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Optimal Day-ahead Dynamic Pricing of 
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Resources Under Different Metering Mechanisms
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Abstract——Nowadays, grid-connected renewable energy re‐
sources have widespread applications in the electricity market. 
However, providing household consumers with photovoltaic 
(PV) systems requires bilateral interfaces to exchange energy 
and data. In addition, residential consumers’ contribution re‐
quires guaranteed privacy and secured data exchange. Day-
ahead dynamic pricing is one of the incentive-based demand re‐
sponse methods that has substantial effects on the integration of 
renewable energy resources with smart grids and social welfare. 
Different metering mechanisms of renewable energy resources 
such as feed-in tariffs, net metering, and net purchase and sale 
are important issues in power grid operation planning. In this 
paper, optimal condition decomposition method is used for day-
ahead dynamic pricing of grid-connected residential renewable 
energy resources under different metering mechanisms: feed-in-
tariffs, net metering, and net purchase and sale in conjunction 
with carbon emission taxes. According to the stochastic nature 
of consumers’ load and PV system products, uncertainties are 
considered in a two-stage decision-making process. The results 
demonstrate that the net metering with the satisfaction average 
of 68% for consumers and 32% for the investigated electric 
company leads to 28% total load reduction. For the case of net 
purchase and sale mechanism, a satisfaction average of 15% for 
consumers and 85% for the electric company results in 11% to‐
tal load reduction. In feed-in-tariff mechanism, in spite of in‐
creased social welfare, load reduction does not take place.

Index Terms——Dynamic pricing, renewable energy resources, 
feed-in-tariffs, net metering, net purchase and sale, stochastic 
decision-making.

NOMENCLATURE

A. Indices and Sets

h Index of time
I Index of residential consumers
k Index of iterations
s Index of scenarios

B. Parameters

α Utility function parameter
δ Energy storage cost
θ Charging/discharging rate of battery storage 

up to its maximum capacity
γ Maintenance and installation cost of energy 

storage
σ Average cost of renewable energy
πdemand Probability of each subscriber’s demand sce‐

nario
πPV Probability of PV generation scenario
πs Probability of each scenario
λ̄h Electric company’s electricity selling price in 

the first stage of decision-making
μ̄h PV generation price sold to electric company 

in the first stage of decision-making
-
λs hs Electric company’s electricity selling price in 

the second stage of decision-making
-
μs

hs
PV generation price sold to electric company 

in the second stage of decision-making
a, b, c Electric company’s cost function parameters
B0 Initial storage capacity
Bi

max The maximum storage capacity
------
Go ih PV power sold to power grid under net meter‐

ing and net purchase and sale in electric com‐
pany’s subproblem

-
go

ihs
PV power sold to power grid under net meter‐

ing and net purchase and sale in electric com‐
pany’s subproblem in each scenario

gihs Residential consumers’ PV generation in each 
scenario

ḡihs Households’ PV generation in electric compa‐
ny’s subproblem in each scenario

Gi
max The maximum capacity of PV systems

Ḡih Households’ deterministic PV generation val‐
ue in electric company’s subproblem

L̄h Electric company’s total deterministic gener‐
ated electricity in household customer’s sub‐
problem

l̄hs Electric company’s total stochastic generated 
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electricity in household customer’s subprob‐
lem

Lmax
h The maximum value of electric company’s 

electricity production
Lmin

h The minimum value of electric company’s 
electricity production

m, n Carbon emission parameters
Q̄h Electric company’s total deterministic pur‐

chased renewable energy in household cus‐
tomer’s subproblem

q̄hs Electric company’s total stochastic purchased 
renewable energy in household customer’s 
subproblem

R+max
ih The maximum storage charging capacity

R–max
ih The maximum storage discharging capacity

R̄+
ih R̄

-
ih Deterministic storage charging and discharg‐

ing rates in electric company’s subproblem
r̄ +

ihs Storage charging/discharging in electric com‐
pany rate in each scenario

Tmax The maximum value of electric company’s 
purchased renewable electricity

wih Subscriber’s preference
X min

ih The minimum value of customer’s electricity 
consumption

X max
ih The maximum value of customer’s electricity 

consumption
xihs Residential consumers’ demand in each sce‐

nario
X̄ih Households’ deterministic demand value in 

electric company’s subproblem
x̄ihs Households’ demand value in electric compa‐

ny’s subproblem in each scenario
x̄shed

ihs Load shedding in electric company’s subprob‐
lem in each scenario

C. Variables

C(Lh ) Electric company’s deterministic cost function

CS(lhs) Electric company’s stochastic cost function

DR(Yih) Cost of selling electricity to grid

DS(R±
ih ) Deterministic cost of electricity storage

DRs (yihs) Stochastic cost of selling electricity to power 
grid

DSr (r ±
ihs ) Stochastic cost of electricity storage

Gih Households’ deterministic PV generation
Giih Consumed PV power under net metering and 

