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Abstract——With the rapid development of artificial intelli‐
gence (AI), it is foreseeable that the accuracy and efficiency of 
dynamic analysis for future power system will be greatly im‐
proved by the integration of dynamic simulators and AI. To ex‐
plore the interaction mechanism of power system dynamic simu‐
lations and AI, a general design for AI-oriented power system 
dynamic simulators is proposed, which consists of a high-perfor‐
mance simulator with neural network supportability and flexi‐
ble external and internal application programming interfaces 
(APIs). With the support of APIs, simulation-assisted AI and AI-
assisted simulation form a comprehensive interaction mecha‐
nism between power system dynamic simulations and AI. A pro‐
totype of this design is implemented and made public based on 
a highly efficient electromechanical simulator. Tests of this pro‐
totype are carried out in four scenarios including sample gener‐
ation, AI-based stability prediction, data-driven dynamic compo‐
nent modeling, and AI-aided stability control, which prove the 
validity, flexibility, and efficiency of the design and implementa‐
tion for AI-oriented power system dynamic simulators.

Index Terms——Power system dynamic simulator, artificial in‐
telligence, application programming interface, parallel comput‐
ing.

I. INTRODUCTION 

POWER system dynamic simulation is still the most reli‐
able and widely used approach for power system stabili‐

ty analysis [1]. Electric power companies and developers 
from all over the world have developed many dynamic simu‐
lators including electromechanical simulators such as PSASP 
[2] and PSD-BPA [3] by the China Electric Power Research 
Institute (CEPRI), PSS/E [3] by Siemens, DSATools [4] by 
Powertech, DIgSILENT PowerFactory [5] by DIgSILENT 
GmbH, Eurostag [6] by Tractebel, PYPOWER-Dynamics [7] 
by Susanto, and STEPS [8] by Shandong University; electro‐

magnetic simulators such as PSCAD/EMTDC [9] by Manito‐
ba and CloudPSS [10] by Tsinghua University; and real-time 
simulators such as RTDS [11] by Manitoba, HYPERSIM 
[12] by OPAL-RT, and ADPSS [13] by CEPRI. The commer‐
cial simulators are well tested in the practical power sys‐
tems, which means they support a lot of functions and are 
very reliable. However, the commercial simulators were usu‐
ally designed and implemented years ago, which means their 
architecture might be old and the application programming 
interfaces (APIs) may be stiff or even be unavailable. Be‐
sides, the free and open-source simulators are commonly not 
as functionally mature as the commercial ones but are much 
more flexible. The source code can be directly modified, 
hence APIs can be developed as needed.

Research on artificial intelligence (AI) has achieved a 
growth spurt in the past few years. AI algorithms such as 
graph neural networks (GNNs) and reinforcement learning 
(RL) have been applied to a variety of power system studies 
such as measurement enhancement [14], dynamic component 
modeling [15], parameter inference [16], optimization and 
control [17], and stability assessment [18]. AI models can 
learn and approximate any functions with enough samples 
[19]. AI technology will be more and more important in the 
research field of power systems, especially with the rapid de‐
velopment of renewable generation and power electronics 
[20]. The safe and efficient operation of power systems is 
facing great challenges, e.g., we may need to model new de‐
vices to analyze stability although some operation mecha‐
nisms of devices are still under research, the dimensionality 
reduction is needed to scale down the complexity, and the 
significantly increasing uncertainty of power systems re‐
quires fast and flexible stability analysis and control. AI-as‐
sisted power system analysis and control might be a solution 
to these challenges [21], or at least a mitigation measure.

Currently, although some commercial softwares such as 
DIgSILENT PowerFactory have supported AI applications to 
a certain extent, the relationship between power system dy‐
namic simulation and AI is still relatively fragmented. The 
simulator usually works only as a data generator and pro‐
vides limited prior knowledge, whereas the trained AI model 
usually works independently as a black-box model with poor 
interpretability and cannot be easily integrated into simula‐
tors. In one word, the simulator is not AI-friendly enough. 
In [22], the idea of a learning simulation engine that com‐
bines AI and simulation is proposed. Simulation-assisted AI 
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and AI-assisted simulation mutually support each other. With 
the support of AI, the simulator can evolve autonomously 
and become more accurate and efficient, which is also cru‐
cial to the realization of power system digital twins [23]. In 
[24], a similar and more comprehensive concept of simula‐
tion intelligence is proposed. This can be the future of pow‐
er system dynamic simulators.

Based on the learning simulation engine proposed in [22] 
and the simulation intelligence discussed in [24], we explore 
the cooperation of AI and power system dynamic simula‐
tions in this paper. The contributions are as follows.

