
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

Exploration of Artificial-intelligence Oriented
Power System Dynamic Simulators

Tannan Xiao, Ying Chen, Jianquan Wang, Shaowei Huang, Weilin Tong, and Tirui He

Abstract——With the rapid development of artificial intelli‐
gence (AI), it is foreseeable that the accuracy and efficiency of
dynamic analysis for future power system will be greatly im‐
proved by the integration of dynamic simulators and AI. To ex‐
plore the interaction mechanism of power system dynamic simu‐
lations and AI, a general design for AI-oriented power system
dynamic simulators is proposed, which consists of a high-perfor‐
mance simulator with neural network supportability and flexi‐
ble external and internal application programming interfaces
(APIs). With the support of APIs, simulation-assisted AI and AI-
assisted simulation form a comprehensive interaction mecha‐
nism between power system dynamic simulations and AI. A pro‐
totype of this design is implemented and made public based on
a highly efficient electromechanical simulator. Tests of this pro‐
totype are carried out in four scenarios including sample gener‐
ation, AI-based stability prediction, data-driven dynamic compo‐
nent modeling, and AI-aided stability control, which prove the
validity, flexibility, and efficiency of the design and implementa‐
tion for AI-oriented power system dynamic simulators.

Index Terms——Power system dynamic simulator, artificial in‐
telligence, application programming interface, parallel comput‐
ing.

I. INTRODUCTION

POWER system dynamic simulation is still the most reli‐
able and widely used approach for power system stabili‐

ty analysis [1]. Electric power companies and developers
from all over the world have developed many dynamic simu‐
lators including electromechanical simulators such as PSASP
[2] and PSD-BPA [3] by the China Electric Power Research
Institute (CEPRI), PSS/E [3] by Siemens, DSATools [4] by
Powertech, DIgSILENT PowerFactory [5] by DIgSILENT
GmbH, Eurostag [6] by Tractebel, PYPOWER-Dynamics [7]
by Susanto, and STEPS [8] by Shandong University; electro‐

magnetic simulators such as PSCAD/EMTDC [9] by Manito‐
ba and CloudPSS [10] by Tsinghua University; and real-time
simulators such as RTDS [11] by Manitoba, HYPERSIM
[12] by OPAL-RT, and ADPSS [13] by CEPRI. The commer‐
cial simulators are well tested in the practical power sys‐
tems, which means they support a lot of functions and are
very reliable. However, the commercial simulators were usu‐
ally designed and implemented years ago, which means their
architecture might be old and the application programming
interfaces (APIs) may be stiff or even be unavailable. Be‐
sides, the free and open-source simulators are commonly not
as functionally mature as the commercial ones but are much
more flexible. The source code can be directly modified,
hence APIs can be developed as needed.

Research on artificial intelligence (AI) has achieved a
growth spurt in the past few years. AI algorithms such as
graph neural networks (GNNs) and reinforcement learning
(RL) have been applied to a variety of power system studies
such as measurement enhancement [14], dynamic component
modeling [15], parameter inference [16], optimization and
control [17], and stability assessment [18]. AI models can
learn and approximate any functions with enough samples
[19]. AI technology will be more and more important in the
research field of power systems, especially with the rapid de‐
velopment of renewable generation and power electronics
[20]. The safe and efficient operation of power systems is
facing great challenges, e.g., we may need to model new de‐
vices to analyze stability although some operation mecha‐
nisms of devices are still under research, the dimensionality
reduction is needed to scale down the complexity, and the
significantly increasing uncertainty of power systems re‐
quires fast and flexible stability analysis and control. AI-as‐
sisted power system analysis and control might be a solution
to these challenges [21], or at least a mitigation measure.

Currently, although some commercial softwares such as
DIgSILENT PowerFactory have supported AI applications to
a certain extent, the relationship between power system dy‐
namic simulation and AI is still relatively fragmented. The
simulator usually works only as a data generator and pro‐
vides limited prior knowledge, whereas the trained AI model
usually works independently as a black-box model with poor
interpretability and cannot be easily integrated into simula‐
tors. In one word, the simulator is not AI-friendly enough.
In [22], the idea of a learning simulation engine that com‐
bines AI and simulation is proposed. Simulation-assisted AI

Manuscript received: February 23, 2022; revised: April 30, 2022; accepted:
June 17, 2022. Date of CrossCheck: June 17, 2022. Date of online publication:
July 19, 2022.

This work was supported in part by the National Natural Science Foundation
of China (No. 51877115) and in part by China Postdoctoral Science Foundation
(No. 2021M691724).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
 T. Xiao, Y. Chen (corresponding author), S. Huang, and T. He are with the
Department of Electrical Engineering, Tsinghua University, Beijing 100084, Chi‐
na (e-mail: eexiaoxh@gmail.com; chen_ying@tsinghua.edu.cn; huangsw@tsing‐
hua.edu.cn; hetirui@qq.com).
 J. Wang is with the College of Electrical Engineering, Zhejiang University,
Hangzhou 310027, China (e-mail: wangjq@zju.edu.cn).
 W. Tong is with Wuxi Power Supply Company of State Grid, Wuxi 214125,
China (e-mail: tongwl1994@qq.com).

DOI: 10.35833/MPCE.2022.000099

401

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

and AI-assisted simulation mutually support each other. With
the support of AI, the simulator can evolve autonomously
and become more accurate and efficient, which is also cru‐
cial to the realization of power system digital twins [23]. In
[24], a similar and more comprehensive concept of simula‐
tion intelligence is proposed. This can be the future of pow‐
er system dynamic simulators.

Based on the learning simulation engine proposed in [22]
and the simulation intelligence discussed in [24], we explore
the cooperation of AI and power system dynamic simula‐
tions in this paper. The contributions are as follows.

1) A general design of an AI-oriented power system dy‐
namic simulator is proposed, which consists of a high-perfor‐
mance simulator with neural network supportability and flex‐
ible external and internal APIs. External API-based simula‐
tion-assisted AI and internal API-based AI-assisted simula‐
tion form a comprehensive interaction mechanism between
power system dynamic simulations and AI.

2) A prototype of the proposed design is implemented
based on a self-developed power system electromechanical
simulator. The efficiency of the simulator is improved by tra‐
ditional approaches including sparsity techniques, parallel
computing, and memory allocation optimization. External
and internal APIs are developed with Python and the source
code is made public on GitHub, as shown in Supplementary
Material A.

3) Four typical cases of utilizing the developed simulator,
i.e., sample generation, GNN-based stability prediction, data-
driven dynamic component modeling, and RL-based stability
control, are illustrated to prove the validity, flexibility, and
efficiency of the proposed design and implementation.

The remainder of this paper is as follows. Section II intro‐
duces the design of the AI-oriented power system dynamic
simulator. The implementation details of a prototype simula‐
tor based on the proposed design are illustrated in Section
III. In Section IV, the typical examples of the implemented
simulator are explained and tested. Conclusions are drawn in
Section V.