net purchase and sale
Goih PV power sold to power grid under net meter‐

ing and net purchase and sale
goihs PV power sold to power grid under net meter‐

ing and net purchase and sale in each scenario
H(Qh ) Deterministic carbon emission trading func‐

tion
HS(qhs) Stochastic carbon emission trading function

Lh Electric company’s total deterministic gener‐
ated electricity

lhs Electric company’s total stochastic generated 
electricity

Qh Electric company’s total deterministic pur‐
chased renewable energy

qhs Electric company’s total stochastic purchased 
renewable energy

R±
ih Deterministic storage charging/discharging 

rate
r ±

ihs Storage charging/discharging rate in each sce‐
nario

U(Xih, wih) Deterministic utility function

Us (xihs, x
shed
ihs ) Stochastic utility function

Xih Households’ deterministic demand
x±

ihs The maximum stochastic demand changes
xshed

ihs Load shedding
Yih Households’ deterministic power sold to pow‐

er grid
yihs Households’ stochastic power sold to power 

grid

I. INTRODUCTION 

HOUSEHOLD subscribers make up an important por‐
tion of constant electricity consumers, and are electric 

companies’ priority to provide with electricity. Installing 
photovoltaic (PV) systems has some drawbacks, like high 
level of capital demand, uncertainties of load and PV genera‐
tion, and the lack of proper infrastructures for exchanging 
power and information in power grids, which discourages 
household customers from implementing the service. Howev‐
er, having less negative environmental impacts than tradition‐
al energy supplies may stimulate household customers to in‐
stall PV systems.

Dynamic pricing is one of the most effective methods of 
pricing electricity energy, which can be utilized to expand re‐
newable energy application. In this method, consumers’ be‐
havior and the amount of PV generation are taken into ac‐
count so as to help them decide whether to sell, store, or 
consume the renewable energy. In addition, the data security 
of each side of the renewable energy market is another is‐
sue, which has to be addressed under different pricing mech‐
anisms. As a result, presenting an efficient day-ahead dynam‐
ic pricing method can be an effective solution to expand the 
utilization of renewable energy resources in smart grids un‐
der various metering mechanisms.

The development of renewable energy resources requires 
policies and incentives, which were reviewed in [1]. These 
policies include private and public funds, various environ‐
mental taxes on carbon emission, and metering and pricing 
mechanisms [2]. Carbon emission taxes are policies that 
have direct effects on application of renewable energy re‐
sources in power grids [3], [4]. Reference [5] conducts an in‐
ternational review on the implementation of green electricity 
tariffs, considering data accuracy in different countries based 
on influential variables. Furthermore, introducing renewable 
energy resources to electricity market with various approach‐
es needs adaptation policies [6].
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Various government support schemes, e. g., feed-in-tariffs 
(FiTs), net metering, bidding process, are required to achieve 
the maximum penetration level of renewable energy resourc‐
es in the Mediterranean region [7], [8]. However, combining 
European residential customers’ electricity prices with fund‐
ing costs in FiTs leads to the development of net metering 
[9]. As a result, it is required to compare the gained benefits 
of each of these mechanisms with each other, which is done 
in [10]. In [10], the benefits of FiTs and incentivized self-
consumption schemes such as net metering and net billings 
are evaluated. Incentivized self-consumption schemes allow 
subscribers to consume generated renewable energy accord‐
ing to their monetary credits (net billing) and energy credits 
(net metering) [11], [12].

A comprehensive comparison among FiTs, net metering, 
and net purchase and sale is made in [13]. Electricity rates 
under each of these mechanisms are yielded based on cus‐
tomers’ utility and social profits. However, the details of 
pricing mechanisms and their functions are not examined 
[13]. The economic aspects of FiTs, net metering, and net 
billing schemes are surveyed according to the accurate data 
of residential subscribers in Australian power grid in [14]. 
The results of this study include profitability index, internal 
rate of investment return, net present value, and discounted 
payback period in each scheme. Although the sensitivity and 
uncertainty of consumption and PV generation data are ob‐
served in the study, the details of retail rates are not consid‐
ered [14].

Demand response programs are implemented to improve 
electricity consumption profile and enhance the reliability 
and efficiency of the process of providing electricity [15]. 
These programs are usually divided into two main catego‐
ries: incentive-based and price-based programs [16]. Dynam‐
ic pricing is a price-based program, in which electricity pric‐
es are provided based on grid constraints in a particular peri‐
od of time to derive demand responses [17], [18]. Reference 
[19] introduces an optimal dynamic pricing based on residen‐
tial household demand response, in which customers are di‐
vided into two groups with or without smart metering. How‐
ever, load uncertainty and data security are not considered in 
[19]. Reference [20] employs a customers’ behavior learning 
machine to support a retailer. This method has a sufficient 
capability to model customer’s behavior in the retail market, 
but the renewable energy participation and metering mecha‐
nisms are not studied [20].

