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Day-ahead Network-constrained Unit Commitment 
Considering Distributional Robustness and Intraday 

Discreteness: A Sparse Solution Approach
Xiaodong Zheng, Baorong Zhou, Xiuli Wang, Bo Zeng, Jizhong Zhu, Haoyong Chen, and Waisheng Zheng

Abstract——Quick-start generation units are critical devices 
and flexible resources to ensure a high penetration level of re‐
newable energy in power systems. By considering the wind un‐
certainty and both binary and continuous decisions of quick-
start generation units within the intraday dispatch, we develop 
a Wasserstein-metric-based distributionally robust optimization 
model for the day-ahead network-constrained unit commitment 
(NCUC) problem with mixed-integer recourse. We propose two 
feasible frameworks for solving the optimization problem. One 
approximates the continuous support of random wind power 
with a finite number of events, and the other leverages the ex‐
tremal distributions instead. Both solution frameworks rely on 
the classic nested column-and-constraint generation (C&CG) 
method. It is shown that due to the sparsity of L1-norm Wasser‐
stein metric, the continuous support of wind power generation 
could be represented by a discrete one with a small number of 
events, and the rendered extremal distributions are sparse as 
well. With this reduction, the distributionally robust NCUC 
model with complicated mixed-integer recourse problems can 
be efficiently handled by both solution frameworks. Numerical 
studies are carried out, demonstrating that the model consider‐
ing quick-start generation units ensures unit commitment (UC) 
schedules to be more robust and cost-effective, and the distribu‐
tionally robust optimization method captures the wind uncer‐
tainty well in terms of out-of-sample tests.

Index Terms——Unit commitment, distributional robustness, 
mixed-integer recourse, nested column-and-constraint genera‐
tion (C&CG), sparsity, Wasserstein metric.

NOMENCLATURE

A. Sets

G1, G2, G Sets of slow-acting generation units (coal-
fired units), quick-start generation units (gas 
turbines), and all generation units

L, D, W Sets of transmission lines, loads, and wind 
farms

T Set of dispatch time periods, i.e., {12...24}

B. Parameters and Functions

κG
gl, κ

D
dl, κ

W
wl Power flow distribution factors from unit g, 

load d, and wind farm w to line l
Cg (×) Variable cost of unit g

C LS
dt (×) Load shedding cost for load d at time t

C WC
w (×) Wind curtailment cost for wind farm w

CPen (×) Penalty factor of slack variables

Ddt Demand level of load d at time t
Dmax

dt The maximum value of load d that could be in‐
terrupted at time t

Fl Thermal power rating of transmission line l
MUg, MDg The minimum up and down time of unit g

NLg No-load cost of unit g

P min
g , P max

g The minimum and maximum production lev‐
els of unit g

R+
g, R

-
g Ramp-up and ramp-down limits of unit g

SUg, SDg Start-up and shut-down costs of unit g

Wwt Day-ahead forecasting generation of wind 
farm w at time t

C. Decision Variables and Random Variables

δLS
dt Load shedding scheduled for load d at time t
δWC

wt Wind curtailment of wind farm w at time t
ξwt Forecasting error of wind farm w at time t
pgt Scheduled production level of unit g at time t

sG
gt Positive slack variable added to unit g at time t
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xgt, ugt, vgt Binary variables indicating whether unit g is 
on, start-up, or shut-down at time t

I. INTRODUCTION 

THE past decade has witnessed a rapid increase of wind 
power generation worldwide. Although wind power 

plays a central role in a sustainable power system, its unpre‐
dictability generates a huge demand on the real-time flexibili‐
ty and generation capacity of power systems. In order to de‐
velop a modern power system with dominant renewable ener‐
gies like wind power, the randomness should be carefully 
hedged against. In this context, a sufficient amount of flexi‐
ble dispatchable resources should be installed such as gas 
turbines, combined-cycle units, pumped hydro storage, and 
bulk energy storage [1]-[4].

In addition to the resource adequacy from the hardware 
perspective, a powerful decision-making model is another 
key factor from the software perspective to ensure the effi‐
ciency and reliability of system operation subject to wind un‐
certainty. The stochastic programming is a classic method 
for handling the uncertainty in scheduling models [5]. How‐
ever, the inevitable errors in the probability distribution ap‐
proximation and the scenario sampling process may render 
the unit commitment (UC) schedule unreliable. In this re‐
gard, the robust optimization (RO) and distributionally ro‐
bust optimization (DRO) have been introduced to support 
the network-constrained unit commitment (NCUC) model to 
handle the uncertainty of variable renewable generation as 
well as the ambiguity on their probability distributions [1], 
[3], [6] - [8]. The robustness of RO or DRO decision is 
achieved by simultaneously considering all (usually infinite) 
scenarios or probability distributions defined in an uncertain‐
ty set or an ambiguity set.

Due to the strong modeling capacity and the rational mod‐
eling philosophy, DRO attracts more attention from the pow‐
er and energy society in recent years. The applicability and 
generality of DRO to the UC problem basically rely on two 
facts. First, the concept of distributional robustness enables 
system operators to deal with the distribution shift of ran‐
domness in the systems in a data-driven fashion, and thus to 
make UC schedules in a more accurate and quantitative man‐
ner. Second, the two-stage DRO framework admits general 
modeling components like discrete randomness and discrete 
recourse, yet remains problem tractability. Over the last half 
decade, many research works have been devoted to the appli‐
cation of two-stage DRO to the UC problem. In a nutshell, 
these research works can be divided into density-based [9], 
[10], distance-based [7], [11], [12], and moment-based [8], 
[13] - [15] methods, depending on the information used to 
characterize the ambiguous probability distribution and the 
method used to describe the distributional robustness. They 
can also be categorized as linear-decision-rule-based [10], 
[12] - [14], Benders-decomposition-based [9], [11], and de‐
layed-constraint-generation-based [7] - [11] methods, depend‐
ing on the type of algorithms used to compute the optimal 
solution.

It is noted that the above-mentioned works have not con‐
sidered the intraday and even real-time discrete behavior fea‐

tured by a majority of flexible resources, and the algorithmic 
frameworks therein would be incompatible if such behavior 
is considered in the day-ahead UC. Actually, the importance 
of including quick-start generation units and bulk storage 
with discrete decisions within the recourse, i.e., the intraday 
operation, has been recognized in the RO-based day-ahead 
NCUC models [1] - [3], where the resulting formulations are 
solved by the nested column-and-constraint generation 
(C&CG) method [16]. But existing literature in electrical en‐
gineering does not cover the topic of computing a DRO 
model with discrete recourse decisions, which is considered 
computationally intractable.