II. DESIGN OF AI-ORIENTED POWER SYSTEM DYNAMIC
SIMULATOR

In Fig. 1, the overall architecture design of the power sys‐
tem dynamic simulator is demonstrated. The idea is intui‐
tive. In order to support the interactions between the simula‐
tor and AI model, a reasonable choice is to develop AI-
friendly APIs to bridge them. The simulator, APIs, AI mod‐
els, and power system operator form a bionic interaction
mechanism similar to the musculoskeletal system, nerves,
spinal cord, and brain. Via the APIs, the simulator can pro‐
vide massive data and prior knowledge for AI models,
whereas AI models mine the data, discover the hidden pat‐
terns, and return well-trained models and posterior knowl‐
edge. Meanwhile, AI models can provide predictions and
suggestions to power system operators based on their de‐
mands. Therefore, a closed-loop interaction mechanism is es‐
tablished. With the support of this interaction mechanism,
the traditional physics-based simulator and the data-driven
AI models can cooperate to achieve the task of data enhance‐
ment [25], awareness enhancement [26], analysis enhance‐
ment [27], decision-making enhancement [28], etc., and may
finally lead to the creation of a power system digital twin.

In this section, the designs of the simulator and APIs as
well as the interactions between the simulator and AI models
are explained in detail.

A. Simulator

Power system dynamic simulators can be used to generate
massive scenarios and simulation results, i. e., physics-based
data. The general structure of a power system dynamic simu‐
lator is presented in Fig. 1, which consists of four parts, i.e.,
model, parameter, solution, and function. Firstly, a model is

needed for each power system component, which can be a
physics-based model, a data-driven model, or a physics-data-
integrated model. A model conversion function for different
models of different simulators is preferred. Secondly, param‐
eters of the selected model need to be measured or estimat‐
ed, i. e., model calibration [29] is needed. Thirdly, all the
models with parameters are formulated together in a group
of high-dimensional equations. Power flow can be solved
with the Newton method to obtain the operation state. Power
system dynamics are formulated with ordinary differential

Model

Parameter

Solution

Function

Simulator (bone and muscle)

Model

Data

Final hypothesis

Algorithm

Hypothesis set

Training data set

AI (spinal cord)

Internal API

External API

API (nerve)

Prior

knowledge

Posterior

knowledge

Operator

Human (brain)

Data enhancement
Awareness

enhancement

Analysis

enhancement

Decision-making

enhancement
Digital twin …

Model

Data

Application

Proposed simulator and its interaction with AI model

Fig. 1.　Overall architecture of AI-oriented power system dynamic simulator.

402

XIAO et al.: EXPLORATION OF ARTIFICIAL INTELLIGENCE-ORIENTED POWER SYSTEM DYNAMIC SIMULATORS

equations (ODEs) in the electromagnetic simulation and dif‐
ferential-algebraic equations (DAEs) in the electromechani‐
cal simulation. They can both be solved with a numerical in‐
tegration method and a linear solver [30]. Finally, the simula‐
tion-based functions are realized based on the solutions of
power flow and power system dynamics.

Here are two required features of the simulator to support
the integration of simulations and AI models, i.e., rapid simu‐
lation speed and neural network supportability.
1)　Rapid Simulation Speed

Simulation speed is essentially the basis of AI-assisted
power analysis and control system. The training of AI mod‐
els requires massive data; and the data generation is very
time-consuming. The simulation speed is a bottleneck in suc‐
cessfully utilizing AI algorithms and training a model with
sufficient performance. Therefore, the simulator must be
well optimized and highly efficient. The algorithm-level and
task-level parallelisms, which are solution level and function
level in Fig. 1, are required to fulfill the efficiency needs in
different situations.
2)　Neural Network Supportability

Another requirement of the simulator is neural network
supportability, i. e., being able to load the structure and pa‐
rameters of neural networks and perform at least forward
propagation of neural networks. The simulator should be
able to integrate AI models into any part of the simulator so
that the efficiency and accuracy of the simulator can be im‐
proved by the cooperation of traditional algorithms and AI.

B. API

Flexible APIs are crucial to the cooperation of power sys‐
tem dynamic simulations and AI models. The APIs of an AI-
oriented power system dynamic simulator are divided into
external APIs and internal APIs. The external APIs are used
to get data and invoke functions of the simulator, whereas
the internal APIs are used to modify the data and control the
simulation process. Corresponding to the four parts of the
simulator shown in Fig. 1, the external and internal APIs can
further be divided into four categories, i.e., model APIs, pa‐
rameter APIs, solution APIs, and function APIs.

External model APIs and parameter APIs are used to out‐
put structures and parameters of different models. The model
expression should be easy to understand and modify, e.g., di‐
agrams and JSON files. External solution APIs are used to
output parameters related to solution methods and intermedi‐
ate results during the solution process, e.g., the node order‐
ing method, the admittance matrix, the iteration number of
the power flow solution, and the integration step. External
function APIs are used to invoke functions, e.g., power flow
solutions, short-circuit calculations, transient simulations, as
well as output required simulation results, e. g., the maxi‐
mum rotor angle difference, nodal voltages, and currents of
transmission lines.

Correspondingly, the internal APIs are used to alter model
types, modify parameters, change solution methods, and adjust
boundary conditions of functions. Through internal APIs, AI
models can be used to model dynamic components, estimate

parameters, accelerate solutions, and surrogate functions.
Overall, compared with the APIs of existing commercial

simulation tools, the APIs of an AI-oriented power system dy‐
namic simulator make it easy to develop AI models for power
system applications and realize the cooperation of traditional
algorithms and AI algorithms. More detailed information of
the power system components and simulations can be provid‐
ed to AI models via the external APIs, and AI models can be
deeply integrated into power system simulations via the inter‐
nal APIs. Other suggested features of the APIs are as follows.
1)　No Impact on Simulation Efficiency

The implementation of APIs must not affect the efficiency
of the simulator. As mentioned before, the simulator focuses
on efficiency. The source code is usually written with effi‐
cient programming languages such as C++ , Java, FOR‐
TRAN, i.e., the implementation is highly organized and opti‐
mized. It should not be disturbed by the APIs. Therefore, a
suggested way is to rewrap the needed internal functions as
external functions. These external functions can be invoked
by other programming languages.
2)　Efficient Memory Exchange

Data are frequently exchanged between the simulator and
AI models. Taking neural network based stability prediction as
an example, massive samples of tens or even hundreds of giga‐
bytes are generated. The data exchange better happens in
RAM instead of on hard drives. If there is not enough RAM,
the data could be cut into several pieces and transferred se‐
quentially, or the data could be exchanged using a database.
3)　Interpreted Language-written

It is recommended to develop the APIs of an AI-oriented
power system dynamic simulator with interpreted languages
such as Python. These programming languages are easy to
learn and use, and have very mature developer communities.
There are a tremendous number of Python-written open-
source AI projects on GitHub. With Python APIs, the simula‐
tor can be easily modified for AI applications and can coop‐
erate with AI models.

C. Interactions of Dynamic Simulations and AI

In contrast to the simulator, AI produces data-driven mod‐
els based on the existing data, as illustrated in Fig. 1. Firstly,
a training dataset is needed. The quality and representative‐
ness of the samples will seriously affect the performance of
AI models. Secondly, a hypothesis set is established, i. e., a
learning framework is selected based on the task and the
training data. Thirdly, optimization algorithms are utilized to
train the model. At last, the final hypothesis, i.e., an AI mod‐
el, is obtained.