Decomposition methods are suitable techniques for solv‐
ing multi-area problems to ensure the security and privacy 
of each area [21], [22]. Accordingly, optimal conditional de‐
composition (OCD) technique has widespread usage in the 
electric market problems [23], [24]. Reference [25] introduc‐
es a dynamic pricing scheme by using Lagrangian relaxation 
method to decompose the electric company and residential 
customers. Reference [26] proposes an optimal day-ahead dy‐
namic pricing for subscribers with renewable energy resourc‐
es. Despite the detailed attention to the major factors of cus‐
tomers’ behavior, utility profits, data security, and uncertain‐
ties of load and renewable energy are disregarded. In addi‐
tion, the consideration of various metering mechanisms is 

the other aspect of pricing renewable energy resources, 
which is not taken to account [26].

There are various available techniques to model the uncer‐
tainty of parameters in the process of decision-making [27], 
[28]. The uncertainties of prices and PV generations for an 
optimal bidding strategy of residential management systems 
are modeled by interval-based models [29]. Reference [30] 
models the uncertainties of wind power production and mar‐
ket price with fuzzy scenario-based approaches. Reference 
[31] uses Monte Carlo methodology to solve a European 
multi-area market equilibrium [31]. To generate various sce‐
narios for modeling the probabilistic nature of wind and PV 
generations, probability density functions are required in 
Monte Carlo methodology [32], [33]. Furthermore, a combi‐
nation of fuzzy C-mean and roulette-wheel/Monte Carlo sim‐
ulation is employed to model the electricity prices in scenar‐
io-based market [33]. In this regard, scenario reduction is re‐
quired to reduce the number of computations [34].

Incorporating residential solar power in power grids re‐
quires studying different aspects of the subject. Mathemati‐
cal modeling of customers’ behavior, electric company’s 
cost, and benefit functions is the initial step of the implemen‐
tation of PV generations in power grids, which is observed 
in some previous studies [25]. Pricing strategies of PV elec‐
tricity are of great importance depending on different meter‐
ing mechanisms, however, which is the subject of the limit‐
ed number of previous papers [13]. Moreover, despite the un‐
certain nature of PV power and customers’ load, a few sur‐
veys implement stochastic decision-making algorithms for 
pricing mechanisms [14]. The privacy and security of resi‐
dential customers and electric companies are other issues 
that are disregarded in some studies [26]. Consequently, the 
lack of a comprehensive study considering all these aspects 
of PV power pricing of residential customers is evident.

In this paper, day-ahead dynamic pricing in a power distri‐
bution system consisting of residential customers and elec‐
tric companies is proposed. The residential customers are 
equipped with PV systems and battery storages. In addition, 
the power grid has sufficient infrastructures to buy back the 
residential solar power, and announce the day-ahead prices 
as well. The main purpose is to maximize the profits of cus‐
tomers and the electric company, and to minimize the power 
generation costs. The importance of security and data priva‐
cy of the electric company and customers is pursued by the 
OCD implementation. Therefore, the objective function of 
this study is divided into the decomposed customers’ profit 
functions and the electric company’s profit function. In addi‐
tion, a Monte Carlo scenario-based technique is applied to 
model the uncertainty of PV generations and customers’ de‐
mand. Metering mechanism is the other aspect of utilization 
of renewable energy resources in power grids. Accordingly, 
the main contributions of this paper can be briefly listed as 
follows.

1) The day-ahead dynamic pricing of renewable energy in 
a smart grid (consisting of household customers that are 
equipped with battery storages and PV systems, and an elec‐
tric company) based on OCD method is optimized, while 
guaranteed the security and privacy of each side is guaran‐
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teed, and an optimal solution during a short time period is 
found.

2) The social welfare of residential customers and profit 
of electric company are maximized through minimizing pro‐
duction, storage, and carbon emission related cost functions 
and maximizing customers’ utility functions.

3) A two-stage scenario-based decision-making procedure 
is implemented to cover the uncertainties of load and PV 
generation, in conjunction with modeling the residential con‐
sumers’ preferences through a quadratic utility function.

4) An optimized day-ahead dynamic pricing of residential 
renewable energy is proposed under different metering mech‐
anisms: FiTs, net metering, and net purchase and sale.

The remainder of this paper is as follows. Sections II and 
III describe the mathematical models of residential consum‐
ers and electric company, respectively. Section IV includes 
random variables for load and PV generation uncertainties, 
where the methods of scenario generation and reduction in 
stochastic decision-making are introduced. Section V con‐
tains a two-stage stochastic decision-making process of day-
ahead dynamic pricing. Section VI elaborates the day-ahead 
dynamic pricing procedure through OCD method under vari‐
ous metering mechanisms. Section VII contains the numeri‐
cal study of day-ahead dynamic pricing on a community con‐
sisting residential consumers and an electric company. Final‐
ly, conclusions are drawn in Section VIII.