To the best of our knowledge, [17] is the most relevant lit‐
erature in electrical engineering that deals with a two-stage 
DRO problem with discrete or mixed-integer recourse. Nev‐
ertheless, the second-stage mixed-integer linear program 
(MILP) therein is immediately relaxed into a continuous opti‐
mization problem before the solution method is developed 
[17]. References [18]-[20] are representative publications ad‐
dressing this kind of problem in the operation research soci‐
ety. But the models in [18] and [19] have restricted the sup‐
port for the random vector to be a scenario-based discrete 
set. The support adopted in the model of [20] is continuous 
as in this paper, but in essence, an aforehand discretization 
of this support is used. It is worth noting that a predefined fi‐
nite support does not cover all extreme scenarios as the con‐
tinuous one does, and it may fail to render a solution that is 
truly robust in some battlefields. For example, in the schedul‐
ing of renewable power systems, the random parameter is 
usually in high dimensions, in which case the sampled or 
historical scenarios are less representative unless the scenar‐
io set is extremely huge [21]. Hence, the a priori discrete 
support is unlikely to provide a robust schedule. Also, we be‐
lieve that the two-stage DRO with continuous support is 
more general yet more challenging to handle.

The NCUC problems modeled by the two-stage DRO are 
not standard mathematical programs, and they are more com‐
plicated in structure than those modeled by the two-stage 
RO. Therefore, the tractability of the DRO-based NCUC 
models is of serious concern, especially the subset of these 
models that has a mixed-integer recourse problem. Even if 
the problems have been successfully recast as mixed-integer 
programs (MIPs) by leveraging some effective decomposi‐
tion methods, the resulting mathematical programs are gener‐
ally too heavy to handle due to the massive dual/primal vari‐
ables and constraints that have been augmented. Another 
concern is about the ambiguity set. Despite the wide use of 
the aforementioned ambiguity sets, it is still difficult to fig‐
ure out which one should be used on a specific problem, 
since the critical properties of these ambiguity sets have rare‐
ly been investigated. To promote the development and appli‐
cations of DRO in power systems, the following two contri‐
butions are made in this paper.

1) Two feasible frameworks are proposed for solving the 
two-stage distributionally robust NCUC problem with quick-
start generation units, which leverage the extreme points and 
the extremal distributions, respectively. Since the DRO-
based NCUC problems considering mixed-integer recourse 
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and the solution methods have not been studied before, the 
efficiencies of these two solution methods are compared as 
well.

2) It is demonstrated that the L1-norm Wasserstein metric 
reduces the number of extreme points needed to represent 
the full support, and produces an extremal distribution with 
less events of wind power generation. This sparsity effect is 
beneficial in producing an equivalent MIP formulation of the 
two-stage distributionally robust NCUC problem, which is 
smaller in size and easier to handle.

II. MODEL FORMULATION 

A. Deterministic NCUC Model with Quick-start Generation 
Units

We first present the deterministic NCUC model used in 
this paper. Noting that the minimum up and down time of 
most quick-start generation units, especially steam turbines 
and combined-cycle units, is more than one hour [22]- [24], 
we adopt the 1-hour resolution for the deterministic NCUC 
model. The 1-hour resolution is widely used in the clearing 
models of system operators and relative literature [1], [3], 
[25]. Besides, only the quick-start generation units are mod‐
eled, although other flexible resources like bulk energy stor‐
ages can be easily included. We note that the solution frame‐
works and algorithms proposed in this paper are apparently 
compatible with different time resolutions and other discrete‐
ly behaved devices. The deterministic NCUC model is for‐
mulated as:

min
ì
í
î

ïï
ïï
∑
tÎ T( )∑

gÎG
xgt ×NLg + ugt × SUg + vgt × SDg +Cg (pgt )   +

ü
ý
þ

ïï
      ∑

tÎ T( )∑
dÎD

C LS
dt (δLS

dt )+ ∑
wÎW

C WC
w (δWC

wt ) +∑
tÎ T
∑
gÎG

CPen (sG
gt ) (1)

s.t. 
xgt - xgt - 1 = ugt - vgt    "gÎGtÎ T  \{1} (2)

∑
τ =max{1t -MUg + 1}

t

ugτ £ xgt    "gÎGtÎ T  \{1} (3)

∑
τ =max{1t -MDg + 1}

t

vgτ £ 1 - xgt    "gÎGtÎ T (4)

P min
g xg £ pgt £P max

g xg    "gÎGtÎ T (5)

-R-
g £ pgt - pgt - 1 £R+

g    "gÎGtÎ T  \{1} (6)

0 £ δLS
dt £Dmax

dt     "dÎDtÎ T (7)

0 £ δWC
wt £Wwt + ξwt    "wÎWtÎ T (8)

-Fl £∑
gÎG

κG
gl (pgt - sG

gt )+ ∑
wÎW

κW
wl (Wwt + ξwt - δ

WC
wt )-

∑
dÎD

κD
dl (Ddt - δ

LS
dt )£Fl    "lÎLtÎ T (9)

∑
gÎG

(pgt- sG
gt ) + ∑

wÎW
(Wwt+ ξwt-δ

WC
wt ) =∑

dÎD
(Ddt-δ

LS
dt )     "tÎT

(10)

The objective function as shown in (1) considers the no-
load cost, the start-up and shut-down costs, the variable 

costs of units, the costs of load shedding and wind curtail‐
ment, as well as the penalty factor of slack variables. The 
linear cost functions are used in this paper. Constraints (2)-
(4) are the state transition equation, and the minimum up 
and down time limits of both non-quick-start and quick-start 
generation units, respectively. Constraint (5) is the produc‐
tion limit of units. Constraint (6) denotes the ramp-up and 
ramp-down limits of units. Constraints (7) and (8) impose 
limits on the amount of load shedding and wind curtailment, 
respectively. Constraint (9) denotes the flow limits of trans‐
mission lines. Constraint (10) denotes the power balance con‐
dition.

To ensure that the economic dispatch problem is surely 
feasible given any UC solution, slack variables are attached 
to the generators, as shown in (9) and (10). The slack vari‐
ables are introduced to hedge against the minimum output re‐
quirement of units, which can be shown to guarantee the fea‐
sibility of the economic dispatch problem with the load shed‐
ding and wind curtailment variables. According to [26], a de‐
composition algorithm for two-level programs often relies on 
some feasibility cuts, which are identified from an infinite 
second-level problem. But many solvers have difficulty in re‐
turning a solution when the objective value is infinity. There‐
fore, we develop a surely feasible dispatch to alleviate the 
difficulty in searching the feasibility cuts. Note that the slack 
variables should be penalized in the objective function with 
a big penalty factor. Moreover, no nonzero slack variables 
are allowed in the final solution, as the generators practically 
cannot operate below the minimum output level. In another 
word, a nonzero slack variable in the final solution indicates 
that the power balance condition does not hold.