The interactions between the simulator and AI models are
further illustrated in Fig. 2. The right part demonstrates simu‐
lation-assisted AI and the left part denotes AI-assisted simu‐
lation.
1)　Simulation-assisted AI

Simulation-assisted AI is realized based on the external
APIs. Firstly, simulations can be used to generate dataset.
The actual training dataset also needs sample selection or
augmentation, e. g., stability prediction needs the simulation

403

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

results with balanced stability labels. Sampling methods are
very important since the data quality determines the perfor‐
mance of AI models [31]. Secondly, physics-based models
can be used as a strong prior knowledge for AI model de‐
sign. For example, the power network topology can be used
to design GNN [18]. Thirdly, physical laws such as conserva‐
tion laws can be used as constraints in optimization algo‐
rithms to limit the feasible region, improve the interpretabili‐
ty of AI models, and speed up the training process [32],
[33]. Finally, the simulator can be used as the benchmark for
the performance verification of AI models.

2)　AI-assisted Simulation
AI-assisted simulation is realized based on the internal

APIs. Firstly, data-driven AI models can be used for dynam‐
ic component modeling [15], [34]. Although the model may
suffer from the problem of interpretability, the measurement-
based AI model can also be accurate and adaptive. Via the
internal APIs, physics-based models and data-driven models
can be integrated seamlessly and be simulated simultaneous‐
ly [35]. Secondly, AI models can be used for power system
model calibration [36]. Power system dynamic modeling and
parameter estimation are facing increasing challenges be‐
cause of the rapid development of renewable generation and
power electronics. Data-driven power system dynamic mod‐
eling could be a potential solution. Thirdly, AI models can
be used to discover and formulate the hidden patterns in the
solution procedures and improve solution efficiency, e. g.,
convergence prediction of power network equations, variable
integration step prediction, and switch state prediction of
power electronic devices [37]. Finally, AI models can be
used as surrogate models for power system analysis [38] and
control [39]. Power system computation can be very time-
consuming. Using a surrogate model as an approximation of
the actual computation can significantly increase the efficien‐
cy of analysis and decision-making.

III. IMPLEMENTATION OF AI-ORIENTED POWER SYSTEM
DYNAMIC SIMULATOR

In Fig. 3, a prototype of the AI-oriented power system dy‐
namic simulator explained in the former section is imple‐
mented based on a high-performance electromechanical simu‐
lator called power system optimal parameter selection

(PSOPS). After developing some external functions to sup‐
port Python APIs, the simulator is compiled as a dynamic
link library PSOPS.dll in Windows and a shared object file
PSOPS. so in Linux. The Python APIs of the prototype are
developed using the ctypes library [40]. The PSOPS. dll,
PSOPS. so, and the open-source Python APIs, can be found
in the repository called Py_PSOPS on GitHub. In the Python
APIs, computational functions such as power flow solution
and transient simulation have that names the begin with “cal”.
The functions with the names that start with “get” and “set”
denote the functions of external APIs and internal APIs, re‐
spectively.

In this section, the implementation details of the PSOPS
simulator and the APIs are illustrated.

A. Implementation of PSOPS Simulator

PSOPS can perform AC power flow considering PV-PQ
switching and electromechanical transient stability simula‐
tions. It is developed using C++ based on previous studies
[41]-[44]. Power system dynamics are modeled with a group
of high-dimensional nonlinear DAEs. The alternating ap‐
proach proposed in [45] is adopted in PSOPS due to its sim‐
plicity, reliability, and robustness [30].
1)　Traditional Techniques for Efficiency Improvement

In PSOPS, traditional algorithms including improved spar‐
sity techniques, improved bordered block diagonal form
(BBDF) method, and memory allocation techniques are uti‐
lized to accelerate transient simulations.

As for the sparsity techniques, the approximate minimum
degree-minimum number of source predecessor (AMD-
MNSP) algorithm and the multi-path sparse vector method
are utilized to enhance the efficiency of the sparse vector
method while maintaining the sparsity of the factorized ma‐
trix [41].

In terms of parallel computing, a fully parallel BBDF
method [42], a fully parallel nested BBDF method [43], and
an efficient computing task allocation scheme based on sub‐
net-core mapping and mixed programming of message pass‐
ing interface (MPI) and OpenMP [44] are adopted to im‐
prove the BBDF method at the algorithmic and implementa‐
tional levels.

As for memory allocation, a node-ordering-based memory
allocation technique is utilized, which reorders components

Sparsity

technique

PSOPS.so/PSOPS.dll

Parallel

computing

Memory

allocation

LibTorch

and

eigen

External

functions

API

Py_PSOPS

Ctypes

AI applications

Sample generation

STGCN-based

stability prediction

Neural ODE

(NODE) based

dynamic modeling

RL-based SOPF

Internal
API

External
API

Get

Set

Fig. 3.　Implementation and tests of Py_PSOPS.

Model

Parameter

Solution

Function

Simulator

Final

hypothesis

Optimization

algorithm

Hypothesis set

Training data set

AI

Internal API External API

API

Surrogate

models

Simulation

samples

Pattern

discovery

Deductive

models

Parameter

inference

Physical

constraints

Inductive

models

Model

verification

Fig. 2.　Interactions between simulator and AI models.

404

XIAO et al.: EXPLORATION OF ARTIFICIAL INTELLIGENCE-ORIENTED POWER SYSTEM DYNAMIC SIMULATORS

such as transmission lines, transformers, generators, and
loads based on the node ordering and saves the admittance
matrix, the equation coefficient matrix, and the independent
vector in a contiguous memory block to increase the cache
hit rate when solving power network equations.

In Table I, the basic information and average time con‐
sumption of 10 s transient simulations after utilizing the
above techniques are presented. The 2383wp system is a
widely used test system in MATPOWER, and sys13490 and
Sys24886 are two practical power systems. All the dynamic
components are modeled in detail. The test HPC platform is
Sugon I950r-G installed with 8 Intel Xeon E7-8837 2.67
GHz processors. Each processor is integrated with 8 CPU
cores, i.e., the total number of CPU cores is 64. As can be
observed, simulations are significantly accelerated.

2)　C++ Libraries for Neural Network Supportability
Meanwhile, neural network supportability is realized using

two open-source C++ libraries, i. e., the Eigen library [46]
and the LibTorch library [47]. The difference between the
two libraries is the granularity of neural network implementa‐
tion. As for the Eigen library, neural networks are built in
the source code of the PSOPS simulator using the vector
class and the matrix class. The structure of neural networks
is loaded by reading a JSON file and the parameters are
loaded by reading binary files saved by PyTorch [48]. Be‐
sides, the neural modules saved by PyTorch, i. e., both the
structures and the parameters, are directly loaded for the Lib‐
Torch library. The Eigen library is computationally more effi‐
cient but structural changes of neural networks require the
modification of the source code of PSOPS, whereas the Lib‐
Torch library is simpler to use but the computation speed is
lower than the Eigen library. Therefore, the LibTorch library
is recommended for model evaluation and the Eigen library
is recommended for model deployment. By changing the ver‐
sion of LibTorch, Py_PSOPS can adapt to different versions
of PyTorch.

