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Abstract——Scalable coordination of photovoltaic (PV) invert‐
ers, considering the uncertainty in PV and load in distribution 
networks (DNs), is challenging due to the lack of real-time com‐
munications. Decentralized PV inverter setpoints can be 
achieved to address this issue by capitalizing on the abundance 
of data from smart utility meters and the scalable architecture 
of artificial neural networks (ANNs). To this end, we first use 
an offline, centralized data-driven conservative convex approxi‐
mation of chance-constrained optimal power flow (CVaR-OPF) 
in which conditional value-at-risk (CVaR) is used to compute re‐
active power setpoints of PV inverter, taking into account PV 
and load uncertainties in DNs. Following that, an artificial neu‐
ral network (ANN) controller is trained for each PV inverter to 
emulate the optimal behavior of the centralized control set‐
points of PV inverter in a decentralized fashion. Additionally, 
the voltage regulation performance of the developed ANN con‐
trollers is compared with other decentralized designs (local con‐
trollers) developed using model-based learning (regression-
based controller), optimization (affine feedback controller), and 
case-based learning (mapping) approaches. Numerical tests us‐
ing real-world feeders corroborate the effectiveness of ANN con‐
trollers in voltage regulation and loss minimization.

Index Terms——Chance constraint, decentralized control, dis‐
tributed energy resource (DER), data-driven control, neural net‐
work, voltage regulation.

I. INTRODUCTION 

IN recent years, distributed energy resources (DERs) have 
complicated distribution network (DN) operations. Main‐

taining nodal voltages within operating tolerances is particu‐
larly difficult given the uncertain and intermittent nature of 
DERs. As a result, step-voltage regulators and shunt capaci‐
tors must work harder to maintain voltages in DNs [1]. This 

consequence degrades their operating mechanism, reduces 
device lifetime, and can cause power quality, stability, and 
reliability issues. In order to overcome this challenge, photo‐
voltaic (PV) inverters are allowed to operate at a non-unity 
power factor to provide reactive power support for voltage 
regulation. Earlier efforts have focused on developing local 
control strategies such as volt-var and watt-var curves. These 
strategies entail each PV inverter adjusting its reactive pow‐
er output based on local measurements [2], [3]. However, 
these strategies require extensive tuning to find an appropri‐
ate curve for every PV inverter. Hence, they may become 
impractical in real time, where hundreds of PV inverters 
could be installed over a DN. Therefore, it is challenging to 
design a scalable framework to compute reactive power set‐
points of PV inverters under limited real-time communica‐
tions in DNs.

Reactive power setpoints of PV inverters can be computed 
from optimal power flow (OPF) problems in DNs. The non-
convex nature of OPF renders the optimization problem diffi‐
cult to solve. With recent theoretical advancements in optimi‐
zation, different convex relaxations have been proposed [4]. 
Additionally, there exists a related stream of literature on dif‐
ferent variants of OPF techniques (e.g., robust and stochas‐
tic), which aim at developing PV inverter controls in a cen‐
tralized, decentralized, or distributed framework to compute 
the optimal setpoints in real time (e.g., [1], [5]-[12]).

Centralized control strategies [1] generally yield optimal 
operating costs, although they require extensive monitoring 
and communication infrastructure for system-wide optimal 
operation. Decentralized schemes, on the other hand, require 
no communication and only use local information to modify 
the DER behavior [5] - [10]. Distributed approaches in [11], 
[12] use limited communication between neighboring DERs 
to achieve close-to-optimal operation. However, such ap‐
proaches may still suffer from communication delays and er‐
rors.

As a part of the recent transition to the smart grid, there 
is an abundance of readily available historical data from utili‐
ty smart meters [13]. This has led to an increase in research 
in data-driven approaches for OPF using machine learning 
techniques (e. g., [14] for a survey). Particularly, [15] - [20] 
propose data-driven approaches for voltage regulation in 
DNs. Reference [16] proposes multiple linear regression 
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models to find a local control policy that maps the local his‐
torical data of each PV inverter to the optimal reactive pow‐
er setpoints computed by using an OPF. However, the previ‐
ous reference uses a deterministic OPF to compute the reac‐
tive power setpoints, while neglecting the uncertainty in user 
load and PV generation. Reference [17] introduces support 
vector machines to design volt-var curves utilizing an offline 
centralized algorithm based on chance-constrained OPF 
while considering only PV uncertainty. As it is using chance-
constrained optimization, an approach is needed to estimate 
the tightening, which represents the uncertainty margins. In 
the previous reference, the authors propose using Monte-Car‐
lo simulations to implement the tightening. Another ap‐
proach in [18] uses kernels to learn nonlinear PV inverter 
control policies and calculate real-time reactive power injec‐
tions based on a linearized OPF problem. However, deter‐
mining the best kernels can be a challenging task.

Notwithstanding the increasing availability of data and ma‐
chine learning approaches that could be leveraged to map lo‐
cal historical data to optimal PV inverter setpoints, it re‐
mains a difficult task to take PV and load uncertainty into 
account in OPF for any data-driven learning design. For in‐
stance, an effective approach to mitigate DER and load un‐
certainty is to enforce probabilistic specifications for viola‐
tions of voltage and PV reactive power constraints, leading 
to chance-constrained (CC) OPF formulations. The CC-OPF 
is nonconvex and challenging to solve. In order to bypass 
the nonconvexity, the Gaussianity assumption has been tradi‐
tionally invoked to model the uncertainty distribution (e. g., 
[8]), which is not usually valid. Convex surrogates can also 
replace the chance constraints, such as the conditional-value-
at-risk (CVaR) or distributionally robust formulations (e. g., 
[19], [21]-[23]). The advantage of CVaR-OPF is that it is da‐
ta-driven and distribution agnostic. Nevertheless, data-driven 
machine learning approaches for PV reactive power control 
are not explored in [21]-[23]. Therefore, leveraging the CVaR-
OPF approach to compute the optimal PV reactive power set‐
points and then using machine learning techniques to learn 
the mapping is an interesting research direction to capture 
uncertainty in historical data and learn the probabilistic guar‐
antees associated with the voltage regulation constraint. Fur‐
thermore, using artificial neural networks (ANNs) to learn 
the mapping is advantageous as ANNs can accommodate 
any degree of nonlinearity and generally constitute a model-
free approach. Next, we list the literature pertaining to the 
application of ANNs in DNs.