1) A general design of an AI-oriented power system dy‐
namic simulator is proposed, which consists of a high-perfor‐
mance simulator with neural network supportability and flex‐
ible external and internal APIs. External API-based simula‐
tion-assisted AI and internal API-based AI-assisted simula‐
tion form a comprehensive interaction mechanism between 
power system dynamic simulations and AI.

2) A prototype of the proposed design is implemented 
based on a self-developed power system electromechanical 
simulator. The efficiency of the simulator is improved by tra‐
ditional approaches including sparsity techniques, parallel 
computing, and memory allocation optimization. External 
and internal APIs are developed with Python and the source 
code is made public on GitHub, as shown in Supplementary 
Material A.

3) Four typical cases of utilizing the developed simulator, 
i.e., sample generation, GNN-based stability prediction, data-
driven dynamic component modeling, and RL-based stability 
control, are illustrated to prove the validity, flexibility, and 
efficiency of the proposed design and implementation.

The remainder of this paper is as follows. Section II intro‐
duces the design of the AI-oriented power system dynamic 
simulator. The implementation details of a prototype simula‐
tor based on the proposed design are illustrated in Section 
III. In Section IV, the typical examples of the implemented 
simulator are explained and tested. Conclusions are drawn in 
Section V.

II. DESIGN OF AI-ORIENTED POWER SYSTEM DYNAMIC 
SIMULATOR 

In Fig. 1, the overall architecture design of the power sys‐
tem dynamic simulator is demonstrated. The idea is intui‐
tive. In order to support the interactions between the simula‐
tor and AI model, a reasonable choice is to develop AI-
friendly APIs to bridge them. The simulator, APIs, AI mod‐
els, and power system operator form a bionic interaction 
mechanism similar to the musculoskeletal system, nerves, 
spinal cord, and brain. Via the APIs, the simulator can pro‐
vide massive data and prior knowledge for AI models, 
whereas AI models mine the data, discover the hidden pat‐
terns, and return well-trained models and posterior knowl‐
edge. Meanwhile, AI models can provide predictions and 
suggestions to power system operators based on their de‐
mands. Therefore, a closed-loop interaction mechanism is es‐
tablished. With the support of this interaction mechanism, 
the traditional physics-based simulator and the data-driven 
AI models can cooperate to achieve the task of data enhance‐
ment [25], awareness enhancement [26], analysis enhance‐
ment [27], decision-making enhancement [28], etc., and may 
finally lead to the creation of a power system digital twin.

In this section, the designs of the simulator and APIs as 
well as the interactions between the simulator and AI models 
are explained in detail.

A. Simulator

Power system dynamic simulators can be used to generate 
massive scenarios and simulation results, i. e., physics-based 
data. The general structure of a power system dynamic simu‐
lator is presented in Fig. 1, which consists of four parts, i.e., 
model, parameter, solution, and function. Firstly, a model is 

needed for each power system component, which can be a 
physics-based model, a data-driven model, or a physics-data-
integrated model. A model conversion function for different 
models of different simulators is preferred. Secondly, param‐
eters of the selected model need to be measured or estimat‐
ed, i. e., model calibration [29] is needed. Thirdly, all the 
models with parameters are formulated together in a group 
of high-dimensional equations. Power flow can be solved 
with the Newton method to obtain the operation state. Power 
system dynamics are formulated with ordinary differential 
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Fig. 1.　Overall architecture of AI-oriented power system dynamic simulator.
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equations (ODEs) in the electromagnetic simulation and dif‐
ferential-algebraic equations (DAEs) in the electromechani‐
cal simulation. They can both be solved with a numerical in‐
tegration method and a linear solver [30]. Finally, the simula‐
tion-based functions are realized based on the solutions of 
power flow and power system dynamics.

Here are two required features of the simulator to support 
the integration of simulations and AI models, i.e., rapid simu‐
lation speed and neural network supportability.
1)　Rapid Simulation Speed

Simulation speed is essentially the basis of AI-assisted 
power analysis and control system. The training of AI mod‐
els requires massive data; and the data generation is very 
time-consuming. The simulation speed is a bottleneck in suc‐
cessfully utilizing AI algorithms and training a model with 
sufficient performance. Therefore, the simulator must be 
well optimized and highly efficient. The algorithm-level and 
task-level parallelisms, which are solution level and function 
level in Fig. 1, are required to fulfill the efficiency needs in 
different situations.
2)　Neural Network Supportability

Another requirement of the simulator is neural network 
supportability, i. e., being able to load the structure and pa‐
rameters of neural networks and perform at least forward 
propagation of neural networks. The simulator should be 
able to integrate AI models into any part of the simulator so 
that the efficiency and accuracy of the simulator can be im‐
proved by the cooperation of traditional algorithms and AI.