As mentioned before, neural network supportability makes
it possible to integrate AI with traditional simulations. Cur‐
rently, the integration and simultaneous simulations of AI-
based power system dynamic models and physics-based mod‐
els have been realized in PSOPS. Other applications of AI-
assisted simulations are still under development.

B. Implementation of APIs

As shown in Fig. 3, the PSOPS simulator is compiled as a
dynamic link library file PSOPS.dll in Windows and a shared
object file PSOPS. so in Linux. Only the external functions,

which are realized by rewrapping the models and functions of
PSOPS, can be accessed. The external functions of PSOPS
and the Python APIs are connected using the ctypes library.

The Python APIs load the external functions from PSOPS.dll
and PSOPS. so and reorganize the data into a NumPy [49]
style. The source code is organized in a component-based man‐
ner, which means the functions of the same kind of component
are put together. The Python APIs can be extended easily to
fulfill the needs in different situations. A more well-rounded
API will be a future working direction. The details of external
and internal model APIs, parameter APIs, solution APIs, and
function APIs are as follows.
1)　Model API

As mentioned before, when using the Eigen library, the
structure of neural networks can be established in the simula‐
tor by modifying the basic computation data file and reading
a JSON file containing the names and structure of layers of
the neural network. When using the LibTorch library, the
whole neural model can be established by directly loading
the modules saved by PyTorch.
2)　Parameter API

The parameters of components such as the name, the total
number, the constraints, the default settings, the dynamic
model parameters, and the connectivity, can be got or set.
However, currently, the parameters of neural networks are di‐
rectly loaded by the simulator via modifying the basic com‐
putation data file and reading a binary file.
3)　Solution API

The intermediate results during simulation processes can
be obtained. The simulated power system can be set to states
at any integration step. Basic data of the solutions such as
the iteration number, the simulation time, the integration
step, faults, and disturbances can be accessed. More impor‐
tantly, the network topology accessibility is realized. Net‐
work topology data such as the admittance matrix, the im‐
pedance matrix, the number of fill-ins, and the factorized
lower and upper triangular matrices can be obtained. The
connectivity of each component, i.e., whether the component
is connected to the power network, can be changed and the
network connectivity check is supported, i. e., asynchronous
subsystems can be identified. Other settings such as power
flow solution methods, integration methods, node ordering al‐
gorithms, and sparse vector methods can be modified by
changing the basic computation data file.
4)　Function API

The function API supports calling power flow solutions
and transient stability simulations and gets simulation results
including rotor angles, rotation speed, inner electric poten‐
tial, active and reactive power, outputs of regulators, nodal
voltages, etc. Meanwhile, the task-level parallelism is real‐
ized using the ray library [50] of Python.

IV. CASE STUDIES

In this section, four typical cases of utilizing the proto‐
type, i. e., sample generation, spatiotemporal graph convolu‐
tional networks (STGCN) based stability prediction, NODE-
based [51] power system dynamic component modeling, and

TABLE I
BASIC INFORMATION AND AVERAGE TIME CONSUMPTION OF 10 S

SIMULATIONS OF THREE TEST SYSTEMS

Test
system

2383wp

Sys13490

Sys24886

Number of components

Bus

2383

13490

24886

Branch

2892

22544

39512

Generator

327

1797

1919

Load

1822

3550

5646

Time consumption (s)

Serial

2.655

9.911

13.525

Parallel

0.365

0.587

0.639

405

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

RL-based stability-constrained optimal power flow (SOPF),
are demonstrated to show the interactions between simulator
and AI models based on Py_PSOPS, as shown in Fig. 3.
Sample generation is one of the most basic applications of
Py_PSOPS. The STGCN-based stability prediction, the
NODE-based dynamic modeling, and the RL-based SOPF
are typical examples of simulation-assisted AI, AI-assisted
simulation, and mutual assistance between simulation and
AI, respectively. More applications can be developed using
Py_PSOPS. All four cases are supported by at least one pa‐
per or open-source code we developed on GitHub. The suc‐
cess of these tasks proves the validity, flexibility, and effi‐
ciency of the design and implementation.

The test system is the IEEE 39-bus system. The high-perfor‐
mance server used for testing consists of an NVIDIA P100
GPU, 250 gigabytes of RAM, and two Intel Xeon Gold 5118
processors, which contain 24 CPU cores in total and the hyper‐
threading is enabled, i.e., there are up to 48 threads available.

A. Sample Generation

1)　Stepwise Power Flow Sampling Scheme
Sample generation can be used for any AI application. It

is supported by the rapid simulation speed of PSOPS. As for
power flow sampling, simple random sampling, grid sam‐
pling, and a stepwise power flow sampling scheme are imple‐
mented. The pseudo-code of the stepwise power flow sam‐
pling scheme is shown as follows.

Pseudo-code 1: stepwise power flow sampling scheme

Input the total number of required samples N
Set n = 1
Get the limits of PD, QD, PG, and VG using external parameter APIs
While n <N
 Set the connectivity states of all the transmission lines to be true using
 internal solution APIs
 Set the connectivity state of one or two randomly chosen transmission
 lines to be false using internal solution APIs
 Set PD and QD randomly within limits using internal parameter APIs
 Calculate sum(PD)
 Do
 Set PG randomly within limits using internal parameter APIs
 Until sum(PG)+ sum(-P Slack)< sum(PD)< sum(PG)+ sum(P̄Slack)
 Set VG randomly within limits using internal parameter APIs
 Calculate power flow using external function APIs
 Get power flow convergence using external solution APIs
 If power flow calculation converges
 Save (PD, PG,VG)
 Set n¬ n + 1
 End if
End while

In pseudo-code 1, PD and QD are the active power vector
and reactive power vector of loads, respectively; sum(×) de‐
notes the sum of elements in the vector; PG is the active power
vector of generators; P̄Slack and -P Slack are the upper limit vector
and the lower limit vector of slack generators, respectively;
and VG is the nodal voltage vector of generators other than
slack generators.

After power flow sampling, contingencies are sampled by
randomly choosing a component, a fault type, a fault loca‐
tion, and a fault clearing time. Transient simulations of these
contingencies are carried out to generate simulation samples.

2)　Test Results
The source code of the proposed sampling scheme can be

found on GitHub in the Py_PSOPS repository. On the test
server, over 1.29 million power flow samples and over 50
million simulation samples of the IEEE 39-bus system are
generated using 40 threads within 9 hours. This sample data‐
set is used to support the research on STGCN and NODE.

B. STGCN-based Stability Prediction

This is a typical example of simulation-assisted AI. The
simulator provides training data as well as prior knowledge
to support AI model design.
1)　STGCN

An STGCN-based stability prediction model is proposed
in [52]. The idea is to predict transient stability based on the
power network changes and state variable changes within a
short time after faults occur. The STGCN can extract fea‐
tures from these changes and learn the correlation of these
changes with power system stability. Only a short-time simu‐
lation is required, and the efficiency of stability analysis can
be improved.