For ease of illustration, we use the compact matrix formu‐
lation of (1)-(10), which is expressed as:

min
xzy

{ }cT
x x + cT

z z + cT
y y (11)

s.t.

Fx ³ f (12)

  Gz ³ g (13)

  Hy ³ h (14)

  Ax +Bz +Cy ³ d (15)

  Uy +Vξ =w (16)

The problem data of (11)-(16) are acquired from the origi‐
nal NCUC model (1)-(10), which include the cost vectors cx, 
cz, and cy, the matrixes F, G, H, A, B, C, U, and V, and the 
right-hand-side vectors f, g, h, d, and w. The vectors x, z, 
and y are the decision variables, while the vector ξ is the ran‐
dom vector. Note that the vector x denotes the statuses of 
slow-acting generation units, which should be determined day-
ahead; the vectors z and y are “wait-and-see” decision vari‐
ables, which are adjustable in intraday operation; and the ran‐
dom vector ξ represents the wind power. The correspondenc‐
es between the variables in (1) - (10) and (11)- (16) are given 
as:{xgtugtvgt|gÎG1tÎ T }Þ x, {xgtugtvgt|gÎG2tÎT }Þ
z, {pgt  s

G
gt  δ

LS
dt  δ

WC
wt |gÎG  dÎD  wÎW  tÎ T } Þ y , and 

{Wwt + ξwt|wÎWtÎ T }Þ ξ.
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B. Distributionally Robust Counterpart

To be precise, the distributionally robust counterpart of 
the NCUC model will be a multi-stage DRO model. Howev‐
er, the multi-stage problem is extremely complicated and 
computationally unaffordable. Hence, we focus on the two-
stage DRO counterpart, which is still challenging nowadays. 
There is another fact that encourages us to attack the two-
stage problem, that is, the multi-stage NCUC problem can 
be approximately formulated as a two-stage one using some 
modeling skills [2].

Adopting the two-stage setting, the distributionally robust 
counterpart of the NCUC model (11)-(16) can be formulated 
as [7], [8]:

min
xÎX

 maxPÎP
 { }cT

x x +EP (Q(xξ)) (17)

where X is the feasible region for x defined as {x|Fx ³ f }; 
PÎP is a probability distribution that belongs to the set P; 
EP (×) is the expectation operator regarding the distribution P; 
and Q(xξ) is the optimal value function defined as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

Q(xξ)= min
{zy}ÎZ ´Y

 { }cT
z z + cT

y y

s.t.  Z = { }z|Gz ³ g
    Y = { }y | Hy ³ hAx +Bz +Cy ³ dUy +Vξ =w

(18)

We adopt the L1-norm Wasserstein metric, which has a 
sparsity property that facilitates the solution procedure of the 
resulting DRO-based NCUC problem. Therefore, we have 
the ambiguity set P for (17) [7], [27]:

P = {PÎP0 (Ξ) ||EP ´ P̂ (d(ξξ̂))£ ε: ξ Pξ̂  P̂} (19)

where Ξ is the support of ξ defined as {ξ | ξmin £ ξ £ ξmax}; P0 

is the set of all distribuitons supported on Ξ; P̂ is the empiri‐
cal distribution constructed by historical data; P ´ P̂ is a joint 
distribution; d(ξξ̂) is the L1-norm distance function return‐

ing  ξ - ξ̂ s

1
; and ε is the distance parameter controlling the 

size of the ambiguity set. As can be observed from (19), the 
ambiguity set P contains all probability distributions that are 
no more than ε away from the empirical distribution, mea‐
sured by the L1-norm Wasserstein metric.

III. SOLUTION METHODS 

The DRO-based NCUC model (17) is novel in that the 
discrete behavior of quick-start generation units has been pre‐
cisely considered. In this section, we propose two solution 
methods that can compute the globally optimal solution of 
the model, so as to facilitate the application of this model 
and other models that fall into this model family.

A. Reformulating the Second-stage Max-min Problem

As suggested by [7], N historical observations of ξ are ag‐
gregated into S data points before being utilized to construct 

the empirical distribution. Therefore, we have P̂=∑
s=1

S

ns (Nδ
ξ̂ s ), 

where ns /N is the probability mass of the sth data point ξ̂ s; 
and δ(×) is the Dirac distribution.

By leveraging the conditional distribution interpretation of 

P ´ P̂, the second stage of (17) can be written as:
ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ï
ïï
ï

ï

ï

Z PINF (x)= max
f s
ξ ³ 0

 ∫
Ξ

ns

N
Q(xξ) f s

ξ dξ

s.t.  ∫
Ξ

f s
ξ dξ = 1: αs    s = 12...S

        ∑
s = 1

S ∫
Ξ

ns

N  ξ - ξ̂ s

1
f s
ξ dξ £ ε: β

(20)

where f s
ξ  is the probability density function (PDF) for the sth 

conditional distribution; and αs and β are the dual variables.
Similar to the standard Lagrangian duality in convex opti‐

mization, the semi-infinite program (20) can be dualized into:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

Z DINF (x)= min
αsβ ³ 0

 
ì
í
î

ü
ý
þ

∑
s = 1

S

αs + εβ

s.t.  
ns

N
Q(xξ)- αs -

ns

N  ξ - ξ̂ s

1
β £ 0

           "ξÎΞ s = 12...S

(21)

Please refer to [7] and [27] for the detail of the reformula‐
tion procedure. Note that the strong duality holds between 
(20) and (21) due to two facts: ① (20) has at least one feasi‐
ble solution, which imitates the empirical distribution P̂, 
hence it is a relative interior point [27], [28]; ② the econom‐
ic dispatch problem is surely feasible, and thus Q(xξ) is 
bounded.

It can be observed that the constraints of (21) are actually 
S independent robust constraints. But the standard technique 
addressing this kind of constraints (i. e., dualizing the left-
hand side of the constraint [7], [8]) is not applied here, since 
Q(xξ) is the value function of an MILP. Fortunately, (21) 
can be recast as a two-stage robust optimization problem 
with mixed-integer recourse [26], [29], which is shown as:

Z DRO (x)= min
β ³ 0

  εβ +∑
s = 1

S

max
ξ sÎΞ

ns

N ( )-β  ξ s - ξ̂ s

1
+Q(xξ s )

(22)

The second term of (22) equals the first term of the objec‐
tive of (21), because the optimal solution of αs satisfies αs =

max
ξ sÎΞ

ns

N
 ( )-β  ξ s - ξ̂ s

1
+Q(xξ s ) . Note that the second stage 

of (22) includes S independent max-min sub-problems, and 
they share the first-stage decision variable β in the objective 
function.