B. API

Flexible APIs are crucial to the cooperation of power sys‐
tem dynamic simulations and AI models. The APIs of an AI-
oriented power system dynamic simulator are divided into 
external APIs and internal APIs. The external APIs are used 
to get data and invoke functions of the simulator, whereas 
the internal APIs are used to modify the data and control the 
simulation process. Corresponding to the four parts of the 
simulator shown in Fig. 1, the external and internal APIs can 
further be divided into four categories, i.e., model APIs, pa‐
rameter APIs, solution APIs, and function APIs.

External model APIs and parameter APIs are used to out‐
put structures and parameters of different models. The model 
expression should be easy to understand and modify, e.g., di‐
agrams and JSON files. External solution APIs are used to 
output parameters related to solution methods and intermedi‐
ate results during the solution process, e.g., the node order‐
ing method, the admittance matrix, the iteration number of 
the power flow solution, and the integration step. External 
function APIs are used to invoke functions, e.g., power flow 
solutions, short-circuit calculations, transient simulations, as 
well as output required simulation results, e. g., the maxi‐
mum rotor angle difference, nodal voltages, and currents of 
transmission lines.

Correspondingly, the internal APIs are used to alter model 
types, modify parameters, change solution methods, and adjust 
boundary conditions of functions. Through internal APIs, AI 
models can be used to model dynamic components, estimate 

parameters, accelerate solutions, and surrogate functions.
Overall, compared with the APIs of existing commercial 

simulation tools, the APIs of an AI-oriented power system dy‐
namic simulator make it easy to develop AI models for power 
system applications and realize the cooperation of traditional 
algorithms and AI algorithms. More detailed information of 
the power system components and simulations can be provid‐
ed to AI models via the external APIs, and AI models can be 
deeply integrated into power system simulations via the inter‐
nal APIs. Other suggested features of the APIs are as follows.
1)　No Impact on Simulation Efficiency

The implementation of APIs must not affect the efficiency 
of the simulator. As mentioned before, the simulator focuses 
on efficiency. The source code is usually written with effi‐
cient programming languages such as C++ , Java, FOR‐
TRAN, i.e., the implementation is highly organized and opti‐
mized. It should not be disturbed by the APIs. Therefore, a 
suggested way is to rewrap the needed internal functions as 
external functions. These external functions can be invoked 
by other programming languages.
2)　Efficient Memory Exchange

Data are frequently exchanged between the simulator and 
AI models. Taking neural network based stability prediction as 
an example, massive samples of tens or even hundreds of giga‐
bytes are generated. The data exchange better happens in 
RAM instead of on hard drives. If there is not enough RAM, 
the data could be cut into several pieces and transferred se‐
quentially, or the data could be exchanged using a database.
3)　Interpreted Language-written

It is recommended to develop the APIs of an AI-oriented 
power system dynamic simulator with interpreted languages 
such as Python. These programming languages are easy to 
learn and use, and have very mature developer communities. 
There are a tremendous number of Python-written open-
source AI projects on GitHub. With Python APIs, the simula‐
tor can be easily modified for AI applications and can coop‐
erate with AI models.

C. Interactions of Dynamic Simulations and AI

In contrast to the simulator, AI produces data-driven mod‐
els based on the existing data, as illustrated in Fig. 1. Firstly, 
a training dataset is needed. The quality and representative‐
ness of the samples will seriously affect the performance of 
AI models. Secondly, a hypothesis set is established, i. e., a 
learning framework is selected based on the task and the 
training data. Thirdly, optimization algorithms are utilized to 
train the model. At last, the final hypothesis, i.e., an AI mod‐
el, is obtained.

The interactions between the simulator and AI models are 
further illustrated in Fig. 2. The right part demonstrates simu‐
lation-assisted AI and the left part denotes AI-assisted simu‐
lation.
1)　Simulation-assisted AI

Simulation-assisted AI is realized based on the external 
APIs. Firstly, simulations can be used to generate dataset. 
The actual training dataset also needs sample selection or 
augmentation, e. g., stability prediction needs the simulation 
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results with balanced stability labels. Sampling methods are 
very important since the data quality determines the perfor‐
mance of AI models [31]. Secondly, physics-based models 
can be used as a strong prior knowledge for AI model de‐
sign. For example, the power network topology can be used 
to design GNN [18]. Thirdly, physical laws such as conserva‐
tion laws can be used as constraints in optimization algo‐
rithms to limit the feasible region, improve the interpretabili‐
ty of AI models, and speed up the training process [32], 
[33]. Finally, the simulator can be used as the benchmark for 
the performance verification of AI models.