II. MATHEMATICAL MODEL OF RESIDENTIAL COSTUMERS

In this paper, due to the presence of grid infrastructures 
for importing residential PV power, customers are active us‐
ers who can decide to produce, consume, sell, or store solar 
electricity. This decision is made based on market prices of 
selling and purchasing electricity in conjunction with mainte‐
nance and operation costs. To model customer’s objective 
function, formulating each of the equipment at the custom‐
er’s place and its impact is required.

A. Storage

According to pollution increase caused by conventional 
electricity generation methods, energy storages have received 
much attention recently. The utilization of storage systems 
compensates for the uncertainty of PV products. The cost of 
operation and maintenance of a storage system depends on 
its charging and discharging rates, which is considered based 
on (1). In this regard, γ, δ, and θ are parameters that are con‐
sidered according to the type of storage and its capacity 
range, in which γ is the constant cost of installing and main‐
tenance of storage, δ is the operation cost, and θ is the rate 
of capacity [26].

DS(R±
ih )= δ(R+

ih +R-
ih )2 + γ (1)

The charging and discharging rates of the energy storage 
system, i.e., R+

ih and R-
ih, are determined in (2) and (3), re‐

spectively, based on its total capacity. In addition, based on 
(4), the amount of stored power should not exceed its maxi‐
mum capacity [35]. Due to the presence of both charging 
and discharging values in the cost function (1), they do not 
occur at the same time [36], [37].

Rmax
i = θBmax

i (2)

{0 £R+
ih £Rmax

i

0 £R-
ih £Rmax

i

(3)

0 £∑
t = 1

h

(R+
it -R-

it )£Bmax
i (4)

B. PV System

The cost function of selling solar electricity to power grid 
is considered based on (5). According to (6), the amount of 
electricity sold to the power grid per hour should not exceed 
the PV system’s production [14]

DR(Yi,h )= σYi,h (5)

0 £ Yi,h £Gi,h –Yi,h (6)

C. Consumption

Lighting and electrical appliances make up the majority of 
residential consumers’ demand, which are usually in a spe‐
cific range based on (7).

X min
ih £Xih £X max

ih (7)

D. Utility Function

Although each customer acts independently, the amount of 
required energy may depend on the factors such as time peri‐
od, weather condition, and electricity price. Utility function 
is adopted to model different responses of customers to each 
of these factors. In general, a utility function is the level of 
a subscriber’s satisfaction with the amount of electricity con‐
sumption and their preferences [25].

A utility function should be non-decreasing (users always 
want to consume more power) and concave (the level of cos‐
tumers’ satisfaction gradually gets saturated). In this regard, 
different models have been defined according to the proper‐
ties of utility functions. In this paper, a quadratic model 
based on (8) is used, in which α is a predetermined factor 
[25]; and wih is a parameter that varies at different hours of 
the day for each subscriber [19], [38], [39].

U(xihwih )=

ì

í

î

ï
ïï
ï

ï
ïï
ï

wih xk
ih - αxk

ih    0 £ xk
ih £

wih

2α
w2

ih

4α
                     xk

ih >
wih

2α

(8)

III. MODEL OF ELECTRIC COMPANY

Electric companies must supply customers’ electricity con‐
sumption, and the charging and discharging processes of stor‐
age system are based on (9). Furthermore, due to (10), the 
amount of produced electricity by companies should always 
cover the minimum and maximum customers’ demands. The 
cost of providing required energy is calculated according to 
(11), which is a strictly convex function that increases in the 
offered energy capacity [25], [26].∑

i

(Xih - Yih +R+
ih -R-

ih )£Lh (9)

Lmin
h £ Lh £ Lmax

h (10)

C(Lh )= aL2
h + bLh + c (11)

In addition to supply customers’ required electricity, the 
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electric company can purchase an amount of green electrici‐
ty from subscribers based on (12). Total amounts of green 
electricity are determined according to the specified amount 
of electricity energy included in their contracts based on 
(13). Besides, purchasing green electricity causes significant 
decrease in the amount of released pollution, which can be 
formulated as a mathematical function according to (14). In 
this regard, values m and n are derived from cost equilibri‐
ums, in which the amount of carbon emission is replaced by 
that of purchased renewable energy [25], [26].∑

h

Qh = Tmax (12)

∑
i

Yih =Qh (13)

H(Qh )=-mQ2
h + nQh (14)

IV. RANDOM VARIABLES 

The uncertain nature of renewable energy resources re‐
quires special techniques for decision-making in power 
grids. In addition, the uncertainty of customers’ demand has 
to be considered as well. As a result, the deterministic deci‐
sion-making is not an appropriate solution, and it is neces‐
sary to consider the model uncertainties to achieve an accu‐
rate day-ahead dynamic pricing mechanism. In this regard, 
the uncertain input data of PV generations and customers’ 
demand are modeled as random variables, which are present‐
ed as a set of scenarios with specific probabilities.

A. Scenario Generation

Defining a valid stochastic process requires a sufficient 
number of scenarios, so the primary data of PV generation 
and customers’ demand are implemented as the root scenar‐
io in the Monte Carlo scenario generation method to gener‐
ate other 1000 scenarios. In each scenario, random variables 
are generated with a standard deviation and a mean value ac‐
cording to their cumulative distribution function (normal dis‐
tribution) [27].