In the past, research has been published concerning the ap‐
plication of ANNs to solve various DN problems [24]-[26]. 
One such application is the coordination of distribution sys‐
tem assets such as tap changers, shunt capacitors, and step-
voltage regulators [24]. A single neural network is trained 
from deterministic offline optimization approaches to infer 
active and reactive power setpoints of the DERs in a central‐
ized manner, replacing the role of distribution system opera‐
tor (DSO) in real time [25]. A large-scale communication in‐
frastructure required to communicate the optimal setpoints 
predicted from the centralized ANN to other DERs in real 
time is assumed [25]. In [26], ANNs are used to estimate 

nodal voltages in DNs using real-time smart meter data.
Most recently, [27] integrates deep neural networks 

(DNNs) for PV inverter control policy directly into the 
CVaR-OPF by considering load and PV uncertainty. Specifi‐
cally, the DNN training is directly incorporated into the 
CVaR-OPF problem where the DNN weights are trained us‐
ing back-propagation and upon computing gradients of loss‐
es and voltages with respect to inverter reactive power injec‐
tions. Gradient-free variants are also explored in order to op‐
timize the DNN weights. Albeit DNN specific parameters 
can be learned directly by solving the CVaR-OPF, incorporat‐
ing additional network objectives or constraints remains diffi‐
cult. Reference [28] uses deterministic optimization for data-
driven learning. Also, the CVaR objective along with mean-
square error (MSE) is used during ANN training to infer the 
reactive power setpoints. Furthermore, the mini-batch gradi‐
ent descent algorithm is developed by carefully selecting the 
mini-batches to speed up the training process of the ANNs. 
Therefore, evaluating the performance of ANNs for data-
driven decentralized voltage regulation using the optimal re‐
active power setpoints computed from CC-OPF is thus re‐
quired, which was carried out in the conference precursor of 
our work [19]. Specifically, in [19], the ANNs are trained us‐
ing optimal reactive power setpoints obtained by solving the 
CC-OPF problem without incorporating the training process 
directly into the optimization, and the capability of voltage 
regulation and loss minimization of the developed ANN 
model is compared with that of a tree-based regression mod‐
el for a smaller network (IEEE 13-node) and for a longer 
timescale (1-hour).

The contributions of this paper are listed as follows.
1) A methodology for using ANNs to learn the mapping 

from load and PV generation uncertainties to inverter reac‐
tive power setpoints from data optimized by the CVaR-OPF 
is developed. The CVaR-OPF formulation and the ANN 
structure with different activation functions and training pro‐
cess are presented in detail.

2) We extend the previous work in [19] to accommodate 
larger networks with reasonable number of PVs and show‐
case the benefits of a scalable implementation of the data-
driven decentralized learning approach. Results are show‐
cased in the Arizona SB 129-node feeder [29].

3) The decentralized controllers are implemented using a 
faster timescale of 15 min and are tested for under- and over-
voltage test cases.

4) It is investigated whether the trained ANNs generalize 
the uncertainty in data sufficiently over a longer period by 
respecting the probabilistic specification of voltage con‐
straints.

5) The developed ANN controllers are compared in terms 
of voltage regulation and thermal loss minimization with the 
following data-driven approaches: regression-based control‐
lers [16], case-based learning [30], and optimized affine feed‐
back schemes [23]. Specifically, we develop regression-
based controllers by adopting the CVaR-OPF problem, 
which is not performed in [16]. The end result is to present 
the trade-offs of various decentralized designs concerning 
voltage regulation and thermal loss minimization while com‐
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plying with the probabilistic specification on the voltages 
and PV inverter constraints. The ANNs perform remarkably 
well in terms of probabilistic voltage regulation and thermal 
loss minimization compared with regression-based, case-
based, and optimization-based affine control schemes.

The remainder of this paper is organized as follows. Sec‐
tion II presents the system model and the data-driven central‐
ized offiline stochastic OPF. The voltage regulation problem 
with generic chance constraints and their data-driven approxi‐
mations used to obtain optimal DER setpoints are also for‐
mulated. Data-driven local designs for reactive power con‐
trol using linear and nonlinear policies are the theme of Sec‐
tion III. Section IV details the numerical tests, including the 
network setup and data collection process. Thorough compar‐
isons are presented between the performance of the devel‐
oped ANN controller and other designs in terms of voltage 
regulation and thermal loss minimization. Finally, conclu‐
sions are drawn in Section V.

II. SYSTEM MODEL AND DATA-DRIVEN CENTRALIZED 
OFFLINE STOCHASTIC OPF 

The network and resource model adopted in this paper are 
detailed first, followed by the methodology to account for 
the uncertainty in user load and PV generation using CVaR 
optimization [19], [23].