Problem (22) is solvable with a nested C&CG method ac‐
cording to a seminal paper [16]. It is anticipated that, by us‐
ing the nested C&CG method, a finite number of ξ values 
could be found to sufficiently characterize the infinitely di‐
mensional constraints in (21). Assuming the nested C&CG 
method terminates at the J th iteration, (21) is representable 
with the MILP as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

Z DFINT (x)= min
β ³ 0αs

 
ì
í
î

ü
ý
þ

εβ +∑
s = 1

S

αs

s.t.  αs ³
ns

N ( )-β  ξ s*
j - ξ̂ s

1
+Q(xξ s*

j ) : mξ s*
j

           s = 12...S j = 12...J

(23)

where ξ s*
j  is the jth extreme point for the sth sub-problem of 
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(22) generated by the nested C&CG method; and mξ s*
j
 is the 

dual variable.
Remark 1: it is noted that the infinite support in (21) is ap‐

proximated by (23) with a finite discrete support refined by 
C&CG method. This technique, which is also a delayed con‐
straint generation method, is an alternative to addressing the 
semi-infinite program (21) aside from the one used in [7], 
[8], dualizing the left-hand side of the infinitely dimensional 
constraints and refining the second-stage value function in‐
stead. The alternative is adopted in this paper as it enables 
us to deal with the mixed-integer recourse problems. Howev‐
er, it can be observed that, when solving the semi-infinite 
programming problem, this technique could suffer from slow 
convergence in problems with a moment-based ambiguity 
set [30]. The slow convergence means that a massive num‐
ber of events are needed in order to equivalently character‐
ize the continuous support. In the following, this technique 
is examined on the DRO-based NCUC problem equipped 
with an L1-norm Wasserstein ambiguity set. Owing to the 
sparsity rendered from the L1 norm, the technique turns out 
to be effective in handling this kind of problems.

B. Solution Framework 1: Applying Nested C&CG Method

It is straightforward to combine the first stage of (17) 
with (22), and then solve the problem as a whole using the 
nested C&CG method. Therefore, the DRO-based NCUC 
problem becomes a two-stage robust optimization problem 
with mixed-integer recourse:

min
xÎXβ ³ 0

ì
í
î

ü
ý
þ

cT
x x + εβ +∑

s = 1

S

max
ξ sÎΞ

 
ns

N ( )-β  ξ s - ξ̂ s

1
+Q(xξ s )  

(24)

We can observe that the first term of the second-stage ob‐

jective function in (24), i. e., -β  ξ s - ξ̂ s

1
, could lead to a 

sparse solution [31]. The sparsity effect can be illustrated by 
Fig. 1.

First, the main component of the second-stage problem of 
(24) is written as max

ξ sÎΞ ξ s - ξ̂ s

1
£ψ

Q(xξ s ) with a suitable con‐

stant ψ [32]. Then, the contour of Q(xξ s ), i.e., a piecewise 
affine function of ξ s, is plotted in a coordinate plane on each 
sub-figure of Fig. 1. Also, the shaded areas representing the 
constant ψ are plotted. Figure 1(a) corresponds to the L1-
norm case, where the shaded area is a rectangular shape. 
Since the rectangle is sharp, the optimal solution is much 

more likely to be attained at the corner. In this case, the opti‐
mal ξ s takes zero at the first coordinate, hence it is a sparse 
solution. In other cases, like the L2-norm one shown by Fig. 
1(b), a sparse solution can not be easily attained.

Basically, the sparsity effect becomes more salient as the 
regularization parameter β increases. When β takes zero, the 
solution sparsity vanishes. It can be observed from the sec‐
ond constraint of (20) that when the dual variable β takes ze‐
ro, the distance constraint is loose, so the extreme event can 
be chosen more casually. We mention that the sparsity effect 
or the L1-regularization has been studied in the random con‐
vex programming. For example, [33] uses the L1-regulariza‐
tion to alleviate a critical obstacle that the number of sam‐
ples needed may dramatically increase in order to achieve 
the solution robustness.

The sparsity effect could reduce the number of extreme 
points needed to characterize the continuous support, so one 
can expect the outer loop (main loop) of nested C&CG meth‐
od to converge fast. Hereinafter, the standard nested C&CG 
method that solves (24) is shown in Algorithm 1. Since the 
nested C&CG method has not yet been implemented into a 
DRO-based NCUC problem before, especially one that uses 
the Wasserstein distance, Algorithm 1 is detailed in this pa‐
per.

The main loop of Algorithm 1 goes from Line 3 to Line 
16, which iteratively solves a master problem with augment‐
ed extreme events, and a sub-problem that generates a new 
extreme event regarding each sample ξ̂ s. Line 5 to Line 14 
elaborate the procedure of solving the sub-problem, which is 
known as the inner-level C&CG algorithm [16]. Note that 
the sub-problem has S parallelizable instances, each of 
which corresponds to a data point that constructs the ambigu‐
ity set. To solve each instance of the sub-problem, a bilinear 
program (BLP) will be solved repeatedly given some re‐
course decisions from quick-start generation units, and the 
critical wind power generation event yielded from the BLP 
will be fed to an MILP to explore a new recourse decision. 
When there is no better recourse decision, the inner-level 
C&CG procedure terminates and the latest extreme event is 
augmented to the master problem of the next main loop. Al‐
gorithm 1 terminates when the gap between the lower and 
upper bounds is closed, and it returns a day-ahead UC deci‐
sion for slow-acting generation units.

It should be noted that the master problem makes use of 
the primal formulation of Q(xξ s*

j ), which is similar to (18). 
Due to the “³” relationship, the minimization operator in 
Q(xξ s*

j ) can be discarded, so the master problem is an 
MILP. It is also worth mentioning that the empirical distribu‐
tion is included in the master problem, i.e., ξ s*

1 = ξ̂ s. The em‐
pirical distribution is necessary to ensure the feasibility of 
the master problem. As for the BLP, the dual formulation of 
Q(xξ s ) is adopted, where λ, μ, and ν are dual variables con‐
cerning constraints (14)-(16), respectively.