B. Scenario Reduction

Based on the large number of generated scenarios and the 
importance of increasing the speed of solutions, scenario re‐
duction methods are necessary. There are different scenario 
reduction methods, by which the overlap of scenarios is mea‐
sured based on probabilistic criteria. Scenario reduction 
methods reduce the number of scenarios using Kantorovich 
distance matrix [40]. Kantorovich distance is the distance be‐
tween the probability of two different scenarios, and its 
small size indicates two identical possible scenarios. In this 
case, the probability of all deleted scenarios is equal to zero, 
and the probability of new retained scenarios is equal to the 
sum of the previous probabilities and the probability of the 
closest deleted scenarios. In this study, forward selection 
method is used for scenario reduction, in which reduced sce‐
nario matrix is developed based on original scenario matrix. 
The selected scenarios in each iteration are the ones that 
minimize the Kantorovich distance between the reduced and 
original sets of scenarios. The process ends when a certain 
number of scenarios are achieved, or a certain Kantorovich 
distance is reached [41]-[43].

V. TWO-STAGE STOCHASTIC DECISION-MAKING PROCESS

The uncertainty of day-ahead dynamic pricing is modelled 
by a two-stage stochastic programming, as shown in Fig. 1. 
In this vein, in the first stage of planning, deterministic deci‐
sions are made regardless of the numbers and the values of 
parameters in each scenario. In the second stage, the uncer‐
tainty of the program is modelled according to the value of 
variables in the previous stage, the number of scenarios, and 
the value of the parameters in scenarios. For example, in 
day-ahead dynamic pricing, the amount of PV generation 
and customers’ demand are the variables of first stage of de‐
cision-making. However, the acceptable change limits of 
first-stage variables are specified based on the number of PV 
generation and customers’ demand parameters in each sce‐
nario in the second stage [27].

Electric company

Stochastic decision-making

``

Data transition; Power transition

Uncertain loadUncertain PV generation

Day-ahead dynamic pricing

Two-stage decision-making

Grid

constraints

Household

subscribers’

constraints

Deterministic decision-making

(specifying consumption

and production variables)

Deterministic day-ahead

dynamic pricing

Grid

constraints

Household

subscribers’

constraints

Scenario

generation

Stochastic day-ahead

dynamic pricing

Scenario

reduction

X1,h

X1,h

G1,hY1,h

λ1,h, μ1,h

X2,h

Y2,h

λ2,h, μ2,h

Xi,h

Yi,h

λi,h, μi,h

Household subscriber 1

Metering

mechanism PV system

``

X2,h

G2,h

Household subscriber 2
Metering

mechanism PV system

``

Xi,h

Gi,h

Household subscriber i

Metering

mechanism PV system

DC

AC

DC

AC

DC

AC

�

�

First stage Second stage

Fig. 1.　Schematic diagram of proposed approach.
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A. First Stage

In this stage, hourly decisions are made regardless of the 
amount of customers’ demand and PV generation in each 
scenario. The amount of customers’ demand, power sold to 
the grid, and PV generation are considered according to the 
grid constraints (1)-(14). These variables determine the value 
of objective function in the first stage of decision-making 
named social welfare, as expressed in (15) [26], [27]. Social 
welfare is the summation of profit and utility of consumers 
and the electric company’s profit subtracted by the cost of 
purchasing and producing electricity.

Profit =∑
h

é

ë
ê
êê
ê ù

û
ú
úú
ú∑

i

(U(Xih )-DR(Yih )-DS(R±
ih ))-C(Lh )+H(Qh )

(15)

B. Second Stage

In the second stage, variables are determined based on the 
number of available scenarios, the amount of customers’ de‐
mand, PV generation parameters in each scenario, and the 
decision values in the first stage. Unlike the first stage of de‐
cision-making that takes place at the moment, the second-
stage decisions are made after determining the random plan‐
ning process. As a result, (16) - (20) are the linking con‐
straints to illustrate the relation between the first- and sec‐
ond-stage values [27].

xihs =Xih - x-
ihs + x+

ihs (16)

0 £ x+
ihs £X +

ih (17)

0 £ x-
ihs £X -

ih (18)

lhs £ Lh (19)

qhs £Qh (20)

Based on (16), the amount of customers’ demand change 
in each scenario should include the difference between the 
first- and second-stage consumption amounts. In addition, 
the value of customers’ demand changes, electric compa‐
ny’s sold power, and purchased green power should be with‐
in specific ranges according to (17)-(20). The objective func‐
tion (21) in the second stage of decision-making is the sum‐
mation of social welfare function and the expected social 
welfare function in the first and second stages of decision-
making, respectively. The corresponding values are deter‐
mined based on constraints (1)-(20). The probability of each 
scenario πs is equal to multiplication of probability of de‐
mand πdemand and PV generation scenarios πPV [28].