A. Power Distribution System Model

Consider a single-feeder radial distribution network mod‐
eled by a tree graph with N + 1 buses (nodes) and lines (edg‐
es) connecting these buses. Let N0: ={0, 1, ..., N} denote the 
set of all buses and L: ={1, 2, ..., L} denote the set of lines. 
The substation is indexed by n = 0. All nodes except the sub‐
station are included in the set N: ={1, 2, ..., N} and represent 
user nodes. Let vn denote the squared voltage magnitude at 
bus nÎN0, where v0 is fixed, and let v collect all nodal volt‐
ages for nÎN. Let sn = pn + jqn denote the complex power in‐
jected to bus n. For each line nÎL, zn = rn + jxn denotes its 
impedance, and Sn =Pn + jQn is the complex power flow to 
the bus n. Also, let bsh

n  be the reactive power injected at bus 
n (e.g., due to shunt capacitors) at nominal voltage of 1.0 p.
u.. We collect all nodal quantities into vectors p, q, bsh, and 
v, and correspondingly, r, x, P, and Q for lines. Let z = r + jx, 
and S =P + jQ denote the respective complex vectors. The re‐
lationship between voltage magnitudes, power injections, 
and line power flows is captured by the LinDistFlow model 
[31] in p.u..

P =-F T p (1)

Q =-F Tq -F T × diag(bsh )× v (2)

Av = 2Re(Z * (P + jQ))- a0v0 (3)

where AÎRL ´N results from removing the first column of the 
network edge-to-node incidence matrix A͂ =[a0A]ÎRL ´(N + 1); 
we also have F =-A-1 with the property that Fa0 = 1N and Z =
diag(z) [31]; v0 is the squared voltage magnitude at the slack 
bus; and a0 is the first column in A͂ [31]. For a given N ´ 1 
vector z, diag(z) returns an N ´N matrix with the elements of 
z on its diagonal. Further, IN denotes an N ´N identity ma‐

trix; and 0N and 1N are the N-dimensional vectors with all ze‐
roes and ones, respectively.

Substituting (1) and (2) into (3) and premultiplying (3) 
with -F yields:

v =Kv (Rp +Xq + 1Nv0 ) (4)

where R: = 2F × diag(r)×F T; X: = 2F × diag(x)×F T; and Kv: =
(IN - X͂)-1, X͂: =X × diag(bsh ). It is assumed that the network 
parameters in X and bsh render (IN - X͂) invertible. The model 
in (4) approximates squared voltage magnitude as affine 
functions of power injections p and q, and generalizes [31] 
to include shunt capacitors.

B. Generation and Load Model

The network has Npv distributed PV generator units whose 
connection to the buses is described by the PV-to-node inci‐
dence matrix ΓÎRN ´Npv. Due to solar intermittency, the real 
power ppv

k  of PV unit k = 12Npv can be modeled as a ran‐
dom variable, while its reactive power injection qpv

k  can be 
actively controlled. Further, we collect the solar generation 
and reactive power injections from all PV buses in vectors 
ppvÎRNpv and qpvÎRNpv, respectively. If S pv

kmax is the apparent 
power capacity for inverter k, the reactive power injections 
respect the capacity constraints:

| qpv
k | £ qpv

kmax: = (S pv
kmax )2 - (ppv

k )2 (5)

The DN also includes Nc constant-power loads, whose 
connection to network buses is given by the load-to-node in‐
cidence matrix ΨÎRN ´Nc. The load active and reactive pow‐
er consumptions pc

k and qc
k (k = 12Nc) are modeled as 

random variables. The nodal active and reactive power con‐
sumptions are collected in vectors pc =[pc

1p
c
2pc

Nc
]TÎRNc 

and qc =[qc
1q

c
2qc

Nc
]TÎRNc, respectively. Vector w =

[(pc )T (qc )T (ppv )T ]TÎRN ´(2Nc +Npv ) collects all system distur‐
bances, which are uncontrollable. Finally, we express the net 
active and reactive power injections p and q in terms of con‐
trolled input u and disturbance w as follows:

ì
í
î

p =Bww

q =Γu +Kww
(6)

where Bw =[-Ψ0N ´Nc
Γ]ÎRN ´(2Nc +Npv ); u =[qpv

1 q
pv
2 qpv

Npv
]Î 

RNpv; and Kw =[0N ´Nc
 -Ψ0N ´Nc

]ÎRN ´(2Nc +Npv ). Upon substitut‐

ing (6) into (4), it can be observed that the nodal voltages 
are reformulated as linear functions of u and w:

v(uw)=Du +Ew + v͂0 (7)

where D =Kv XΓÎRN ´Npv; E =Kv (RBw +XKw )ÎRN ´(2Nc +Npv ); 
and v͂0 =Kv1Nv0ÎRN.

C. Objective Function

This paper considers the objective of minimizing the ther‐
mal losses on the lines, which are approximated by 

∑
n = 1

N

rn

P 2
n +Q2

n

v0

. Utilizing the fact that Pn and Qn can be writ‐

ten as linear functions of pn and qn (cf. (1) and (2)), it fol‐
lows that the losses are quadratic in p and q. Furthermore, it 
can be observed from (6) that p and q are linear functions of 
u and w. Therefore, the thermal losses can be expressed as 
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quadratic functions of u and w as follows:

∑
n = 1

N

rn

P 2
n +Q2

n

v0

= J(uw) (8)

J(uw)=
1

2v0

[uT Ruu +wT Rww +wT Rwuu +

uT Ruww + sT
u u + sT

ww + h] (9)

where Ru, Rw, Ruw, and Rwu are the appropriate matrices; su 
and sw are the appropriate vectors; and h is a scalar.