The implementation is supported by the network topology
accessibility of Py_PSOPS. The STGCN-based stability pre‐
diction model is shown in Fig. 4. Each STGCN layer is com‐
posed of a one-dimensional convolutional neural network
(1D-CNN) layer, a graph convolutional network (GCN) lay‐
er, and another 1D-CNN layer. The input of the (l + 1)th layer
of STGCN is the feature vector f l and the admittance matrix
Y, and the output is f l + 1. The input features include Y0, Y1,
and Y2, i.e., the admittance matrices before the fault, during
the fault, and after clearing the fault, respectively, which can
be obtained via external solution APIs, and f0f1...fn, i. e.,
temporal data of selected state variables obtained by a short-
time simulation from t = 0 to t = T, which can be obtained us‐
ing external function APIs. The fault is cleared at the time
instant t = tc. The total number of sampling instants is n. The
output of the model is the predicted stability label of the in‐
put cases.

STGCN

Y

STGCN

STGCN

STGCN

STGCN

GCN

Pooling

T

…

Stability prediction

…

t1, t2, …, t
c

t0

Y0 Y1 Y2

f0 f1 f2 f
c

f
c+1 f

c+2 f
n

t
c+1, t

c+2, …, t
n

f l

f l+l

1D-CNN

1D-CNN

GCN

Fig. 4.　Architecture of STGCN-based stability prediction model.

After training, the STGCN model and the transient simula‐
tion function of the Py_PSOPS can be integrated using APIs
and perform efficient transient stability analysis. The pseudo-
code of training an STGCN model and integrating the

406

XIAO et al.: EXPLORATION OF ARTIFICIAL INTELLIGENCE-ORIENTED POWER SYSTEM DYNAMIC SIMULATORS

STGCN model with transient simulations is as follows.
2)　Test Results

The STGCN-based stability prediction model is trained.
Samples in the training dataset are randomly selected in the
sample dataset. The training dataset contains 10240 samples,
whereas the testing dataset contains 33600 samples. The com‐
parison results of the STGCN model, the convolutional neural
network (CNN) model, the long short-term memory (LSTM)
model, and the multi-layer perceptron (MLP) model are dis‐
played in Fig. 5, where accuracy, precision, recall, and f1-score
are the commonly used indices for evaluating the performance
of neural networks [52]. Each time of STGCN-based stability
prediction averagely costs 5 ms, whereas the complete simula‐
tion averagely costs 25 ms.

C. NODE-based Dynamic Modeling

This is an example of AI-assisted simulation. The trained
AI model is integrated into the simulator and is simulated si‐

multaneously with physics-based dynamic models.
1)　NODE-based Power System Dynamic Modeling

An NODE-based power system dynamic modeling method
is proposed in [35]. The idea is to build data-driven dynamic
models based on NODE and accessible measurement data
when there is a lack of prior knowledge of the component, e.
g., equivalent modeling of load areas [53] and renewable
plants [54]. While learning a global approximation of the de‐
rivative functions with easily trainable neural networks,
NODE also keeps the classical framework of numerical inte‐
gration, which is a very important prior knowledge and
makes NODE highly adaptive to scientific computations and
industrial applications, as shown in (1).

Ψ(xV; θ) ẋ = f (xV) (1)

where x is the vector of state variables, whose time deriva‐
tives are equal to f (xV); V is the vector of nodal voltages;
Ψ is the vector of parametric derivative functions; and θ is
the vector of parameters of the parametric derivative func‐
tions. After inputting the initial value x = x(0), the variation
of x can be calculated with a numerical integration method.
The parameters of NODE can be trained using a set of sam‐
pled curves of x and V, which can be obtained through exter‐
nal APIs. The loss function is the mean squared error be‐
tween the predicted curves and the ground-truth curves of x.

After training, the NODE-based dynamic models are di‐
rectly integrated with physics-based models and transient
simulations are carried out to verify the efficacy of the neu‐
ral model. The pseudo-code of training an NODE-based pow‐
er system dynamic modeling is as follows.

2)　Test Results
The source code of common NODE modules for power

Pseudo-code 2: STGCN-based stability prediction

Training procedures
Input the total number of training epochs NE, the training dataset, the test
 dataset, and the mini-batch size m
Initiate the parameters of the STGCN model
Set epoch = 1
While epoch <NE

 Do
 Get m samples from the training dataset
 STGCN.forward(m samples)
 Calculate the cross-entropy loss
 Loss.backward()
 Update parameters of STGCN
 Until all the samples in the training dataset have been selected
 Evaluate the STGCN model in the test dataset
 Set epoch¬ epoch + 1
End while
Integrate the STGCN model and transient simulations
Input the STGCN model, the contingency, the integration step Dt, and the
 short simulation time T
Calculate power flow using external function APIs
Set contingency using internal function APIs
Set the integration step to Dt and the simulation time T using internal
 solution APIs
Perform transient simulations using external function APIs
Get Y0, Y1, Y2, and f0 f1... fn using external solution APIs and external
 function APIs
Stability label = STGCN.forward (Y0, Y1, Y2, f0 f1... fn)

1.000

0.995

0.990

0.985

0.980

0.975

0.970
Accuracy Precision Recall f1-score

Model

R
es
u
lt

STGCN
CCN
LSTM
MLP

Fig. 5.　Results of STGCN, CNN, LSTM, and MLP models.

Pseudo-code 3: NODE-based power system dynamic modeling

Training procedures
Input the total number of training epochs NE as well as the training and
 test datasets that contain {x̂(ti)V̂ (ti)}iÎ{01...n}, i. e., the ground-
 truth values of x and V at time instant t = ti

Initiate the parameters of the NODE model
Set epoch = 1
While epoch <NE

 Do
 Get a sample {x̂(ti)V̂ (ti)}iÎ{01...n} from the training dataset
 Set x = x̂(t0) and V = V̂ (t0)
 for iÎ{12...n}
 x(ti)= x(ti - 1)+ (ti - ti - 1)×NODE.forward(x(ti - 1)V̂ (ti - 1))
 End for
 Calculate the mean squared loss between x and x̂
 Loss.backward()
 Update the parameters of the NODE model
 Until all the samples in the training dataset have been selected
 Evaluate the NODE model in the test dataset
 Set epoch¬ epoch + 1
End while
NODE model-integrated transient simulation
Input the NODE model, the contingency, the integration step Dt, and the
 simulation time T
Set the component model to be the NODE model using internal model APIs
Calculate power flow using external function APIs
Set contingency using internal function APIs
Set the integration step to be Dt and the simulation time to be T using
 internal solution APIs
Transient simulate using external function APIs

407

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

system dynamic modeling is developed and published on
GitHub, as shown in Supplementary Material A. A test case
of modeling a generator with the published NODE module
is conducted. The generator at bus 31 is modeled with the
classical generator model. There are 3200 samples in the
training dataset and 800 samples in the test dataset. Samples
are randomly selected in the sample dataset including stable
contingencies and unstable contingencies. The neural model
is trained using only the state variables before the maximum
rotor angle difference exceeds 360°.

After training, the NODE-based dynamic model is inte‐
grated into the simulator using the LibTorch Library. The
comparative results of classical generator model-based simu‐
lations and NODE model-integrated simulations under stable
and unstable contingencies are shown in Fig. 6, where Dδ is
the rotor angle difference between generators at buses 31
and 39; Cal Diff. denotes the difference between the results
obtained by the original model and the NODE-based model;
and abs(Diff.) denotes the absolution value of the difference.
As can be observed, the modeling errors are within an ac‐
ceptable range.