C. Solution Framework 2: Incorporating Extremal Distribu‐
tions

When (21) is addressed by refining the second-stage value 
function Q(xξ), as reported in [7], [8], the resulting prob‐

Q Q

x x

(a) (b)

y y

Fig. 1.　 Illustration of sparsity effect. (a) Graph of an L1-norm case. (b) 
Graph of an L2-norm case.
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lem cannot be efficiently solved by delayed constraint gener‐
ation if we combine the first-stage problem together. To tack‐
le such an issue, [7] and [8] propose an efficient approach, 
which updates the first-stage UC decision in a separate rou‐
tine via extremal distribution generation (EDG). Given a 
first-stage decision in each main loop, the EDG procedure 
will simultaneously identify a set of events that weight more 
than zero in the worst-case distribution, and this is where 
the gain of efficiency mainly relies [7], [8]. Facing this unex‐
plored DRO-based NCUC problem, it is of interest to com‐
pare the performance of an EDG-based algorithm with that 
of the classic nested C&CG method. Hence, we are about to 
derive the EDG-based algorithm for (17).

Herein, in order to implement the EDG, (22) will be 
solved instead of (24), i. e., the variable x is fixed and the 
first-stage problem is bypassed at this stage. Then, as (22) is 
solved, the byproduct (23) is dualized again into:

ì
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î

ï

ï
ïïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

Z PFINT (x)= max
m

ξ s*
j
³ 0
 ∑
s = 1

S∑
j = 1

J ns

N
Q* (xξ s*

j )mξ s*
j

s.t.    ∑
j = 1

J

mξ s*
j
= 1    s = 12...S

         ∑
s = 1

S∑
j = 1

J ns

N  ξ s*
j - ξ̂

s

1
mξ s*

j
£ ε

  (25)

where Q* (xξ s*
j ) is the optimal value of Q(xξ s*

j ), i.e., a sca‐
lar; and mξ s*

j
 is the conditional probability of the event ξ s*

j . 

From (20) and (25), it has been evident that the set of opti‐
mal values mξ s*

j
 establishes a discrete case of the distribution 

P, i. e., P* =∑
s = 1

S∑
j = 1

J ns

N
m*

ξ s*
j
. Please refer to [7] and [8] for the 

detailed procedure of recovering a discrete distribution.
The distribution P* is an extremal distribution as it attains 

the maximum of the primal semi-infinite program (20). This 
can be observed from:

Z PINF (x)= Z DINF (x)= Z DFINT (x)= Z PFINT (x) (26)

where the first and third equalities hold due to strong duali‐
ty, and the second equality holds because the nested C&CG 
method solves (22) globally.

The extremal distribution introduced above can be used to 
update the first-stage decision. As a result, we have a variant 
of the solution framework, denoted as Algorithm 2.

In Algorithm 2, the main loop from line 3 to line 8 is the 
EDG procedure, in which the master problem utilizes the pri‐
mal formulation of the extremal distributions, i. e., the 
weighted sum of Q(xξ s*

ij ). The subroutine in line 5 invokes 
the nested C&CG method to refine the discrete support and 
yields (23) for establishing an extremal distribution. Note 
that in line 5, (22) is solved in a fashion similar to Algo‐
rithm 1, excepting that the first-stage variable x will be fixed 
as x *

I . The distinct difference between these two algorithms 
is that Algorithm 2 adds multiple support points in each 
main loop (with nonzero probability certificated by the extre‐
mal distribution) to the master problem, instead of adding 
one support point as performed by Algorithm 1.

IV. CASE STUDIES 

Numerical experiments are carried out in this section on 
two modified IEEE systems to validate the proposed model 
and the solution methods. The main information of the test 
systems is reported in Table I. With some mild modifica‐
tions, the 6-bus system contains one 100 MW quick-start 
generation unit, while the 118-bus system contains seven 
quick-start generation units with relatively smaller capacities. 
The minimum up and down time of quick-start generation 

Algorithm 1: nested C&CG method for DRO-based NCUC problem

1: Choose a convergence tolerance ϵ; denote x* as the optimum of a         
  variable x; let UB =¥, LB =-¥, J = 1, K = 0, ξ s*

1 = ξ̂ s; let z s
0 be an        

   initial value of zs

2: while (UB - LB)/UB > ϵ, do
3:   Solve the master problem
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4:   J¬ J + 1, x *

J ¬ x*, β *
J ¬ β*, LB¬ -ϑ

5:   for s = 12...S do
6:     A subroutine to obtain an extreme value of ξ s with x *

J  and β *
J

7:     repeat
8:     Obtain an extremum of ξ s by solving
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9:     K¬K + 1, ξ s*
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10:    Obtain a recourse of zs by solving
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s.t.  (13) - (15)
       Uy +Vξ s*

K =w
11:    K¬K + 1, z s*

K ¬ zs*

12:    until zs* duplicates z s*
k  for kÎ[1K - 1]

13:    K¬ 0
14:  end for

15:  UB¬ cT
x x *

J + εβ
*
J +∑

s = 1

S

γs*

16: end while
17: Return x *

J

Algorithm 2: EDG method with nested C&CG subroutine

1: Choose a convergence tolerance ϵ; denote x* as the optimum of a         
   variable x; let UB =¥, LB =-¥, I = 1, J1 = 1, ξ s*

11 = ξ̂
s, and m*

ξ s*
11
= 1.

2: while (UB - LB)/UB > ϵ do
3:   Solve the master problem:
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-ϑ = min
xÎXη ³ 0

 cT
x x + η
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4:   I¬ I + 1, x *
I ¬ x*, LB¬ -ϑ, J I¬ 0

5:   Solve (22) with x *
I  to obtain ξ s*

Ij

6:   Solve (25) to extract m*

ξ s*
Ij

7:   UB¬ cT
x x *

I + Z DFINT* (x *
I ), JI¬ number   of  ξ s*

Ij

8: end while
9: Return x *

I
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units is set to be one hour without loss of generality. The lo‐
cations of these units have been reported for reproducibility. 
As can be observed from Table I, wind farms provide 25% 

and 20% of the total generation capacity in the 6-bus system 
and the 118-bus system, respectively.

The whole data over a three-year time span are divided in‐
to two sets. The first set, namely the in-sample data set, is 
reduced to an empirical distribution [7]. The rest is used for 
simulations, which is the out-of-sample data set. In Fig. 2, 
we can visualize the load demand profile, the empirical dis‐
tribution of wind power (with 5 events as depicted by five-
black lines in Fig. 2, or S = 5) as well as the out-of-sample 
data set for the 6-bus system.

The models and algorithms are implemented in MATLAB 
using the YALMIP toolbox. MILPs and linear programs 
(LPs) are solved with GUROBI 9 on an Intel i5-8250U CPU 
personal computer running at 3 GHz. The BLPs are handled 
by sequentially solving some LPs with multiple initial points 
[8]. The optimality gaps are set to be 10-4 and 10-3 for the 6-
bus system and the 118-bus system, respectively. Also, only 
the 14 transmission lines connected with wind farms are im‐
posed with power flow limits in the 118-bus system.

