying ESSs can further reduce the cost of load shedding and 
ensure the benefit of ESSs while coordinating the safety of 
ADNs.

VI. CONCLUSION 

This paper proposes a novel two-stage SMIP model to en‐
hance the resilience of ADNs in view of the fact that the ex‐
isting distribution network is not able to withstand the dam‐
age caused by disastrous weather events. The first stage is to 
make decisions according to the measures of hardening exist‐
ing distribution lines, upgrading automatic switches, and de‐
ploying ESSs. The second stage is to evaluate the operation 
cost of ADNs considering the cost of load shedding due to 
disastrous weather and the benefits of ESSs under different 
weather conditions. Logical constraints are formulated 
among variables such as the initial state of distribution lines, 
the existence of automatic switches on the line, the state of 
switches, and the fault state of lines in a certain scenario to 
portray the actual operation state of the line. This paper di‐
vides the year-round operation environment of ADNs into 
normal, severe, and extreme weather conditions. As an im‐
portant resource to participate in enhancing the resilience of 
ADNs, the ESS can benefit from peak shaving and valley 
filling under the normal weather condition. Under severe and 
extreme weather conditions, the ESS can also ensure the con‐
tinuous power supply for loads as much as possible. Overall, 
the ESS can improve the economy and security of ADNs un‐
der normal, severe, and extreme weather conditions. This pa‐
per exploits the potential of the ESS in terms of safety sup‐
port, and balances its safety and economy to provide emer‐
gency power supply for loads. The modified IEEE 33-node 
test system is employed to verify the feasibility of the pro‐
posed method.

This paper proposes a new idea for ESS planning that can 
be applied to ADNs where disastrous weather occurs fre‐
quently to enhance the resilience. However, due to the limit‐
ed scale of ESS, other flexible resources of ADNs, such as 
microgrids and flexible loads, can be considered in the fu‐
ture research.
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