D. Chance-constrained Voltage Regulation

Equation (7) directly demonstrates that the uncertainty in 
w will cause random fluctuations in the nodal voltages. 
Therefore, it is hard to ensure that voltages remain within 
bounds vimin and vimax as specified by ANSI Standard C84.1 
[32], i. e., it may not be possible to ensure that vmin £(Du +
Ew + v͂0 )£ vmax holds at all times. Instead, we enforce the lat‐
ter constraint in a probabilistic fashion. In order to cope 
with the variability in w, we describe the voltage regulation 
problem first with generic chance constraints followed by 
their data-driven convex approximation. Consider the follow‐
ing optimization problem (P1) subject to (5), (7), (11) 
and (12).

(P1) min
uv

E(J(uw)) (10)

Pr{vi ³ vimin }³ αi (11)

Pr{vi £ vimax }³ αi    i = 12N (12)

It follows from (9) that the dependence of thermal losses 
on w renders the objective function random; therefore, the 
expected value of the losses is minimized. In addition, con‐
straint (5) may be enforced for all w (i. e., with probability 
1) or as a chance constraint with probability βk. The motiva‐
tion for the latter is to allow for more flexible reactive pow‐
er policies in the design phase; and the bounds of (5) will be 
respected in real time.

Unless the uncertainty has a favorable distribution, it is 
well-known that chance-constrained optimization is generally 
nonconvex and thus hard. The CVaR presents itself as a suit‐
able risk measure that can be used as a convex surrogate of 
the chance constraint [33]. Specifically, CVaR can be uti‐
lized to shape the tail of a distribution. Consider a function 
f (uw) of the decision vector and the uncertainty, which en‐
ters in a probability constraint as Pr{ f (uw)£ 0}. The CVaR 
at level α is defined as CVaRα ( f (uw))= inf

tÎR {t + (1 -

α)-1E( f (uw)- t)+}, where (×)+: =max{×0}. It can be ob‐
serverd that a CVaR constraint serves as a conservative sur‐
rogate of the chance constraint, in the sense that if 
CVaRα ( f (uw))£ 0, then Pr{ f (uw)£ 0}³ α follows [33]. 
Therefore, CVaR is a conservative surrogate of the chance 
constraint. In other words, satisfying the CVaR constraint 
guarantees that the original chance constraint is respected as 
well. If f (uw) is convex in u, CVaR offers a convex restric‐
tion to the original chance constraint as:

inf
tÎR {t + (1 - α)-1E( f (uw)- t)+}£ 0 (13)

Thus, the chance constraints in the voltage regulation 

problem (P1) are replaced by the CVaR constraints. Then, 
the following operations are performed. The auxiliary vari‐
able over which the infimum is taken in (13) is included as 
optimization variable; the max operator in (×)+ is removed by 
the epigraph trick; and the expectation in (13) is replaced by 
its average sample approximation. To this end, a set of train‐
ing scenarios {wns

}Ntr

ns = 1 (realization of the random variable w) 

is assumed to be available, where Ntr is the number of train‐
ing scenarios. For notational simplicity, define umax

kns
= q̄pv

kns
=

(S pv
max k )2 - (ppv

kns
)2  as the scenario-dependent maximum reac‐

tive power capacity; and umin
kns

=-q̄pv
kns

=-umax
kns

. The resulting 

CVaR-based data-driven voltage regulation problem (P2) is 
stated as (14), subject to (7), (15)-(23).

(P2)  min
νtϑμφ

ζρδ{ukns
vins

}

1
Ntr
∑
ns = 1

Ntr

J(uns
wns

) (14)

ti +
1

1 - αi

1
Ntr
∑
ns = 1

Ntr

ϑins
£ 0 (15)

-vins
+ vimin - ti £ ϑins (16)

μi +
1

1 - αi

1
Ntr
∑
ns = 1

Ntr

φins
£ 0 (17)

vins
- vimax - μi £ φins (18)

ζk +
1

1 - βk

1
Ntr
∑
ns = 1

Ntr

ρkns
£ 0 (19)

-ukns
+ umin

kns
- ζk £ ρkns

(20)

δk +
1

1 - βk

1
Ntr
∑
ns = 1

Ntr

νkns
£ 0 (21)

ukns
- umax

kns
- δk £ νkns

(22)

{ϑiφiρkνk }ns
³ 0    "i = 12N"ns = 12Ntr

"k = 12Npv (23)

Upon solving optimization problem (P2), the optimal con‐
trol setpoints of the k th PV inverter for scenario ns, i.e., q*

kns
, 

are projected within the interval [-q̄pv
kns

, q̄pv
kns

] to respect (5) 

and are given as qproj
kns

.

Notice that the reactive power setpoints of the k th PV in‐
verter computed from problem (P2) are adaptive, i.e., the re‐
active power setpoints qproj

kns
 correspond to each scenario wns

 

without any restriction on the reactive power control policy. 
In addition, to dispatch the PV reactive power setpoints in re‐
al time, the DSO repeatedly solves the optimization problem 
(P2), which can be taxing computationally and communica‐
tion-wise if wns

 changes more frequently, and therefore, de‐

ploying the control rules in real time becomes obsolete.
To overcome the above-mentioned issues and to expedite 

the process of adjusting the DER setpoints adaptively based 
on time-varying wns

, we focus on developing local control 

policies, where the reactive power of the k th PV inverter is cap‐
tured by previously optimized inputs/outputs, i.e., (dkns

qproj
kns

), 
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where dkns
 contains only the local historical information of 

wns
 to be defined shortly. To accomplish this task, we lever‐

age: ① machine learning approaches, precisely ANN and re‐
gression-based approaches that learn the nonlinear mapping 
between dkns

 and qproj
kns

; and ② optimization-based approach‐

es, wherein the linear control policy is included during opti‐
mization to compute inverter specific coefficients. This is 
the theme of the ensuing section.