max 
ì
í
î
∑

h

é

ë
ê
êê
ê ù

û
ú
úú
ú∑

i

(U(Xih )-DR(Yih )-DS(R±
ih ))-C(Lh )+H(Qh ) +

∑
s

πs∑
h

é

ë
ê
êê
ê∑

i

(Us (xihsx
shed
ihs )-DRs (yihs )-DSs (r ±

ihs )) +

ü
ý
þ

ù

û
úúúúHhs (qhs )-Chs (lhs ) (21)

VI. DAY-AHEAD DYNAMIC PRICING PROCEDURE 

In the case of day-ahead dynamic pricing, it is required to 
guarantee the security and privacy of each side (company 

and residential customers) in conjunction with the load bal‐
ance. The best approach in this situation is to consider sepa‐
rate solutions for the functions at each side [21]. As day-
ahead dynamic pricing is a nonlinear programming, specific 
algorithms are required to decompose the objective function. 
Due to the presence of complex constraints (9) and (13), it 
is necessary to use the dual function of the main problem 
and solve it by dividing it into some separate sub-problems. 
Since complex constraints are shared between different sides 
and contain variables of electric company and residential cus‐
tomers, these constraints disrupt the process of solving the 
problem at each side, respectively. In the dual function, the 
complicated constraints of day-ahead dynamic pricing are re‐
placed with dual variables λ, μ, λs, and μs. These dual vari‐
ables are used to violate the complicated constraints of the 
primary problem, i. e., the hourly price of electricity. The 
OCD is a method for non-linear programs, which divides the 
main problem into a number of sub-problems according to 
the type of constraints, the number of subscribers, and elec‐
tric companies, as shown in Fig. 2.

A. Day-ahead Dynamic Pricing Under Various Metering 
Mechanisms

There are various metering mechanisms that enable resi‐
dential customers to sell their green electricity to power 
grids. FiTs, net metering, and net purchase and sale are the 
main mechanisms to eliminate the gap between the retail 
market tariff and green electricity price. As common con‐
straints in each of these metering mechanisms are different, 
the formulation of OCD method is defined separately in the 
following subsections.
1)　FiTs

If subscribers choose FiTs mechanism to sell electricity to 
the power grid, they should sell a certain amount within a 
determined period at a specified price. Also, the subscriber’s 
demand must be purchased from the power grid. In this 
case, the daily solar power of each subscriber Gi,g is sold di‐
rectly to the power grid according to (22), and load balance 
is guaranteed via (23) [1]. The cost of selling electricity to 
the power grid is based on (24). Due to the definite sale of 
green electricity to the power grid, there will be no need to 
store solar power [1], [8].

Centralized problem

f(x)

f1(x1) f1(x1,x2)

h1(x1,x2)=0

h2(x1,x2)=0
C1(x1)=0{ {s.t.

f2(x2)

C2(x2)=0{s.t.s.t.

f(x1,x2)�λ1h1(x1,x2)

h2(x1,x2)=0{s.t.

C1(x1)=0

f(x1,x2)�λ2h2(x1,x2)

h1(x1,x2)=0{s.t.

C2(x2)=0

Fig. 2.　Schematic description of OCD method.
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DR(Gih )= σ(Gih ) (24)

The objective functions of customers and electric compa‐
ny are defined as (25) and (26), respectively. According to 
these equations, all the electricity generated by solar resourc‐
es is exported to the power grid at rates μ and μh,s, respec‐
tively, in first and second stages of decision-making. The 
subscriber’s required electricity is purchased at the prices of 
λ and λh,s in the first and second stages of decision-making, 
repsectively [38].
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In the beginning of the day-ahead dynamic pricing, the ini‐
tial prices are announced to the residential consumers. Ac‐
cording to the prices, the customers send their responses to 
the electric company. Therefore, the electric company calcu‐
lates the new prices for the next iteration. FiTs’ day-ahead 
prices get updated in each iteration based on sub-gradient 
methods in (27)-(30). The parameter αk is set to be 0.5/k to 
guarantee the convergence of day-ahead dynamic pricing.
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2)　Net Metering and Net Purchase and Sale Billing Mecha‐
nisms

In net metering and net purchase and sale mechanisms, 
the subscriber can consume or sell solar power to the power 
grid. Unlike FiTs, the subscriber can make a decision based 
on the electricity prices. The difference between net meter‐
ing and net purchase and sale methods is in metering peri‐
ods. Time slots in net metering are longer than those in net 
purchase and sale. Therefore, the production of the solar pan‐
el consists of two parts: power sold to the grid (Goi,h) and 
power consumed by subscribers (Gii,h), as shown in (31), 
and load balance is considered in constraint (32). The cost 
of selling electricity to the power grid is calculated in (33) 
[1], [8].