A. Cost Efficiency

In this subsection, we compare the out-of-sample cost of 
the proposed DRO-based NCUC model in (3), which is de‐
noted as Model 1, with those of other three models (Models 
2-4). Model 2 is a simplified DRO model, which replaces 
the mixed-integer recourse problem with an LP by fixing the 
intraday statuses of quick-start generation units as optimized 
day-ahead statuses [1]. Definitely, Model 2 is less complex, 
whose optimal solution can be efficiently computed using 
the method proposed in [7]. For both Model 1 and Model 2, 
the historical scenarios are aggregated to obtain an empirical 
distribution with 5 events [7], [20]. Besides, we denote the 
per-unit distance parameter as ε* = ε   ξmax - ξmin

1
 and em‐

ploy the cross-validation to select a best value ε* out of a se‐

ries of candidates for each model [7], [27].
In order to demonstrate the advantage of the DRO meth‐

od, a data-driven RO method is also tested on our problem. 
As suggested by [34], a data-driven uncertainty set represent‐
ed by the convex hull of the in-sample data is used. The 
model equipped with such an uncertainty set is denoted as 
Model 3.

It is also of interest to evaluate how much is lost by mak‐
ing the decision upon a set of ambiguous distributions in‐
stead of a perfect one. In this light, another model equipped 
with a perfect distribution, i.e., the out-of-sample data set, is 
solved. The model is denoted as Model 4, and its out-of-sam‐
ple cost would be in accordance with the scheduling cost 
since perfect information of wind power has been assumed. 
The main features of the above-mentioned optimization mod‐
els are collected in Table II. Note that whether the quick-
start generation units allowed to be started up/shut down in 
intraday operation are defined in the sense of decision mak‐
ing, whereas in the simulation phase, they are freely adjust‐
able according to the technique advantage.

Since these models are mainly used to determine the on/
off statuses for slow-acting generation units, the day-ahead 
UC schedules of 6-bus and 108-bus systems are presented 
by polar plots, as shown in Fig. 3 and Fig. 4, respectively. 
The polar plot with 0-1 values naturally visualizes the off/on 
statuses in a compact manner. Each polar plot starts at the 
rightmost at Hour 1 of the first generation unit G1, and ends 
at Hour 24 of the last generator. We set the perfect UC solu‐
tion derived by Model 4 as the benchmark, which is shown 
in Figs. 3(d) and 4(d). The UC schedules derived from other 
three models are presented in independent polar plots, with 
colored boxes on the circumference of the circle marking the 
entries, where the on/off statuses are distinct from those of 
Model 4.

TABLE I
CONFIGURATION OF TEST SYSTEMS

System

6-bus

118-bus

All units

Number

4

54

Capacity (MW)

630

7220

Quick-start generation units

Number

1

7

Capacity (MW)

100

270

Location (bus No.)

6

4, 6, 90, 91, 105, 107

Wind farms

Number

1

3

Capacity (MW)

210

1805

Location (bus No.)

6

25, 37, 66

TABLE II
DEFINITION OF OPTIMIZATION MODELS

Model

1

2

3

4

Status of quick-start 
generation units

Adjustable (intraday)

Determined (day-ahead)

Adjustable (intraday)

Adjustable (intraday)

Wind power information

Ambiguous distribution

Ambiguous distribution

Data-driven uncertainty set

Explicitly known
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Fig. 2.　Profiles of total load demand and wind power.
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As can be observed from Fig. 3, in the 6-bus system, 
Model 1 achieves a same day-ahead UC solution as Model 
4, and Model 2 achieves a slightly different solution, which 
turns on G3 at Hour 8 instead of Hour 9. As optimized by 
Model 3, however, G2 is scheduled on from Hour 11 to 
Hour 18, and G3 is turned on even earlier at Hour 7. In the 
118-bus system, the solutions of Model 1 and Model 2 are 
quite different from the perfect solution. The UC schedule 
derived by Model 3 is distinctly different from the others, 
which schedules more units on with frequent start-up and 
shut-down and seems more conservative.

(a) (b)
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1

Fig. 4.　Day-ahead UC schedules with different models for a problem in‐
stance in 118-bus system (each circle contains statuses of 47 generators). (a) 
Model 1. (b) Model 2. (c) Model 3. (d) Model 4.

Table III summarizes some important indices of these 
models, including the distance parameters ε* used by Model 
1 and Model 2, the scheduling cost and out-of-sample cost 
as well as the wind curtailment and load shedding. It can be 
observed that the best distance parameter ε* basically varies 
with the model formulation and the system configuration. In 
Table III, the scheduling costs are derived from the optimiza‐
tion models, while the out-of-sample costs are yielded from 
simulations with a UC solution, and they reflect the “real” 
expected costs in real-time operations.

The out-of-sample costs obtained from Model 1 are lower 
than those from Model 2 in both systems, while the expect‐
ed amount of wind curtailment and load shedding obtained 
from Model 1 are smaller than or equal to those from Model 
2. This demonstrates that it is of high necessity to precisely 
account for the discrete behavior of quick-start generation 
units. Regarding Model 3, even though the robust solutions 
provide UC schedules with the least load shedding, the solu‐

tions are least favorable in two systems in terms of both the 
cost efficiency and the wind curtailment. It is worth noting 
that the performance of Model 3 is not improved and even 
degraded when the convex hull is constructed with partial in-
sample data. According to the scheduling costs of Model 3, 
it is asserted that the data-driven uncertainty set is actually 
quite conservative. This phenomenon can be explained by 
the so-called curse of dimensionality: in high dimensions, 

G3
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G2 1
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G3

G1

G2 1

0

(a) (b)

G3

G1

G2 1

0

(c)
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Fig. 3.　Day-ahead UC schedules with different models for a problem in‐
stance in 6-bus system (each circle contains statuses of three generators). (a) 
Model 1. (b) Model 2. (c) Model 3. (d) Model 4.

TABLE III
COST EFFICIENCY AND ROBUSTNESS OF DIFFERENT MODELS

System

6-bus

118-bus

Model

1

2

3

4

1

2

3

4

ε* (p.u.)