III. DATA-DRIVEN LOCAL DESIGNS FOR REACTIVE POWER 
CONTROL USING LINEAR AND NONLINEAR POLICIES 

This section details the various designs for individual lo‐
cal open-loop linear and nonlinear control policies for each 
inverter. Specifically, we develop an ANN-based controller 
for each PV inverter, trained using the optimal PV setpoints 
with their local historical information (dkns

qproj
kns

). Similarly, 

we design linear and nonlinear control policies, variations of 
which have been pursued in the literature to compute PV in‐
verter set points (e.g., [8]-[10], [16]), but not brought togeth‐
er under a unifying umbrella for comparison.

Let us consider the training data set corresponding to the 
k th PV inverter obtained from training optimization (P2) as 
{dkns

qproj
kns

}Ntr

ns = 1. Vector dkns
 is the local input to the kth PV in‐

verter whose entries are given by the following base vari‐
ables: net real power demand (pnet

kns
= pc

kns
- ppv

kns
), reactive 

power demand qproj
kns

, and the maximum reactive power capaci‐

ty q̄pv
kns

 given by (5). It should be noted that the voltage vkns
 

which is dynamically coupled to the local control action qproj
kns

 

may also be appended to dkns
; however, the stability of the 

resulting controller is difficult to analyze (e.g., [34]). There‐
fore, the nodal voltage vkns

 is not an input to the local poli‐

cies developed in the present work. The goal of machine 
learning techniques (ANN and regression) used in Designs I-
IV is to find a (generally nonlinear) control policy Ω: 
fk (dkns

)® qproj
kns

 that maps the local information of the k th PV 

inverter to its projected optimal setpoint using the previously 
optimized available input-outputs fk ({dkns

}Ntr

ns = 1 )®{qproj
kns

}Ntr

ns = 1.

Once the control policy has been designed, it can be local‐
ly applied in real time given the present net real power de‐
mand, reactive power demand, and available reactive power 
capacity, to determine the reactive power setpoint for each 
inverter. Specifically, the real and reactive power demands pc

k 
and qc

k are typically available by a smart meter, while the re‐
al power generation ppv

k  is determined by the maximum pow‐
er point tracking of PV generator or similar algorithm. In the 
present paper, the performance of the local policies is as‐
sessed using a set of Ntst test (not previously seen) scenarios. 
The set of local inputs corresponding to the test data is de‐
noted by {d ′kns

}Ntst

ns = 1.

In this paper, we devise ANN controllers to approximate 
the mapping Ω. The ANN structure amounts to a two-layer 
feed-forward network that consists of one hidden layer (HL) 
and one output layer (OL) for all PV inverters considered in 
this paper, as shown in Fig. 1. The first layer includes four 
hidden neurons and with parameters (ΘHL

k λHL
k ) which repre‐

sent weights and biases corresponding to the inputs of the 
k th PV inverter, respectively. Similarly, (θOL

k λOL
k ) represent 

the output layer parameters. We use a nonlinear activation 
function ϕHL for computation at the HL; and for the OL we 
use a linear activation function ϕOL. Given training input vec‐
tor dkns

, the layer-wise computations are given as follows.

ψHL
kns

=ϕHL
k (ΘHL

k dkns
+ λHL

k ) (24)

ψOL
kns

= (θOL
k )TψHL

kns
+ λOL

k (25)

where the vector-valued function ϕHL
k  is applying the nonlin‐

ear activation function ϕ(×)k elementwise.

For notational simplicity, let Πk collect the trainable pa‐
rameters (Θλ) of all layers for the ANN corresponding to 
the k th PV inverter. In the task of supervised learning, the 
ANN is trained using back-propagation algorithms based on 
gradient descent which minimize the training loss defined as:

min
Πk

1
Ntr
∑
ns = 1

Ntr

 qproj
kns

- gk (dkns
;Πk )

2

2
(26)

where gk (dkns
;Πk ) represents the composite mapping given 

by (3). The choice of training loss is task specific and in this 
study we use the MSE. Upon training, the optimal parame‐
ters Π *

k  are available, and the trained ANN is used to esti‐
mate the reactive power setpoints for the actual test data 
{d ′kns

}Ntst

ns = 1, which is expressed as:

qpv
kns

= gk (d ′kns
;Π *

k ) (27)

1) Design I: ANN-based controller with tangent-sigmoid 
activation function. In this design, for nonlinear activation 
function ϕHL

k (×) of each neuron in the HL, we use the tangent-
sigmoid function tanh. One advantage of tangent-sigmoid 
neurons is that the negative inputs are strongly negative and 
the zero inputs are close to zero, allowing them to have out‐
puts over a wide range of input space. A linear activation 
function is used for the neuron in the output layer.

2) Design II: ANN-based controller with rectified linear 
unit (ReLU) activation function. In this design, the transfer 
function in the HL of the neural network developed in De‐
sign I is replaced by the ReLU activation function, which is 
used by the majority of ANN applications in recent years. 
This is because of the fact that ReLU is computationally less 
expensive as it involves less mathematical operations and is 
easier to implement [35].

The training algorithm for Designs I and II is presented 
herein. In this paper, the Bayesian regularization algorithm is 
used as a training algorithm implemented using the com‐
mand TrainBr in MATLAB [36] for Designs I and II to up‐
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Fig. 1.　ANN architecture for k th PV inverter.
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date the weight and bias values of the ANN models. The 
Bayesian regularization algorithm minimizes the combina‐
tion of squared errors and weights, and then determines the 
correct combination so as to produce a network that general‐
izes well [37]. Since the ANN training starts with random 
initial weights, different results are obtained by different 
training algorithm runs. Therefore, every training is rerun un‐
til the best solution is obtained in terms of performance 
[26]. It is noteworthy to mention that, since we consider on‐
ly three base variables to estimate the optimal setpoints, the 
sensitivity of the estimation to the number of neurons in the 
hidden layer stabilizes for four neurons for all the test cases. 
The training parameters and corresponding values for De‐
signs I and II are listed in Table I for all test cases.