2)　AI-assisted Simulation
AI-assisted simulation is realized based on the internal 

APIs. Firstly, data-driven AI models can be used for dynam‐
ic component modeling [15], [34]. Although the model may 
suffer from the problem of interpretability, the measurement-
based AI model can also be accurate and adaptive. Via the 
internal APIs, physics-based models and data-driven models 
can be integrated seamlessly and be simulated simultaneous‐
ly [35]. Secondly, AI models can be used for power system 
model calibration [36]. Power system dynamic modeling and 
parameter estimation are facing increasing challenges be‐
cause of the rapid development of renewable generation and 
power electronics. Data-driven power system dynamic mod‐
eling could be a potential solution. Thirdly, AI models can 
be used to discover and formulate the hidden patterns in the 
solution procedures and improve solution efficiency, e. g., 
convergence prediction of power network equations, variable 
integration step prediction, and switch state prediction of 
power electronic devices [37]. Finally, AI models can be 
used as surrogate models for power system analysis [38] and 
control [39]. Power system computation can be very time-
consuming. Using a surrogate model as an approximation of 
the actual computation can significantly increase the efficien‐
cy of analysis and decision-making.

III. IMPLEMENTATION OF AI-ORIENTED POWER SYSTEM 
DYNAMIC SIMULATOR 

In Fig. 3, a prototype of the AI-oriented power system dy‐
namic simulator explained in the former section is imple‐
mented based on a high-performance electromechanical simu‐
lator called power system optimal parameter selection 

(PSOPS). After developing some external functions to sup‐
port Python APIs, the simulator is compiled as a dynamic 
link library PSOPS.dll in Windows and a shared object file 
PSOPS. so in Linux. The Python APIs of the prototype are 
developed using the ctypes library [40]. The PSOPS. dll, 
PSOPS. so, and the open-source Python APIs, can be found 
in the repository called Py_PSOPS on GitHub. In the Python 
APIs, computational functions such as power flow solution 
and transient simulation have that names the begin with “cal”. 
The functions with the names that start with “get” and “set” 
denote the functions of external APIs and internal APIs, re‐
spectively.

In this section, the implementation details of the PSOPS 
simulator and the APIs are illustrated.

A. Implementation of PSOPS Simulator

PSOPS can perform AC power flow considering PV-PQ 
switching and electromechanical transient stability simula‐
tions. It is developed using C++ based on previous studies 
[41]-[44]. Power system dynamics are modeled with a group 
of high-dimensional nonlinear DAEs. The alternating ap‐
proach proposed in [45] is adopted in PSOPS due to its sim‐
plicity, reliability, and robustness [30].
1)　Traditional Techniques for Efficiency Improvement

In PSOPS, traditional algorithms including improved spar‐
sity techniques, improved bordered block diagonal form 
(BBDF) method, and memory allocation techniques are uti‐
lized to accelerate transient simulations.

As for the sparsity techniques, the approximate minimum 
degree-minimum number of source predecessor (AMD-
MNSP) algorithm and the multi-path sparse vector method 
are utilized to enhance the efficiency of the sparse vector 
method while maintaining the sparsity of the factorized ma‐
trix [41].

In terms of parallel computing, a fully parallel BBDF 
method [42], a fully parallel nested BBDF method [43], and 
an efficient computing task allocation scheme based on sub‐
net-core mapping and mixed programming of message pass‐
ing interface (MPI) and OpenMP [44] are adopted to im‐
prove the BBDF method at the algorithmic and implementa‐
tional levels.

As for memory allocation, a node-ordering-based memory 
allocation technique is utilized, which reorders components 

Sparsity

technique

PSOPS.so/PSOPS.dll

Parallel

computing

Memory

allocation

LibTorch

and

eigen

External

functions

API

Py_PSOPS

Ctypes

AI applications

Sample generation

STGCN-based

stability prediction 

Neural ODE 

(NODE) based

dynamic modeling 

RL-based SOPF

Internal 
API

External 
API

Get

Set

Fig. 3.　Implementation and tests of Py_PSOPS.

Model

Parameter

Solution

Function

Simulator

Final

hypothesis

Optimization

algorithm

Hypothesis set

Training data set

AI

Internal API External API 

API

Surrogate

models

Simulation

samples

Pattern

discovery

Deductive

models

Parameter

inference

Physical

constraints

Inductive

models

Model

verification

Fig. 2.　Interactions between simulator and AI models.

404



XIAO et al.: EXPLORATION OF ARTIFICIAL INTELLIGENCE-ORIENTED POWER SYSTEM DYNAMIC SIMULATORS

such as transmission lines, transformers, generators, and 
loads based on the node ordering and saves the admittance 
matrix, the equation coefficient matrix, and the independent 
vector in a contiguous memory block to increase the cache 
hit rate when solving power network equations.