D. RL-based SOPF

This is an example of the simulator and AI mutually as‐
sisting each other.
1)　Framework Design

SOPF is one of the traditional control problems of power
systems. In SOPF formulation, a target function needs to be
optimized under the equality constraints of the power flow
equations and the DAEs of power system dynamics as well

as the inequality constraints of static security constraints and
dynamic security constraints [55], [56]. RL can solve this
problem in a simulation-based optimization manner, as
shown in Fig. 7. Based on OpenAI Gym [57] and
Py_PSOPS, an environment of SOPF solutions is estab‐
lished, which parses actions and outputs state and reward af‐
ter performing power flow calculation, transient simulation,
and constraints check. An AI-based agent determines actions
according to the state. The simulator-based environment and
the AI-based agent form an interactive mechanism by ex‐
changing states, rewards, and actions.

After training, the AI-based agent can adjust power flow
states rapidly and is suitable for online applications. An RL-
based optimal power flow solution method has been pro‐
posed in [58] using PSOPS and the twin-delayed deep deter‐
ministic policy gradient (TD3) algorithm [59]. In this paper,
a TD3-based SOPF solution program is realized using
Py_PSOPS. The reward design is shown in (2).

Reward =

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

-999 Power flow does not converge

max{-999 - 500 - 50(TE - TS)}

 Any dynamic constraint is violated

max{-500 - 10L(V -PG)}

 Any static constraint is violated

β - αC Operating state is secure

(2)

where TE is the total simulation time; TS is the time instant
when the system loses the stability and is set to be TE if the
system remains stable; L(V PG) is the sum of the out-of-lim‐
it parts of V and PG; C is the generation cost; and α and β
are the scaling factors. The minimization problem of genera‐
tion cost is converted to the maximization problem of the re‐
ward. The pseudo-code of RL-based SOPF is as follows.
2)　Test Results

The training process of the agent with the TD3 algorithm
is demonstrated in Fig. 8. After the agent is trained, further
tests are carried out to check the control effectiveness. Fifty
thousand power flow samples with dynamic constraint viola‐
tions are sampled. The agent gets the operation state and out‐
puts the control strategy. The agent costs 122.525 ms, which
includes the time consumption of generating a strategy and
performing the transient simulation once to check the strate‐
gy. After the control, 49602 samples return to safe operation
points, whereas 398 samples violate static stability con‐
straints. The success rate is 99.204% and the new operation
points are absolutely sure to maintain dynamic security.

30 2.4

1.8

1.2

0.6

0

30

24

18

12

6

0

15

0

-15

180

120

60

0

-60

-120

0 2 4 6
t (s)

(a)

8 10

0 2 4 6
t (s)

(b)

8 10

Δ
δ
 (

°)

C
al

 D
if

f.
 (

°)

Δ
δ
 (

°)

C
al

 D
if

f.
 (

°)

Δδ (31_origin); Δδ (31_neural); abs(Diff.)

Fig. 6.　Comparative results of classical generator model-based simulations
and NODE model-integrated simulations under stable and unstable contin‐
gencies. (a) Stable contingency. (b) Unstable contingency.

Py_PSOPS-based environment

Power flow

Transient simulationConstraint check

ActionState
AI-based agent

Action

parser

Fig. 7.　Framework of RL-based SOPF.

408

XIAO et al.: EXPLORATION OF ARTIFICIAL INTELLIGENCE-ORIENTED POWER SYSTEM DYNAMIC SIMULATORS

V. CONCLUSION

To conclude, based on the illustration of the interaction
mechanism between power system dynamic simulations and
AI, an AI-oriented power system transient stability simulator
called Py_PSOPS is designed, implemented, tested, and
made public. Although it is currently an exploration of AI-
oriented power system dynamic simulations, the four test
cases demonstrate promising capabilities of Py_PSOPS to
support the development of AI-assisted simulations and simu‐
lation-assisted AI applications in power system stability anal‐
ysis and control. It should be noted the development of
Py_PSOPS will continue in the future.

REFERENCES

[1] N. Hatziargyriou, J. Milanovic, C. Rahmann et al., “Definition and
classification of power system stability,” IEEE Transactions on Power
Systems, vol. 36, no. 4, pp. 3271-3281, Jul. 2021.

[2] Z. Wu and X. Zhou, “Power system analysis software package
(PSASP)-an integrated power system analysis tool,” in Proceedings of
1998 International Conference on Power System Technology, Beijing,
China, Aug. 1998, pp. 7-11.

[3] H. Song, R. Na, S. Ting et al., “Study on conversion between the com‐
mon models of PSD-BPA and PSS/E,” in Proceedings of 2013 IEEE
11th International Conference on Electronic Measurement Instruments,

Harbin, China, Aug. 2013, pp. 64-69.
[4] K. Morison, L. Wang, and P. Kundur, “Power system security assess‐

ment,” IEEE Power and Energy Magazine, vol. 2, no. 5, pp. 30-39,
Sept. 2004.

[5] G. Lammert, L. D. P. Ospina, P. Pourbeik et al., “Implementation and
validation of WECC generic photovoltaic system models in DIgSI‐
LENT PowerFactory,” in Proceedings of 2016 IEEE PES General
Meeting (PESGM), Boston, USA, Jul. 2016, pp. 1-5.

[6] S. Cole and B. Haut, “Robust modeling against model-solver interac‐
tions for high-fidelity simulation of VSC HVDC systems in EU‐
ROSTAG,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp.
2632-2638, Aug. 2013.

[7] J. Susanto. (2021, Jan.). PYPOWER-Dynamics. [Online]. Available:
https://github.com/susantoj/PYPOWER-Dynamics

[8] C. Li, Y. Wu, H. Zhang et al., “STEPS: a portable dynamic simulation
toolkit for electrical power system studies,” IEEE Transactions on
Power Systems, vol. 36, no. 4, pp. 3216-3226, Jul. 2021.

[9] J. Xu, C. Zhao, W. Liu et al., “Accelerated model of modular multilev‐
el converters in PSCAD/EMTDC,” IEEE Transactions on Power De‐
livery, vol. 28, no. 1, pp. 129-136, Jan. 2013.

[10] Y. Liu, Y. Song, Z. Yu et al., “Modeling and simulation of hybrid AC-
DC system on a cloud computing based simulation platform – cloud‐
PSS,” in Proceedings of 2018 2nd IEEE Conference on Energy Inter‐
net and Energy System Integration (EI2), Beijing, China, Oct. 2018,
pp. 1-6.

[11] R. Kuffel, J. Giesbrecht, T. Maguire et al., “RTDS–a fully digital pow‐
er system simulator operating in real time,” in Proceedings of 1995 In‐
ternational Conference on Energy Management and Power Delivery
EMPD’ 95, Singapore, Nov. 1995, pp. 498-503.

[12] A. Kumar, A. Bahjaoui, S. K. Musunuri et al., “Design and tuning of
multi-band based power system stabilizer and implementation in HY‐
PERSIM,” in Proceedings of 2019 20th International Conference on
Intelligent System Application to Power Systems (ISAP), New Delhi,
India, Dec. 2019, pp. 1-6.