3) Design III: regression-based controller with quadratic 
interactions and Bayesian information criterion (BIC). This 
design specifically uses regression [16] for deriving local 
control of individual DERs in a decentralized fashion. Also, 
this design assumes the quadratic transformations of the base 
variables which contain additional nonlinear terms including 
the pairwise products and quadratic terms of base variables. 
The base variables are selected based on the BIC criterion 
[16]. In this design, the mapping Ω is approximated by the 
function fk ({dkns

}Ntr

ns = 1 ) = τ 0
k + τ

1
k {d 1

kns
}Ntr

ns = 1 + + τ n
k {d n

kns
}Ntr

ns = 1, 

where τ 0
k  τ

1
k   τ n

k  are the coefficients that are to be evalu‐
ated upon minimizing the MSE loss function, i.e., 
1

Ntr
∑
ns = 1

Ntr

 qproj
kns

- fk (dkns
; τk )

2

2
.

4) Design IV: regression-based controller with linear inter‐
actions and sum of squared estimate of errors (SSE). This de‐
sign also uses regression and replaces the quadratic transfor‐
mations with linear transformations of the base variables and 
further uses SSE criterion for model selection. Vector dkns

 

contains an intercept (constant term), linear term of each 
base variable, and all pairwise products of distinct base vari‐
ables (no quadratic terms).

The regression-based Designs III and IV are trained using 
the stepwiselm command from the statistics and machine 
learning toolbox in MATLAB [36]. It is worth emphasizing 
that the regression-based controllers in [16] have been devel‐
oped using deterministic OPF. However, the regression-
based controllers in this study are developed by adopting the 
CVaR-based data-driven voltage regulation problem (P2), 

lending them scenario-based adaptivity in a probabilistic 
fashion.

5) Design V: Case-based learning approach. In this design, 
the training information along with target data {dkq

proj
kns

}Ntr

ns = 1 

is stored in a database of past cases. The actual test realiza‐
tion {d ′kns

}Ntst

ns = 1, for which the reactive power setpoints are to 

be computed, are called the present cases. The present case 
vector d ′kns

 is compared to all past cases in the database to 

find the best match in the least Euclidean distance sense. 

Specifically, the distance is defined as  d ′kns
- dkns 2

. Then 

the corresponding setpoint qproj
kns

 from the past case with the 

smallest distance is used as the estimation for the present 
case. This technique has been implemented to predict build‐
ing energy consumption in [30], and more generally, the Eu‐
clidean distance has been used in various case-based learn‐
ing applications [38], [39]. This technique would be difficult 
to implement in a real-time setup due to the time needed to 
compute distances to all cases in the database and find the 
best estimate. It may also exhibit a large generalization error.

6) Design VI: affine feedback control policy. In this de‐
sign, the control policy for the k th PV inverter is restricted to 
have a linear form qpv

k (w)=mT
k w + τk, where mk and τk are 

the optimization variables for the k th PV inverter [8] - [10]. 
The coefficients mk select the entries of w corresponding to 
the k th PV inverter (and are set to zero otherwise), yielding a 
decentralized linear policy. The decentralized linear policy 
can be optimized by including in the optimization problem 
(P2) additional constraints uns

=Mwns
+ τ [23] with appropri‐

ate sparse matrix MÎRNpv ´(2Nc +Npv ) and vector τÎRNpv.
The flow diagram depicting the open-loop local control de‐

signs and validation process is shown in Fig. 2. The load 
consumption and PV generation data are first collected to 
solve the centralized CVaR-OPF (P2) and compute the opti‐
mal PV setpoints for Designs I through V, as well as the op‐
timal coefficients mk τk per inverter for Design VI. The opti‐
mal PV setpoints produced by the CVaR-OPF solution are 
projected back to their feasible regions to respect the device 
limits and the projected data are used to train Designs I 
through IV. The reactive power controllers produced by all 
designs are then used to compute the setpoints for the actual 
test data. It is worth emphasizing that the test data used for 
validation are different from the ones used for training. The 
computed setpoints for the actual test data are projected 
back to their feasible regions and the resulting reactive pow‐
er injections are then given as inputs to a nonlinear power 
flow solver, namely the Z-bus method [40], to obtain the 
nodal voltages across the network. The latter are used to vali‐
date the performance of the different designs in terms of 
voltage regulation and loss improvement. Specifically, the 
empirical probability of voltage violation is assessed in the 
ensuing section.

Figure 3 illustrates that the reactive power setpoint com‐
puted by the decentralized policy such as the ANN of De‐
sign I or Design II is fed into the traditional power control‐
ler, current controller, and switching logic module of the in‐
verter.

TABLE I
TRAINING PARAMETERS AND CORRESPONDING VALUES FOR 

DESIGNS I AND II

Parameter

Epochs

Goal

mingrad

valfail

μint

μinc

μdec

Explanation

The maximum number of epochs to train

Performance goal (MSE)

The minimum improvement from one epoch to the next

The maximum validation failures

Marquardt adjustment parameter

Increase factor for μ

Decrease factor for μ

Value

1000

0

10-9

15

10-3

10

10-2
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Remark 1: extension to multi-phase DNs. The proposed 
data-driven local control designs can be extended to multi-
phase DNs. The counterpart of LinDistFlow in (2) is 
LinDist3Flow approximation upon ignoring losses and other 
high-order terms [41], which we have recently extended to 
handle step-voltage regulator tap selection in the OPF [42]. 
Upon solving the resultant optimization problem, the optimal 
reactive power setpoints can be used to train the ANNs.