10-3

10-1.5

10-1.5

10-2.25

Scheduling 
cost (k$)

96.45

107.53

126.52

103.98

944.97

931.95

1157.32

974.52

Out-of-sample 
cost (k$)

103.98

104.57

105.94

103.98

974.66

975.75

985.41

974.52

Wind curtailment (MWh)

Mean 
value

5.11

7.69

8.98

5.11

0.82

0.82

54.76

0.82

The maximum 
value

65.82

95.31

119.51

65.82

18.20

18.20

628.91

18.20

Load shedding (MWh)

Mean 
value

0.23

0.23

0.01

0.23

0

0

0

0

The maximum 
value

1.85

1.85

0.40

1.85

0

0

0

0.14

Slack power (MWh)

Mean 
value

0

0

0

0

0

0

0

0

The maximum 
value

0

0

0

0

0

0

0

0

496



ZHENG et al.: DAY-AHEAD NETWORK-CONSTRAINED UNIT COMMITMENT CONSIDERING DISTRIBUTIONAL ROBUSTNESS...

most of the samples are concentrated near the edge of a hy‐
perrectangle [21], and thus the convex hull of in-sample data 
could be unsuitable for robust optimization. The situation is 
quite different in Model 1. Even though Model 1 protects 
the system against all scenarios contained in the full hyper‐
rectangular support, the worst-case distribution approach that 
it takes has made the UC schedule less conservative.

We further analyze the gap between Model 1 and Model 
4. The out-of-sample cost of Model 1 is equivalent with that 
of Model 4 in the 6-bus system, which coincides with the 
UC results shown in Fig. 3. As for the 118-bus system, al‐
though the UC solution of Model 1 is quite different from 
that of Model 4, the out-of-sample cost is extremely close to 
the cost under perfect information, i. e., $974660 v. s. 
$974520. Basically, this attractive performance is due to the 
precise modeling, that is, the intraday start-up/shut-down be‐
havior of quick-start generation units has been considered in 
the scheduling phase. The performance should also be attrib‐
uted to the DRO approach with a fine-tuned distance parame‐
ter, which renders the system being not only robust against 
extreme random events, bus also cost-effective under realis‐
tic distributions.

Aside from the day-ahead UC schedules, the intraday dis‐
patch schemes also manifest the performance of decision-
making models. In Fig. 5, the intraday adjustments of on/off 
statuses for quick-start generation units in the 118-bus sys‐
tem under the day-ahead UC schedules determined with dif‐
ferent models are compared, and for conciseness, only the re‐
sult on a typical day with the maximum load shedding is pre‐
sented. 

It can be observed from Fig. 5(a) that the real-time power 
outputs of three wind farms are simultaneously low during 
the second half of Day 671. As a result, the quick-start gen‐
eration units are started up within this time period to support 
the power balance, i.e., the quick-start generation unit G1 of 
Model 2 under the day-ahead UC schedule, all quick-start 
generation units of Model 3, and the quick-start generation 
units G4 and G6 of Model 4. It is noticed that no quick-start 
generation units are invoked on this simulating day, given 
the day-ahead UC schedule determined by the proposed 
DRO-based model. The operating costs are also reported on 
this day, as shown in Fig. 5(b). The cost of Model 1 is exact‐
ly the lowest.

B. Performance of Solution Methods

To analyze the performance of the solution methods, we 
start with an extremal distribution yielded from the 6-bus 
system. As shown in Fig. 6(a), the upper panel shows the 
empirical distribution, while the lower panel shows the extre‐
mal one. In the extreme distribution, the original Event 5 in 
the upper panel is split into two events, donoted as Event 5 
and Event 6 with the possibilies of 69% and 31%, respec‐
tively (i.e., extreme points ξ 5*

I1 and ξ 5*
I2), so the number of ex‐

treme points needed to equivalently represent the constraints 
in (21) is quite small indeed. We can observe that the sparsi‐
ty of extremal distributions always happens in the test cases. 
Moreover, the number of events in an extremal distribution 
is highly related to that of the empirical one, i. e., P̂. This 

suggests that the size of the master problems is controllable. 
If the ambiguity set in (19) is constructed with a highly ag‐
gregated distribution P̂, the size of the MILP master prob‐
lems in Algorithm 2 will be effectively reduced. When using 
a highly aggregated empirical distribution, unlike the stochas‐
tic programming approach, the DRO-based model can still 
hedge the bias and shift of probability distributions, through 
protecting the system against all wind generation events 
within the support Ξ (the robustness), and quantitatively find‐
ing a solution regarding a set of distributions centered at the 
empirical one from a suitable distance ε* (the cost efficien‐
cy).

The L1-norm also has a significant effect on the events. 
The entries of ξ s*

j  in Fig. 6(a) mostly take the same values 
as those of ξ̂ s, i. e., the wind power is perturbed in only a 
few hours. Since the vector ξ - ξ̂ s is sparse, reasonably, the 
set of extreme points for the final master problem in Algo‐
rithm 2 will be small-sized as well. The sparsity of events 
could alleviate the computational burden as it reduces the 
scale of the master problems and the number of main loops.
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To better demonstrate the sparsity of L1-norm Wasser‐
stein ambiguity set, an extremal distribution obtained from 
a first-moment ambiguity set is presented for comparison. 
The first-moment ambiguity set contains all distributions 
that share a predefined expectation (band) [8], [13], i.e., P =

{PÎP0 (Ξ) | ξ̄min £EP (ξ)£ ξ̄max}. The result is visualized in 

Fig. 6(b), where the lower panel shows that the extremal dis‐
tribution has split the expectation band into 17 events, the 
probabilities of which add up to 1. Typically, the extremal 
distribution yielded from the first-moment-based ambiguity 
set is a dense one with many ramp events. The extremal dis‐
tribution could become even denser if the expectation band 
is squeezed to a profile. It can be observed that the dense 
distributions make the DRO-based NCUC problem much 
more computationally expensive.

As illustrated in Fig. 1, the sparsity of solutions is mainly 
due to the L1-norm design in the Wasserstein distance, so 
other models such as the moment-based distributionally ro‐
bust NCUC models studied in [8] can hardly achieve a 
sparse solution. Please also see Fig. 3 in [8] for the extremal 
distribution of a second-moment-based case.

In order to figure out which solution framework is more 
suitable, several instances of the distributionally robust 
NCUC problem (17) are solved for each test system. Basical‐
ly, Algorithm 2 takes fewer main loops to converge in both 
test systems, as shown in Table IV. The number of main 
loops in 6-bus and 118-bus systems are summarized by the 
range, mean, and standard deviation (std.), where the mean 
and std. are fixed to integers. The results validate that the 
cutting plane provided by the extremal distribution is stron‐
ger. As shown in Figs. 7 and 8, the strong cutting plane is il‐
lustrated. Although both algorithms have a high convergence 
rate, Algorithm 2 always achieves a smaller gap at the sec‐
ond iteration, as shown by Fig. 7(b) and Fig. 8(b). It is also 
noted that Algorithm 2 returns a smaller upper bound at the 
first iteration, which is due to the aforementioned setup, i.e., 
the master problem has to include the empirical distribution 
to ensure the feasibility when using Algorithm 2. Note that 
the results delivered by these algorithms are highly matched 
given the convergence errors. Although the sub-optimality in‐
duced by the way of solving the BLPs may affect the consis‐
tence of UC schedules obtained from two algorithms, the de‐
viation is rather small in our numerical experiments.