[13] Y. Wang, S. Xu, Y. Xu et al., “The research and implementation of
power CPS simulation platform based on ADPSS,” in Proceedings of
The 16th IET International Conference on AC and DC Power Trans‐
mission (ACDC 2020), virtual meeting, Jul. 2020, pp. 706-711.

[14] Z. Wang, Y. Chen, S. Huang et al., “Temporal graph super resolution
on power distribution network measurements,” IEEE Access, vol. 9,
pp. 70628-70638, May 2021.

[15] Y. Zhou and P. Zhang, “Neuro-reachability of networked microgrids,”
IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 142-152,
Jan. 2022.

[16] R. Nagi, X. Huan, and C. Chen, “Bayesian inference of parameters in
power system dynamic models using trajectory sensitivities,” IEEE
Transactions on Power Systems, vol. 37, no. 2, pp. 1253-1263, Mar.
2021.

[17] H. Nie, Y. Chen, Y. Song et al., “A general real-time OPF algorithm
using DDPG with multiple simulation platforms,” in Proceedings of
2019 IEEE Innovative Smart Grid Technologies – Asia (ISGT Asia),
Chengdu, China, May 2019, pp. 3713-3718.

[18] J. Huang, L. Guan, Y. Su et al., “System-scale-free transient contingen‐
cy screening scheme based on steady-state information: a pooling-en‐
semble multi-graph learning approach,” IEEE Transactions on Power
Systems, vol. 37, no. 1, pp. 294-305, Jan. 2022.

[19] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359-366, Jan. 1989.

[20] K. Sun, H. Xiao, J. Pan et al., “Cross-seam hybrid MTDC system for
integration and delivery of large-scale renewable energy,” Journal of
Modern Power Systems and Clean Energy, vol. 9, no. 6, pp. 1352-
1362, Nov. 2021.

[21] A. U. Rehman, T. T. Lie, B. Valles et al., “Comparative evaluation of
machine learning models and input feature space for non-intrusive
load monitoring,” Journal of Modern Power Systems and Clean Ener‐
gy, vol. 9, no. 5, pp. 1161-1171, Sept. 2021.

[22] L. von Rueden, S. Mayer, R. Sifa et al., “Combining machine learning
and simulation to a hybrid modelling approach: current and future di‐
rections,” in Proceedings of 2020 18th International Symposium on In‐
telligent Data Analysis (IDA 2020), Konstanz, Germany, Apr. 2020,
pp. 548-560.

[23] H. Pan, Z. Dou, Y. Cai et al., “Digital twin and its application in pow‐
er system,” in Proceedings of 2020 5th International Conference on
Power and Renewable Energy (ICPRE), Shanghai, China, Sept. 2020,
pp. 21-26.

[24] A. Lavin, H. Zenil, B. Paige et al. (2021, Dec.). Simulation intelli‐

Pseudo-code 4: RL-based SOPF

Input the total number of training epochs NE and anticipated contingencies
Initiate the parameters of the agent
Set epoch = 1
While epoch <NE

 Reset the operation state using stepwise power flow sampling scheme
 Get the original state using external function APIs
 Action = Agent.actor.forward(state)
 Adopt the action and set the operation state to be the new state using
 internal parameter APIs
 Calculate power flow using external function APIs
 Get power flow convergence using external solution APIs
 If power flow calculation converges:
 Get the new state using external function APIs
 Perform transient simulations for the anticipated contingencies
 using external function APIs
 Get the time instants TS using external solution APIs when the
 system loses the stability
 Check constraints using external function APIs
 End if
 Calculate reward
 Update the parameters of the agent based on the original state, the
 actions, the new state, and the reward
 Set epoch¬ epoch + 1
End while

Evaluation

Training

1000

0

-1000

-2000

-3000

-4000
0 2500 5000 7500 10000 12500 15000 17500 20000

Training step

A
v

er
ag

e
re

w
ar

d

Fig. 8.　Training process of agent with TD3 algorithm.

409

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

gence: towards a new generation of scientific methods. [Online]. Avail‐
able: https://arxiv.org/abs/2112.03235v1

[25] L. Zhu, D. Hill, and C. Lu, “Semi-supervised ensemble learning frame‐
work for accelerating power system transient stability knowledge base
generation,” IEEE Transactions on Power Systems, vol. 37, no. 3, pp.
2441-2454, May 2022.

[26] Y. Chen, H. Chen, Y. Jiao et al., “Data-driven robust state estimation
through off-line learning and on-line matching,” Journal of Modern
Power Systems and Clean Energy, vol. 9, no. 4, pp. 897-909, Jul.
2021.

[27] C. Ren, Y. Xu, and R. Zhang, “An interpretable deep learning method
for power system dynamic security assessment via tree regulariza‐
tion,” IEEE Transactions on Power Systems. doi: 10.1109/TP‐
WRS.2021.3133611

[28] J. Liu, Z. Yang, J. Zhao et al., “Explicit data-driven small-signal stabil‐
ity constrained optimal power flow,” IEEE Transactions on Power Sys‐
tems. doi: 10.1109/TPWRS.2021.3135657

[29] F. Ding, J. Pan, A. Alsaedi et al., “Gradient-based iterative parameter
estimation algorithms for dynamical systems from observation data,”
Mathematics, vol. 7, no. 5, p. 428, May 2019.

[30] P. Kundur, N. J. Balu, and M. G. Lauby. Power System Stability and
Control. New York: McGraw-hill, 1994, pp. 836-872.

[31] Y. Zhang, H. Cui, J. Liu et al., “Encoding frequency constraints in pre‐
ventive unit commitment using deep learning with region-of-interest
active sampling,” IEEE Transactions on Power Systems, vol. 37, no.
3, pp. 1942-1955, May 2022.

[32] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal
linear embeddings of nonlinear dynamics,” Nature Communications,
vol. 9, no. 1, p. 4950, Nov. 2018.

[33] X. Hu, H. Hu, S. Verma et al., “Physics-guided deep neural networks
for power flow analysis,” IEEE Transactions on Power Systems, vol.
36, no. 3, pp. 2082-2092, May 2021.

[34] L. D. P. Ospina, V. U. Salazar, and D. P. Ospina, “Dynamic equiva‐
lents of nonlinear active distribution networks based on Hammerstein-
Wiener models: an application for long-term power system phenome‐
na,” IEEE Transactions on Power Systems. doi: 10.1109/TP‐
WRS.2022.3153117

[35] T. Xiao, Y. Chen, S. Huang et al. (2022, Apr.). Feasibility study of
neural ODE and DAE modules for power system dynamic component
modeling. [Online]. Available: http://arxiv.org/abs/2110.12981

[36] Z. Bi, F. Wang, and C. Liu, “Getting parameters in power systems
based on adaptive linear neural network,” in Proceedings of The 2006
IEEE International Joint Conference on Neural Network Proceedings,
Vancouver, Canada, Jul. 2006, pp. 1458-1462.