IV. NUMERICAL TESTS 

A. Network and Test Case Setup

The network used in this paper is the Arizona SB 129-
node test feeder, whose line parameters, nominal load val‐
ues, and PV locations are adopted from [29]. Further, we as‐
sume Vbase = 4.16 kV and Sbase = 2 MVA for all the test cases 
considered in this paper. The voltage limits vmin and vmax are 
set to be 0.95 p.u. and 1.05 p.u., respectively, for all test cas‐
es.

B. Data Collection

The data for solving the optimization problem (P2) are 
collected from the homes installed with smart meters located 
on Pecan Street in Austin, Texas, USA [43]. Historical load 
consumption and PV generation data are obtained for the 
month of July 2015. The data are collected in both hourly 
and minute-based resolution. Since the Pecan Street data in‐
clude only active power, the reactive power consumptions 
are generated by qc = pc tan ϕ assuming lagging power factor. 
The data from each home are then aggregated to match the 

nominal load of the node. Details on data aggregation can be 
found in [19]. A variety of under- and over-voltage scenari‐
os, control resolutions, and chance constraint specifications 
are investigated, as described next.

C. Test Cases

1)　Test Cases A and B (Under-voltage, Slow Time-scale)
Test cases A and B are to investigate the performance of 

various designs for the under-voltage scenario in DNs. In 
test cases A and B, we consider a one-hour resolution of his‐
torical data. The optimization is performed based on the data 
for the first 30 days of the month (Ntr = 720 scenarios) to 
generate the training scenarios, and the performances of the 
developed control designs (Designs I-VI) are evaluated for 
the last day (Ntst = 24 scenarios). Further, the maximum PV 
generation is assumed to be 80% of the nominal consump‐
tion pc. The apparent power capacity S pv

max is set to be 185% 
of P pv

max. Moreover, a lagging power factor of 0.95 is as‐
sumed for all loads. For test case A, the voltage violation 
probability α is set to be 0.9 and the PV inverter reactive 
power capacity violation probability β is assumed to be 0.95 
in the optimization problem (P2). The difference in test case 
B is that the probability specifications are tightened in the 
optimization, which poses a challenge for the decentralized 
designs not to exceed the desired violation probabilities. Pre‐
cisely, the voltage violation probability is tightened to 0.95 
and the PV inverter capacity violation probability is further 
tightened to 0.99.
2)　Test Cases C and D (Over-voltage, Fast Time-scale)

Test cases C and D are the investigations into over-volt‐
age scenarios in the DNs (SB 129-node modified) while us‐
ing the 15-min data-point resolution. For the 15-min data-
point resolution, the 1-min data-point resolution load con‐
sumption and PV generation profiles are first considered. 
The values are then averaged every 15 min to construct 15-
min based profiles. Furthermore, we assume the power fac‐
tor of 0.99 (lagging) for all loads to compute the reactive 
power profiles. To create over-voltage scenarios, the original 
SB 129-node feeder for test cases C and D is modified by 
adding eight additional PV inverters and 6 shunt capacitors 
with ratings [1.51005553]kvar. Voltage violation and PV 
inverter probability specifications are both set to be 0.95. 
Furthermore, the maximum PV generation is assumed to be 
130% of the actual nominal consumption pc. The apparent 
power capacity S pv

max is set to be 120% of P pv
max. Also, nominal 

loads are scaled down to 10% of their actual values. The op‐
timization for test case C is performed in a similar way as 
test cases A and B, i.e., the optimization is performed for 30 
days of July 2015 (Ntr = 2880 scenarios) and the performance 
of the developed control designs is evaluated for the last day 

Collect training

load and PV

generation data

 

 

Solve CVaR-OPF

(P2)

Compute the optimal

affine policy

coefficients

Compute & project

the optimal reactive

power setpoints  

Compute &

project reactive

power setpoints

from test data
Train local

controllers

Apply reactive power

setpoints and validate

voltage regulation &

loss minimization with

nonlinear power flow

solver

Fig. 2.　Flow diagram depicting open-loop local control designs and validation process.
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(Ntst = 96 scenarios). For test case D, the optimization is per‐
formed for the first 24 days (Ntr = 2304 scenarios). Then, the 
control designs are tested on the last seven days of July 
2015 (Ntst = 672 scenarios). In other words, the difference in 
test case D is that we test for the last seven days instead of 
the last day. The objective is to investigate the generalization 
over a longer period of time.

The optimization problem for test cases A, B, C, and D is 
programmed in MATLAB invoking CVX [44] with MOSEK 

Solver. Specifically, test cases A and B are solved using a 
PC with 32 GB RAM, and test cases C and D are solved us‐
ing a high-performance computing cluster.

Table II lists the maximum voltage probability violations 
in percentage for the terminal node (node 129) in all designs 
and test cases. Voltage violations are shown in bold. Figure 
4 depicts a bar graph comparing the results in Table II. 
More detailed analysis of the results per test case are provid‐
ed next.

1) Test case A: it can be observed from Table II that both 
regression controllers (Designs III and IV) violate the volt‐
age specification, i. e., the voltage probability violations are 
above 10%. From Fig. 4, it can also be observed that De‐
signs III and IV perform significantly worse for test case A. 
Both ANN controllers (Designs I and II) and the case-based 
learning (Design V) pass the voltage specification, and have 
the same performance outcome of 8.33%. The affine control‐
ler (Design IV) performs the best for test case A, with a 
probability of 4.17%.