In Table I, the basic information and average time con‐
sumption of 10 s transient simulations after utilizing the 
above techniques are presented. The 2383wp system is a 
widely used test system in MATPOWER, and sys13490 and 
Sys24886 are two practical power systems. All the dynamic 
components are modeled in detail. The test HPC platform is 
Sugon I950r-G installed with 8 Intel Xeon E7-8837 2.67 
GHz processors. Each processor is integrated with 8 CPU 
cores, i.e., the total number of CPU cores is 64. As can be 
observed, simulations are significantly accelerated.

2)　C++ Libraries for Neural Network Supportability
Meanwhile, neural network supportability is realized using 

two open-source C++ libraries, i. e., the Eigen library [46] 
and the LibTorch library [47]. The difference between the 
two libraries is the granularity of neural network implementa‐
tion. As for the Eigen library, neural networks are built in 
the source code of the PSOPS simulator using the vector 
class and the matrix class. The structure of neural networks 
is loaded by reading a JSON file and the parameters are 
loaded by reading binary files saved by PyTorch [48]. Be‐
sides, the neural modules saved by PyTorch, i. e., both the 
structures and the parameters, are directly loaded for the Lib‐
Torch library. The Eigen library is computationally more effi‐
cient but structural changes of neural networks require the 
modification of the source code of PSOPS, whereas the Lib‐
Torch library is simpler to use but the computation speed is 
lower than the Eigen library. Therefore, the LibTorch library 
is recommended for model evaluation and the Eigen library 
is recommended for model deployment. By changing the ver‐
sion of LibTorch, Py_PSOPS can adapt to different versions 
of PyTorch.

As mentioned before, neural network supportability makes 
it possible to integrate AI with traditional simulations. Cur‐
rently, the integration and simultaneous simulations of AI-
based power system dynamic models and physics-based mod‐
els have been realized in PSOPS. Other applications of AI-
assisted simulations are still under development.

B. Implementation of APIs

As shown in Fig. 3, the PSOPS simulator is compiled as a 
dynamic link library file PSOPS.dll in Windows and a shared 
object file PSOPS. so in Linux. Only the external functions, 

which are realized by rewrapping the models and functions of 
PSOPS, can be accessed. The external functions of PSOPS 
and the Python APIs are connected using the ctypes library.

The Python APIs load the external functions from PSOPS.dll 
and PSOPS. so and reorganize the data into a NumPy [49] 
style. The source code is organized in a component-based man‐
ner, which means the functions of the same kind of component 
are put together. The Python APIs can be extended easily to 
fulfill the needs in different situations. A more well-rounded 
API will be a future working direction. The details of external 
and internal model APIs, parameter APIs, solution APIs, and 
function APIs are as follows.
1)　Model API

As mentioned before, when using the Eigen library, the 
structure of neural networks can be established in the simula‐
tor by modifying the basic computation data file and reading 
a JSON file containing the names and structure of layers of 
the neural network. When using the LibTorch library, the 
whole neural model can be established by directly loading 
the modules saved by PyTorch.
2)　Parameter API

The parameters of components such as the name, the total 
number, the constraints, the default settings, the dynamic 
model parameters, and the connectivity, can be got or set. 
However, currently, the parameters of neural networks are di‐
rectly loaded by the simulator via modifying the basic com‐
putation data file and reading a binary file.
3)　Solution API

The intermediate results during simulation processes can 
be obtained. The simulated power system can be set to states 
at any integration step. Basic data of the solutions such as 
the iteration number, the simulation time, the integration 
step, faults, and disturbances can be accessed. More impor‐
tantly, the network topology accessibility is realized. Net‐
work topology data such as the admittance matrix, the im‐
pedance matrix, the number of fill-ins, and the factorized 
lower and upper triangular matrices can be obtained. The 
connectivity of each component, i.e., whether the component 
is connected to the power network, can be changed and the 
network connectivity check is supported, i. e., asynchronous 
subsystems can be identified. Other settings such as power 
flow solution methods, integration methods, node ordering al‐
gorithms, and sparse vector methods can be modified by 
changing the basic computation data file.
4)　Function API

The function API supports calling power flow solutions 
and transient stability simulations and gets simulation results 
including rotor angles, rotation speed, inner electric poten‐
tial, active and reactive power, outputs of regulators, nodal 
voltages, etc. Meanwhile, the task-level parallelism is real‐
ized using the ray library [50] of Python.