[37] K. Wang, W. Wei, S. Gao et al., “Parametric average-value modeling
of diode rectifier systems based on neural network,” in Proceedings of
2022 4th Asia Energy and Electrical Engineering Symposium
(AEEES), Chengdu, China, Mar. 2022, pp. 609-613.

[38] L. Zhu, D. J. Hill, and C. Lu, “Hierarchical deep learning machine for
power system online transient stability prediction,” IEEE Transactions
on Power Systems, vol. 35, no. 3, pp. 2399-2411, May 2020.

[39] I. I. Avramidis, F. Capitanescu, S. Karagiannopoulos et al., “A novel
approximation of security-constrained optimal power flow with incor‐
poration of generator frequency and voltage control response,” IEEE
Transactions on Power Systems, vol. 36, no. 3, pp. 2438-2447, May
2021.

[40] Python. (2022 Jul.). Ctypes. [Online]. Available: https://docs. python.
org/3/library/ctypes.html

[41] T. Xiao, J. Wang, Y. Gao et al., “Improved sparsity techniques for
solving network equations in transient stability simulations,” IEEE
Transactions on Power Systems, vol. 33, no. 5, pp. 4878-4888, Sept.
2018.

[42] T. Xiao, W. Tong, and J. Wang, “A new fully parallel BBDF method
in transient stability simulations,” IEEE Transactions on Power Sys‐
tems, vol. 35, no. 1, pp. 304-314, Jan. 2020.

[43] T. Xiao, W. Tong, J. Wang et al., “A fully parallel nested BBDF meth‐
od for power system transient stability simulations,” in Proceedings of
2021 IEEE PES General Meeting (PESGM), Washington DC, USA,
Jul. 2021, pp. 1-5.

[44] T. Xiao, W. Tong, and J. Wang, “Study on reducing the parallel over‐
head of the BBDF method for power system transient stability simula‐
tions,” IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 539-
550, Jan. 2020.

[45] H. W. Dommel and N. Sato, “Fast transient stability solutions,” IEEE
Transactions on Power Apparatus and Systems, vol. 91, no. 4, pp.
1643-1650, Jul. 1972.

[46] Eigen. (2022, Jan.). [Online]. Available: https://eigen.tuxfamily.org/dox/

[47] PyTorch. (2022, Jan.). PyTorch C++ API. [Online]. Available: https://
pytorch.org/cppdocs/

[48] Pytorch. (2022, Jul.). Pytorch/pytorch. [Online]. Available: https://
github.com/pytorch/pytorch

[49] Numpy. (2022, Jul.). Numpy/numpy. [Online]. Available: https://github.
com/numpy/numpy

[50] Ray. (2022, Jul.). [Online]. Ray-project/ray. Available: https://github.
com/ray-project/ray

[51] R. T. Q. Chen, Y. Rubanova, J. Bettencourt et al., “Neural ordinary
differential equations,” Advances in Neural Information Processing
Systems, vol. 31, pp. 6571-6583, Nov. 2018.

[52] Y. Zhuang, T. Xiao, L. Cheng et al., “Transient stability assessment of
power system based on spatio-temporal graph convolutional net‐
works,” Automation of Electric Power Systems, vol. 46, no. 11, pp. 11-
18, Jun. 2022.

[53] A. Arif, Z. Wang, J. Wang et al., “Load modeling—a review,” IEEE
Transactions on Smart Grid, vol. 9, no. 6, pp. 5986-5999, Nov. 2018.

[54] J. Liu, W. Yao, J. Fang et al., “Stability analysis and energy storage-
based solution of wind farm during low voltage ride through,” Interna‐
tional Journal of Electrical Power & Energy Systems, vol. 101, pp. 75-
84, Oct. 2018.

[55] S. Abhyankar, G. Geng, M. Anitescu et al., “Solution techniques for
transient stability-constrained optimal power flow – part I,” Transmis‐
sion Distribution IET Generation, vol. 11, no. 12, pp. 3177-3185, Dec.
2017.

[56] G. Geng, S. Abhyankar, X. Wang et al., “Solution techniques for tran‐
sient stability-constrained optimal power flow – part II,” Transmission
Distribution IET Generation, vol. 11, no. 12, pp. 3186-3193, Dec.
2017.

[57] G. Brockman, V, Cheung, L. Pettersson et al. (2016, Jun.). OpenAI
Gym. [Online]. Available: http://arxiv.org/abs/1606.01540

[58] H. Zhen, H. Zhai, W. Ma et al., “Design and tests of reinforcement-
learning-based optimal power flow solution generator,” Energy Re‐
ports, vol. 8, pp. 43-50, Apr. 2022.

[59] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxima‐
tion error in actor-critic methods,” in Proceedings of 35th Internation‐
al Conference on Machine Learning, Stockholm, Sweden, Jul. 2018,
pp. 1587-1596.

Tannan Xiao received the B.Eng. and Ph.D. degrees in electrical engineer‐
ing from Zhejiang University, Hangzhou, China, in 2013 and 2019, respec‐
tively. He is currently a Postdoctoral Fellow with the Department of Electri‐
cal Engineering, Tsinghua University, Beijing, China. His research interests
include power system stability analysis and control, high-performance com‐
puting, and artificial intelligence.

Ying Chen received the B. S. and Ph. D. degrees in electrical engineering
from Tsinghua University, Beijing, China, in 2001 and 2006, respectively,
where he is currently a Professor with the Department of Electrical Engi‐
neering. His research interests include power system parallel and distributed
computing, electromagnetic transient simulation, cyber-physical system mod‐
eling, and cyber security of smart grids.

Jianquan Wang received the Ph. D. degree in electrical engineering from
Xi’an Jiaotong University, Xi’an, China, in 1997. From 1997 to 1999, he
was a Postdoctoral Fellow with the College of Electrical Engineering, Zheji‐
ang University, Hangzhou, China, where he is currently an Associate Profes‐
sor. His research interests include power system stability analysis and con‐
trol, application of artificial intelligence in power systems, and high-perfor‐
mance computing.

Shaowei Huang received the B.S. and Ph.D. degrees from Tsinghua Univer‐
sity, Beijing, China, in 2006 and 2011, respectively. From 2011 to 2013, he
was a Postdoctoral Fellow with the Department of Electrical Engineering,
Tsinghua University, where he is currently an Associate Professor. His re‐
search interests include power system modeling and simulation, power sys‐
tem parallel and distributed computing, complex systems and their applica‐
tion in power systems, and artificial intelligence.

Weilin Tong received the M. Sc. degree in electrical engineering in 2019
from the College of Electrical Engineering, Zhejiang University, Hangzhou,
China. He is currently an Engineer with Wuxi Power Supply Company of
State Grid, Wuxi, China. His research interests include power system hybrid
simulation and high-performance computing.

410

XIAO et al.: EXPLORATION OF ARTIFICIAL INTELLIGENCE-ORIENTED POWER SYSTEM DYNAMIC SIMULATORS

Tirui He received the B.Eng. degree in electrical engineering from Tsing‐
hua University, Beijing, China, in 2021, and the M.Sc. degree in business
analytics from Nanyang Technology University, Singapore, in 2022. He is

currently working as a Data Scientist with Alibaba, Hangzhou, China. His
research interests include power system modeling and simulation, and appli‐
cation of artificial intelligence in power systems.

411