Other main indices, including the number of solutions gen‐
erated by the inner C&CG subroutine and the total runtime 
spent in solving a problem instance, are shown in Table IV. 
The nested C&CG method in two algorithms handles prob‐
lems in different structures with the first-stage decision vari‐
able x unfixed or fixed, respectively. Therefore, the average 
numbers of solutions rendered are different. The runtime 

should be the most crucial index. Concerning the problem 
addressed in this paper, it is found that the strong cutting 
plane unnecessarily leads to less runtime in total. Since each 
main loop of Algorithm 2 involves S nested C&CG subrou‐
tines that solve the second-stage problem, more computation‐
al effort is spent for many cases. Due to the extra burden in‐
volved in solving the second-stage problem, the average run‐
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TABLE IV
PERFORMANCES OF DIFFERENT SOLUTION ALGORITHMS IN 6-AND 118-BUS SYSTEMS

Algorithm

Algorithm 1

Algorithm 2

Item

Range

Mean

Std.

Range

Mean

Std.

6-bus system

Number of main loops

[2, 21]

6

4

[2, 18]

5

4

Number of solutions

[2, 9]

4

2

[2, 7]

3

2

Runtime (s)

[8, 2090]

234

461

[20, 1876]

282

510

118-bus system

Number of main loops

[2, 8]

4

2

[2, 5]

3

1

Number of solutions

[2, 7]

3

1

[2, 3]

2

0

Runtime (s)

[161, 4315]

1014

1208

[110, 2220]

835

698
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time turns out to be longer in the 6-bus system. In the sys‐
tem where the runtime consumed by solving the master prob‐
lem dominates, namely the 118-bus system, the advantage of 
Algorithm 2 reveals due to the time saved in solving fewer 
master problems. Since the real-world TCUC problems are 
mostly large-scale, an algorithm is suggested with stronger 
cutting plane and less main loops, hence Algorithm 2 is cho‐
sen. In specific cases where Algorithm 2 has been proven to 
be more time-consuming, it is necessary to introduce the 
EDG procedure to this problem only if the system operators 
care more about the extremal distributions of wind power 
rather than the solution time.

To sum up, the sparse solution approach is beneficial in 
that the number of iterations as well as the size of problems 
solved within each iteration could be effectively reduced. 
However, it does not mean that any DRO-based NCUC prob‐
lem can be solved efficiently, e. g., within a 2-hour market 
clearing time window. There are two important noteworthy 
facts: ① the complexity of the DRO-based NCUC problem 
is basically dictated by the deterministic counterpart; ② the 
complexity can be influenced by many other factors, which 
are hard to quantify, such as the distance parameter, the 
share of wind power capacity, and the penalty factor of wind 
curtailment.

Finally, we would like to mention that although the EDG 
framework has been reported in a recent paper dealing with 
the L1-norm Wasserstein distributionally robust UC problem 
[7], some novel contributions make this paper distinctly dif‐
ferent from [7]. First, the model herein considers the intra‐
day start-up/shut-down behavior of quick-start generation 
units. Second, in order to solve the complicated DRO-based 
NCUC problem with mixed-integer recourse, the solution ap‐

proach is quite different in how the second-stage problem is 
handled. Finally, this is the first time that the sparse solution 
resulting from the L1-norm DRO modeling in NCUC prob‐
lems has been revealed.

V. CONCLUSIONS

The Wasserstein-metric-based distributionally robust 
NCUC problem with quick-start generation units can be effi‐
ciently solved by leveraging the nested C&CG method. Due 
to the L1-norm design, the infinitely dimensional optimiza‐
tion problem could be represented with a reasonable number 
of extreme events, or several sparse extremal distributions. It 
has been observed that the events identified by both algo‐
rithms are analogous to the events of the empirical distribu‐
tion that constructs the ambiguity set, and specifically, they 
are the variants obtained by perturbating a few values. Al‐
though the extreme events and the extremal distributions are 
sparse, they are more representative than a prior discrete sup‐
ports, and by construction they render the same degree of ro‐
bustness as the original continuous support does. This sparse 
effect results in a reduction in both the problem size and the 
iteration number, and therefore allows the nested C&CG 
method to perform well on solving the complex problem. 
The sparse solution approach is believed to facilitate the 
DRO method in real-world applications, as the concern of 
problem tractability can be alleviated. Nevertheless, the run‐
time of algorithms can be affected by the problem data, such 
as the distance parameter, wind power data and penalty fac‐
tor of wind curtailment.

This paper shows that the cost efficiency of the UC solu‐
tion can be significantly increased by precisely considering 
the intraday start-up/shut-down behavior of quick-start gener‐
ation units. Under the proposed modeling and solution frame‐

1
Iteration number

1000

0

1100

1200

1300

1400

O
b
je

ct
iv

e 
v
al

u
e 

(k
$
)

Upper bound

Lower bound

2 3

1
Iteration number

O
b
je

ct
iv

e 
v
al

u
e 

(k
$
)

Upper bound

Lower bound

2 3

1000

1500

500

2000

2500

3000

3500

4000

4500

(a)

(b)

Fig. 8.　Convergence profiles of two algorithms on 118-bus system. (a) Al‐
gorithm 1. (b) Algorithm 2.

1

Iteration number

Upper bound

Lower bound

2 3 4

130

125

135

140

145

150

155

160

O
b
je

ct
iv

e 
v
al

u
e 

(k
$
)

1
Iteration number

2 3 4

O
b
je

ct
iv

e 
v
al

u
e 

(k
$
)

140

120

160

180

200

220

240

260
Upper bound

Lower bound

(a)

(b)

Fig. 7.　Convergence profiles of two algorithms on 6-bus system. (a) Algo‐
rithm 1. (b) Algorithm 2.

499



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

work, the UC solution yielded is not only robust, but also 
cost-effective under realistic situations. However, it has also 
been demonstrated that the good out-of-sample performance 
of the Wasserstein-metric-based distributionally robust 
NCUC model depends on a fine-tuned distance parameter, 
which generally varies with the configuration and operating 
condition of a system, and is time-consuming to obtain.

Regarding the aforementioned limitation, a meaningful fo‐
cus in the future work is thus to develop a quick estimation 
of the best distance parameter. Statistical learning methods 
could be promising approaches to making the quick estima‐
tion. Some aspects on modeling are also of interest to study 
such as addressing the nonparticipative issue in the DRO-
based NCUC model, where integer recourse variables are 
time-coupled, and applying the proposed solution framework 
to multi-stage distributionally robust NCUC problems.
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