IV. CASE STUDIES 

In this section, four typical cases of utilizing the proto‐
type, i. e., sample generation, spatiotemporal graph convolu‐
tional networks (STGCN) based stability prediction, NODE-
based [51] power system dynamic component modeling, and 

TABLE I
BASIC INFORMATION AND AVERAGE TIME CONSUMPTION OF 10 S 

SIMULATIONS OF THREE TEST SYSTEMS

Test
system

2383wp

Sys13490

Sys24886

Number of components

Bus

2383

13490

24886

Branch

2892

22544

39512

Generator

327

1797

1919

Load

1822

3550

5646

Time consumption (s)

Serial

2.655

9.911

13.525

Parallel

0.365

0.587

0.639
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RL-based stability-constrained optimal power flow (SOPF), 
are demonstrated to show the interactions between simulator 
and AI models based on Py_PSOPS, as shown in Fig. 3. 
Sample generation is one of the most basic applications of 
Py_PSOPS. The STGCN-based stability prediction, the 
NODE-based dynamic modeling, and the RL-based SOPF 
are typical examples of simulation-assisted AI, AI-assisted 
simulation, and mutual assistance between simulation and 
AI, respectively. More applications can be developed using 
Py_PSOPS. All four cases are supported by at least one pa‐
per or open-source code we developed on GitHub. The suc‐
cess of these tasks proves the validity, flexibility, and effi‐
ciency of the design and implementation.

The test system is the IEEE 39-bus system. The high-perfor‐
mance server used for testing consists of an NVIDIA P100 
GPU, 250 gigabytes of RAM, and two Intel Xeon Gold 5118 
processors, which contain 24 CPU cores in total and the hyper‐
threading is enabled, i.e., there are up to 48 threads available.

A. Sample Generation

1)　Stepwise Power Flow Sampling Scheme
Sample generation can be used for any AI application. It 

is supported by the rapid simulation speed of PSOPS. As for 
power flow sampling, simple random sampling, grid sam‐
pling, and a stepwise power flow sampling scheme are imple‐
mented. The pseudo-code of the stepwise power flow sam‐
pling scheme is shown as follows.

Pseudo-code 1: stepwise power flow sampling scheme

Input the total number of required samples N
Set n = 1
Get the limits of PD, QD, PG, and VG using external parameter APIs
While n <N
   Set the connectivity states of all the transmission lines to be true using 
      internal solution APIs
   Set the connectivity state of one or two randomly chosen transmission   
      lines to be false using internal solution APIs
   Set PD and QD randomly within limits using internal parameter APIs
   Calculate sum(PD )
   Do
       Set PG randomly within limits using internal parameter APIs
   Until sum(PG )+ sum(-P Slack )< sum(PD )< sum(PG )+ sum(P̄Slack )
   Set VG randomly within limits using internal parameter APIs
   Calculate power flow using external function APIs
   Get power flow convergence using external solution APIs
   If power flow calculation converges
       Save (PD, PG,VG)
       Set n¬ n + 1
   End if
End while

In pseudo-code 1, PD and QD are the active power vector 
and reactive power vector of loads, respectively; sum(×) de‐
notes the sum of elements in the vector; PG is the active power 
vector of generators; P̄Slack and -P Slack are the upper limit vector 
and the lower limit vector of slack generators, respectively; 
and VG is the nodal voltage vector of generators other than 
slack generators.

After power flow sampling, contingencies are sampled by 
randomly choosing a component, a fault type, a fault loca‐
tion, and a fault clearing time. Transient simulations of these 
contingencies are carried out to generate simulation samples.

2)　Test Results
The source code of the proposed sampling scheme can be 

found on GitHub in the Py_PSOPS repository. On the test 
server, over 1.29 million power flow samples and over 50 
million simulation samples of the IEEE 39-bus system are 
generated using 40 threads within 9 hours. This sample data‐
set is used to support the research on STGCN and NODE.

B. STGCN-based Stability Prediction

This is a typical example of simulation-assisted AI. The 
simulator provides training data as well as prior knowledge 
to support AI model design.
1)　STGCN

An STGCN-based stability prediction model is proposed 
in [52]. The idea is to predict transient stability based on the 
power network changes and state variable changes within a 
short time after faults occur. The STGCN can extract fea‐
tures from these changes and learn the correlation of these 
changes with power system stability. Only a short-time simu‐
lation is required, and the efficiency of stability analysis can 
be improved.

The implementation is supported by the network topology 
accessibility of Py_PSOPS. The STGCN-based stability pre‐
diction model is shown in Fig. 4. Each STGCN layer is com‐
posed of a one-dimensional convolutional neural network 
(1D-CNN) layer, a graph convolutional network (GCN) lay‐
er, and another 1D-CNN layer. The input of the (l + 1)th layer 
of STGCN is the feature vector f l and the admittance matrix 
Y, and the output is f l + 1. The input features include Y0, Y1, 
and Y2, i.e., the admittance matrices before the fault, during 
the fault, and after clearing the fault, respectively, which can 
be obtained via external solution APIs, and f0f1...fn, i. e., 
temporal data of selected state variables obtained by a short-
time simulation from t = 0 to t = T, which can be obtained us‐
ing external function APIs. The fault is cleared at the time 
instant t = tc. The total number of sampling instants is n. The 
output of the model is the predicted stability label of the in‐
put cases.
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Fig. 4.　Architecture of STGCN-based stability prediction model.