Gih =Goih +Giih (31)
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DR(Goih )= σ(Goih ) (33)

In (34), the consumer’s profit is calculated under net me‐
tering and net purchase and sale mechanisms. In this regard, 
λ, μ, λs, and μs are the selling and purchasing prices, which 
are announced to the subscribers. As a result, the subscribers 
can make decisions about selling, consuming, and storing 
electricity.
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In net metering and net purchase and sale, the profit of 
the electric company is calculated based on (35). In this re‐
gard, the data of consumed, sold, and stored electricity con‐
sidering the uncertainty of solar panel production and con‐
sumption are provided for the electric company. This aims to 
update the price values and makes them available to the sub‐
scribers to make next decisions. Price updates are based on 
(36)-(39) [8], [38].
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The implementation of renewable energy resources in 
power grids is a great environmental, strategic, and financial 
opportunity. Therefore, to move from a traditional power sys‐
tem to widespread application of renewable energy resourc‐
es, new rules, patterns, and strategies are required. Various 
metering mechanisms and policies have been adopted to sup‐
port the implementation of renewable energy resources in 
the recent studies [30]. In the following section, the day-
ahead dynamic pricing in FiTs, net metering, and net pur‐
chase and sale is examined.

VII. NUMERICAL STUDY 

Day-ahead dynamic pricing is a bilateral process between 
residential consumers and electric companies due to the de‐
pendence of each side’s profit on the specified price of ex‐
changing electricity. In addition, due to the high cost of in‐
stalling renewable energy resources, prices should stimulate 
required incentives for residential customers to invest in PV 
systems.

The simulated smart grid in this study consists of an elec‐
tric company and 54 residential company with PV and stor‐
age systems. The consumption and PV generation data of 
residential consumers are based on an open-source Austra‐
lian dataset called “solar home electricity data”. As shown 
in Figs. 3 and 4, the data are from 54 randomly selected so‐
lar residential customers based on net billing mechanisms 
from July 1, 2010 to June 30, 2013 [44]. Accordingly, the 
preference parameter of each user w varies in [0.5, 6]. The 
maximum generation capacity of PV system for each custom‐
er is considered based on the maximum solar radiation in 
the customer’s place and other related parameters. More‐
over, the average generation cost of PV systems is 5 $/kWh. 
The parameters of the cost and carbon emission profit func‐
tion of the electric company and the customer’s utility func‐
tion [26] are set based on Table I. The normal distribution 
function of hourly residential consumption and PV genera‐
tion data is used in the Monte Carlo method to construct un‐
certainty scenarios. In this case, 10000 scenarios are generat‐
ed, which are reduced to 10 using the forward selection 
method to decrease the number of calculations.

In the following, the results of optimized day-ahead dy‐
namic pricing are examined under different metering mecha‐
nisms. In addition, a two-stage decision-making process, 
which covers the uncertainty of demand and PV generation 
data, is also considered.

A. FiTs and Net Metering

In FiTs, according to the contracts, subscribers are obliged 
to sell all of their solar power and purchase their electricity 
demand. Since dynamic prices are announced day-ahead in 
this study, the period of contracts is set to be daily. Besides, 
in net metering, subscribers can decide to sell or consume 
their PV power. Therefore, they can sell their PV generation, 
or buy their consumption surplus at the end of the billing pe‐
riod. In the optimized day-ahead pricing under net metering, 
the period of contracts is considered to be daily, too. Table 
II shows the electricity prices of the electric company and 
PV generation in FiTs and net metering. According to the 
customers’ preferences to consume their PV power in net 
metering, the renewable energy electricity prices are higher 
than those in FiTs. However, the electricity price of the elec‐
tric company in FiTs is higher than that in net metering. The 
prices in net metering are adjusted to increase the costum‐
ers’ incentives to sell their PV power to the power grid. The 
results demonstrate that the increase in the amount of PV 
generation causes reduction in the prices, according to the 
rise of the production.
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Fig. 3.　Hourly PV generation in each scenario.
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Fig. 4.　Daily PV generation of 54 residential customers.

TABLE I
PARAMETERS OF COST AND CARBON EMISSION PROFIT FUNCTION

Parameter

a

b

c

m

Value

0.01

0

0

0.001

Parameter

n

δ

α

w

Value

4

0.1

0.1

[0.5, 6]
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B. Net Purchase and Sale

Net purchase and sale scheme is another version of net 
metering, in which the amount of consumption and PV pow‐
er are compared in shorter time slots (hourly). Based on the 
average hourly consumption of 54 residential consumers, 
electricity prices in net purchase and sale are shown in Figs. 
5 and 6. In order to lower the hourly amount of PV genera‐
tion and costumers’ consumption compared with FiTs and 
net metering mechanisms, the hourly electricity prices of the 
grid decrease. However, it causes higher PV power prices in 
comparison with the other two metering mechanisms accord‐
ing to the lack of green electricity. In this case, the higher 
prices stimulate costumers to sell their surplus PV generation.