2) Test case B: by observing Table II, it can be observed 
that only two designs passed the voltage specification, i. e., 
the ANN with tangent-sigmoid (Design I) and the affine con‐
troller (Design VI). From Fig. 4, it can be observed again 
that both regression controllers perform significantly more 
poorly in comparison to the other designs for test case B. 
The ANN with tangent-sigmoid (Design I) performs better in 
test case B compared with test case A, with voltage probabil‐
ity violation of 4.17%. The affine controller (Design VI) per‐
forms the best compared with the other designs, for test case 
B with zero probability of voltage violations.

3) Test case C: for this test, the ANN controllers (Designs 
I and II) and the regression with quadratic interactions (De‐
sign III) all show good performance with 1.04% probability 
violation, and the affine controller (Design VI) again per‐
forms the best with zero probability of voltage violations. 

From Table II and Fig. 4, it can be observed that the regres‐
sion without quadratic interactions (Design IV) and the case-
based learning (Design V) both exceed the allowed voltage 
violation specification of 5%, with violation probabilities of 
6.25% and 9.38%, respectively.

4) Test case D: for this test case, all designs pass the volt‐
age violation specification of 5%. Design IV performs slight‐
ly worse to the other designs at probability violation of 
3.13%. ANN with tangent-sigmoid (Design I) and affine con‐
troller (Design IV) perform the best with 2.38%.

The empirical cumulative distribution functions (CDFs) 
for the voltage at node 129, which is the node with the high‐
est probability violation using different designs in various 
test cases, are depicted in Figs. 5 and 6. The y-axis in Fig. 5 
depicts the probability of voltage violation for node 129 be‐
ing below the minimum voltage limit (p.u.), i.e., Pr{v129 £
0.95}. Similarly, the y-axis in Fig. 6 depicts the probability 
of voltage violation for node 129 being above the maximum 
voltage limit, i. e., Pr{v129 ³ 1.05}. The x-axis, κ, is the volt‐
age violation specification in Figs. 5 and 6.

The network-wide voltage profiles using Designs I, III, V, 
and VI with respect to no-control for test cases B and C are 

TABLE II
THE MAXIMUM VOLTAGE PROBABILITY VIOLATIONS FOR NODE 129

Test case

A

B

C

D

The maximum voltage probability violation (%)

Design I

8.33

4.17

1.04

2.83

Design II

8.33

8.33

1.04

2.38

Design III

25.00

25.00

1.04

2.83

Design IV

16.67

16.67

6.25

3.13

Design V

8.33

8.33

9.38

2.38

Design VI

4.17

0.00

0.00

0.00

No control

62.50

62.50

21.88

26.70
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Fig. 4.　The maximum voltage probability violations in percentage for node 
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Fig. 5.　Empirical CDF of voltage at node 129 for Designs I, III, V, VI, 
and no-control for test case B using actual test data (July 31) and upon solv‐
ing nonlinear power flows with Z-bus method.
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also shown in Figs. 7 and 8, respectively. The y-axis in Fig. 
7 depicts the smallest voltage across the network for each 
time period in the x-axis. The duration over which each 
curve stays below the horizontal line of 0.95 p. u. corre‐
sponds to the voltage probability violation; likewise for Fig. 
8 and the over-voltage case.

D. Percentage Improvement in Thermal Losses

Table III lists the percent improvement (or reduction) of 
average thermal losses under the considered control designs 
versus the case where no reactive power control is applied. 
The regression-based controllers (Designs III and IV) 
achieve the best percent improvement compared with the oth‐
er designs. The ANN controllers (Designs I and II) and case-

based learning (Design V) show similar improvement, only 
slightly less than the regression designs. Interestingly, the af‐
fine controller (Design VI) performs the worst in terms of 
thermal loss improvement, whereby losses have actually in‐
creased for test case D.

Overall, while the regression-based controllers (Designs 
III and IV) show good thermal loss improvement, they per‐
form poorly for under-voltage scenarios, i. e., test cases A 
and B. The affine controller (Design VI), on the other hand, 
outperforms all the other designs concerning voltage regula‐
tion. However, this superior performance comes at the cost 
of the poor improvement in average thermal losses. ANN 
with ReLU (Design II) results in slightly better improvement 
to thermal losses compared with ANN with tangent-sigmoid 
(Design I), but exhibits voltage violation for test case B. The 
ANN with tangent-sigmoid controller (Design I) provides a 
good middle ground, with low probability of voltage viola‐
tions in both under- and over-voltage scenarios, and simulta‐
neously achieves large improvement in terms of thermal loss‐
es.

V. CONCLUSION

This paper develops a data-driven control based on ANNs 
to compute the reactive power setpoints utilizing conserva‐
tive convex approximations of chance constraints. The con‐
trollers can be implemented in a decentralized fashion, with‐
out the need for monitoring and communication infrastruc‐
ture. The developed ANN controllers are compared with re‐
gression-based ones, as well as optimization approaches fea‐
turing affine feedback rules and a case-based learning ap‐
proach. ANN controllers turn out to be robust to uncertain‐
ties for voltage regulation when compared with other control 
polices. In future research, we will focus on extending this 
approach considering more types of possible DERs such as 
battery energy storage systems and electric vehicles. It is al‐
so worth investigating the effect of coordinating different dis‐
tribution system assets (e.g., step-voltage regulators and 
shunt capacitors) utilizing a stochastic optimization frame‐
work combined with data-driven control. Future research 
will also look into real-time implementation of the proposed 
ANN controllers using hardware-in-loop.
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