After training, the STGCN model and the transient simula‐
tion function of the Py_PSOPS can be integrated using APIs 
and perform efficient transient stability analysis. The pseudo-
code of training an STGCN model and integrating the 
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STGCN model with transient simulations is as follows.
2)　Test Results

The STGCN-based stability prediction model is trained. 
Samples in the training dataset are randomly selected in the 
sample dataset. The training dataset contains 10240 samples, 
whereas the testing dataset contains 33600 samples. The com‐
parison results of the STGCN model, the convolutional neural 
network (CNN) model, the long short-term memory (LSTM) 
model, and the multi-layer perceptron (MLP) model are dis‐
played in Fig. 5, where accuracy, precision, recall, and f1-score 
are the commonly used indices for evaluating the performance 
of neural networks [52]. Each time of STGCN-based stability 
prediction averagely costs 5 ms, whereas the complete simula‐
tion averagely costs 25 ms.

C. NODE-based Dynamic Modeling

This is an example of AI-assisted simulation. The trained 
AI model is integrated into the simulator and is simulated si‐

multaneously with physics-based dynamic models.
1)　NODE-based Power System Dynamic Modeling

An NODE-based power system dynamic modeling method 
is proposed in [35]. The idea is to build data-driven dynamic 
models based on NODE and accessible measurement data 
when there is a lack of prior knowledge of the component, e.
g., equivalent modeling of load areas [53] and renewable 
plants [54]. While learning a global approximation of the de‐
rivative functions with easily trainable neural networks, 
NODE also keeps the classical framework of numerical inte‐
gration, which is a very important prior knowledge and 
makes NODE highly adaptive to scientific computations and 
industrial applications, as shown in (1).

Ψ(xV; θ) ẋ = f (xV ) (1)

where x is the vector of state variables, whose time deriva‐
tives are equal to f (xV ); V is the vector of nodal voltages; 
Ψ is the vector of parametric derivative functions; and θ is 
the vector of parameters of the parametric derivative func‐
tions. After inputting the initial value x = x(0), the variation 
of x can be calculated with a numerical integration method. 
The parameters of NODE can be trained using a set of sam‐
pled curves of x and V, which can be obtained through exter‐
nal APIs. The loss function is the mean squared error be‐
tween the predicted curves and the ground-truth curves of x.

After training, the NODE-based dynamic models are di‐
rectly integrated with physics-based models and transient 
simulations are carried out to verify the efficacy of the neu‐
ral model. The pseudo-code of training an NODE-based pow‐
er system dynamic modeling is as follows.

2)　Test Results
The source code of common NODE modules for power 

Pseudo-code 2: STGCN-based stability prediction

Training procedures
Input the total number of training epochs NE, the training dataset, the test 
    dataset, and the mini-batch size m
Initiate the parameters of the STGCN model
Set epoch = 1
While epoch <NE

    Do
        Get m samples from the training dataset
        STGCN.forward(m samples)
        Calculate the cross-entropy loss
        Loss.backward()
        Update parameters of STGCN
    Until all the samples in the training dataset have been selected
        Evaluate the STGCN model in the test dataset
        Set epoch¬ epoch + 1
End while
Integrate the STGCN model and transient simulations
Input the STGCN model, the contingency, the integration step Dt, and the 
    short simulation time T
Calculate power flow using external function APIs
Set contingency using internal function APIs
Set the integration step to Dt and the simulation time T using internal        
      solution APIs
Perform transient simulations using external function APIs
Get Y0, Y1, Y2, and f0 f1... fn using external solution APIs and external   
      function APIs
Stability label = STGCN.forward (Y0, Y1, Y2, f0 f1... fn)
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Fig. 5.　Results of STGCN, CNN, LSTM, and MLP models.