It is the amount of electricity sold to the grid that makes 
each of these mechanisms different. In FiTs, 100% of cus‐
tomers sell all of their PV power to the grid according to 

their contracts. Besides, based on the cost of energy ex‐
change, 98% of subscribers prefer to consume their PV pow‐
er in net metering mechanism. However, as the demand of 
subscriber 51 is less than the PV generation, the surplus 
power is sold to the grid in each scenario. Supplying a part 
of costumers’ demand from PV generations leads to a total 
load reduction, which happens in net metering, respectively 
and in net purchase and sale as shown in Fig. 7 and Table 
III. 

In net metering and net purchase and sale, the average 
load reductions are about 28% and 11%, respectively. In this 
case, total load reduction is based on the capacity of PV sys‐
tem, which can be increased by battery storage implementa‐

TABLE II
ELECTRICITY PRICES OF ELECTRIC COMPANY AND PV GENERATION IN FITS AND NET METERING

Stage/
scenario

Stage 1

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Electricity price in FiTs ($)

PV generation

1.15

3.60

3.24

3.78

3.74

2.88

3.78

2.34

3.60

Electric company

6.909

6.910

7.600

6.560

6.630

8.290

6.770

10.360

6.910

Electricity price in net metering ($)

PV generation

1.15

3.79

3.41

3.97

3.94

3.03

3.98

2.46

3.79

Electric company

6.58

4.83

4.81

4.84

4.83

4.81

4.82

4.81

4.81
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Fig. 7.　Customers’ demand reduction in net metering.

TABLE III
CUSTOMERS’ DEMAND REDUCTION IN NET PURCHASE AND SALE

Time

8 p.m.-5 a.m.

6 a.m.

7 a.m.

8 a.m.

9 a.m.

10 a.m.

11 a.m.

12 a.m.

1 p.m.

2 p.m.

3 p.m.

4 p.m.

5 p.m.

6 p.m.

7 p.m.

Demand reduction (%)

0

0.1

0.9

7.6

19.9

32.8

11.9

18.4

17.3

22.4

17.1

15.0

9.0

3.8

0.7
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Fig. 5.　Hourly electricity prices of PV generation in each scenario in net 
purchase and sale.
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Fig. 6.　Hourly electricity prices of electric company in each scenario in 
net purchase and sale.
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tion. As it is mentioned earlier in Section II, residential con‐
sumers are equipped with battery storage systems as well. 
However, storing process in FiTs and net metering stops due 
to the higher storage cost as a result of higher amount of 
charging/discharging rate. While in net purchase and sale, ac‐
cording to lower storage cost, the amount of charging/dis‐
charginge rate is based on Fig. 8. Charging process occurs 
during night hours when the electricity prices are low. Fur‐
thermore, discharging process happens during the PV genera‐
tion hours. The battery storage functions independently from 
the PV system, and is connected directly to the power grid. 
Results show that the coordination of battery storage and PV 
systems at this scale requires storage cost reduction.

Load shedding is one of electric company’s approaches in 
stochastic decision-making to maximize the profits. In this 
case, load shedding varies according to the amount of cus‐
tomer’s demand and PV generation. Generally, the custom‐
er’s average daily demand is less than 8 kWh. As a result, 
the customers’ utility function reduces based on their de‐
mand reduction. Therefore, increasing the capacity of PV 
systems and demand management can reduce the load shed‐
ding and increase the utility function.

VIII. CONCLUSION

In this study, the optimal day-ahead dynamic pricing un‐
der various metering mechanisms, i. e., FiTs, net metering, 
and net purchase and sale with the purpose of maximizing  
profits of customers and electric companies is proposed. The 
pricing mechanism is modelled in general algebraic model‐
ing system (GAMS) as an integer convex non-linear pro‐
gram (using CONOPT solver), which depends on the 
amount of customers’ demand, PV generation, and reactions 
to price changes. The results demonstrate that the profitabili‐
ty of day-ahead dynamic pricing among costumers, electric 
company, and society varies under each of the metering 
mechanisms. Among all mechanisms, the lowest and the 
highest prices for PV power and electricity take place in 
FiTs, which hold the highest social welfare, and only 40% 
of customers’ satisfaction is rewarded. On the other hand, 
higher daily prices for PV generations in net metering re‐
sults in approximately 70% of customers’ satisfaction. In 
net purchase and sale, hourly day-ahead dynamic prices re‐
sults in about 85% of electric company’s satisfaction in con‐
junction with 11% load reduction. In addition, the maximum 
amount of carbon emission’s profit (10.82% of social wel‐

fare) is obtained according to the highest amount of pur‐
chased green electricity from consumers in FiTs. However, 
according to customers’ preferences to consume PV electrici‐
ty rather than to sell it to the power grid, the amount of car‐
bon emission’s profit is not remarkable in net metering 
(0.4% of social welfare) and net purchase and sale (0.3% of 
social welfare). According to the results, the coordinate func‐
tion of battery storage, electric vehicles, and PV systems can 
be studied in day-ahead dynamic pricing. Moreover, the cus‐
tomers’ behavior and PV generation forecasting can be im‐
proved by implementing machine learning.
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