Pseudo-code 3: NODE-based power system dynamic modeling

Training procedures
Input the total number of training epochs NE as well as the training and    
   test datasets that contain {x̂(ti )V̂ (ti )}iÎ{01...n}, i. e., the ground-       
    truth values of x and V at time instant t = ti

Initiate the parameters of the NODE model
Set epoch = 1
While epoch <NE

    Do
       Get a sample {x̂(ti )V̂ (ti )}iÎ{01...n} from the training dataset
       Set x = x̂(t0 ) and V = V̂ (t0 )
       for iÎ{12...n}
           x(ti )= x(ti - 1 )+ (ti - ti - 1 )×NODE.forward(x(ti - 1 )V̂ (ti - 1 ))
       End for
       Calculate the mean squared loss between x and x̂
       Loss.backward()
       Update the parameters of the NODE model
    Until all the samples in the training dataset have been selected
        Evaluate the NODE model in the test dataset
        Set epoch¬ epoch + 1
End while
NODE model-integrated transient simulation
Input the NODE model, the contingency, the integration step Dt, and the   
   simulation time T
Set the component model to be the NODE model using internal model APIs
Calculate power flow using external function APIs
Set contingency using internal function APIs
Set the integration step to be Dt and the simulation time to be T using       
   internal solution APIs
Transient simulate using external function APIs
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system dynamic modeling is developed and published on 
GitHub, as shown in Supplementary Material A. A test case 
of modeling a generator with the published NODE module 
is conducted. The generator at bus 31 is modeled with the 
classical generator model. There are 3200 samples in the 
training dataset and 800 samples in the test dataset. Samples 
are randomly selected in the sample dataset including stable 
contingencies and unstable contingencies. The neural model 
is trained using only the state variables before the maximum 
rotor angle difference exceeds 360°.

After training, the NODE-based dynamic model is inte‐
grated into the simulator using the LibTorch Library. The 
comparative results of classical generator model-based simu‐
lations and NODE model-integrated simulations under stable 
and unstable contingencies are shown in Fig. 6, where Dδ is 
the rotor angle difference between generators at buses 31 
and 39; Cal Diff. denotes the difference between the results 
obtained by the original model and the NODE-based model; 
and abs(Diff.) denotes the absolution value of the difference. 
As can be observed, the modeling errors are within an ac‐
ceptable range.

D. RL-based SOPF

This is an example of the simulator and AI mutually as‐
sisting each other.
1)　Framework Design

SOPF is one of the traditional control problems of power 
systems. In SOPF formulation, a target function needs to be 
optimized under the equality constraints of the power flow 
equations and the DAEs of power system dynamics as well 

as the inequality constraints of static security constraints and 
dynamic security constraints [55], [56]. RL can solve this 
problem in a simulation-based optimization manner, as 
shown in Fig. 7. Based on OpenAI Gym [57] and 
Py_PSOPS, an environment of SOPF solutions is estab‐
lished, which parses actions and outputs state and reward af‐
ter performing power flow calculation, transient simulation, 
and constraints check. An AI-based agent determines actions 
according to the state. The simulator-based environment and 
the AI-based agent form an interactive mechanism by ex‐
changing states, rewards, and actions.

After training, the AI-based agent can adjust power flow 
states rapidly and is suitable for online applications. An RL-
based optimal power flow solution method has been pro‐
posed in [58] using PSOPS and the twin-delayed deep deter‐
ministic policy gradient (TD3) algorithm [59]. In this paper, 
a TD3-based SOPF solution program is realized using 
Py_PSOPS. The reward design is shown in (2).

Reward =

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

-999       Power flow does not converge

max{-999 - 500 - 50(TE - TS )}

                 Any dynamic constraint is violated

max{-500 - 10L(V -PG )}    

                 Any static constraint is violated

β - αC     Operating state is secure

(2)

where TE is the total simulation time; TS is the time instant 
when the system loses the stability and is set to be TE if the 
system remains stable; L(V PG ) is the sum of the out-of-lim‐
it parts of V and PG; C is the generation cost; and α and β 
are the scaling factors. The minimization problem of genera‐
tion cost is converted to the maximization problem of the re‐
ward. The pseudo-code of RL-based SOPF is as follows.
2)　Test Results

The training process of the agent with the TD3 algorithm 
is demonstrated in Fig. 8. After the agent is trained, further 
tests are carried out to check the control effectiveness. Fifty 
thousand power flow samples with dynamic constraint viola‐
tions are sampled. The agent gets the operation state and out‐
puts the control strategy. The agent costs 122.525 ms, which 
includes the time consumption of generating a strategy and 
performing the transient simulation once to check the strate‐
gy. After the control, 49602 samples return to safe operation 
points, whereas 398 samples violate static stability con‐
straints. The success rate is 99.204% and the new operation 
points are absolutely sure to maintain dynamic security.
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V. CONCLUSION 

To conclude, based on the illustration of the interaction 
mechanism between power system dynamic simulations and 
AI, an AI-oriented power system transient stability simulator 
called Py_PSOPS is designed, implemented, tested, and 
made public. Although it is currently an exploration of AI-
oriented power system dynamic simulations, the four test 
cases demonstrate promising capabilities of Py_PSOPS to 
support the development of AI-assisted simulations and simu‐
lation-assisted AI applications in power system stability anal‐
ysis and control. It should be noted the development of 
Py_PSOPS will continue in the future.
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