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Autonomous-synergic Voltage Security Regions 
in Bulk Power Systems

Fan Li, Tao Niu, Lin Xue, Yuxiao Li, Tianen Huang, and Zhenjie Wu

Abstract——Determining security/stability boundaries is a com‐
mon and critical means of preventing cascading failures in‐
duced by voltage-related issues, which represents one of the ma‐
jor challenges in bulk power systems. However, traditional ap‐
proaches suffer from conservative issues and heavy computa‐
tional burdens. To address these challenges, the concept of an 
autonomous-synergic voltage security region (AS-VSR) and the 
corresponding dynamic constraint coefficient pruning (DCCP) 
computation method, which fully consider the volt/var charac‐
teristics of bulk power systems, are proposed in this letter. Both 
linearized and nonlinearized robust optimization problems are 
introduced to obtain accurate results. The computational accu‐
racy, time cost, and advantages of autonomous-synergic control 
are observed in the simulation results.

Index Terms——Voltage security region, cascading failure, dy‐
namic constraint coefficient pruning (DCCP), bulk power sys‐
tem, robust optimization.

I. INTRODUCTION

BULK power systems exhibit volt/var control deteriora‐
tion, particularly in scenarios with heavy loads or high 

penetration level of renewable energies, resulting in large-
scale cascading tripping failures [1], [2]. This poses one of 
the major challenges of bulk power systems. For example, in 
January, 2014 in the Gansu Power Grid in western China, 
the direct current (DC) -blocking contingency triggered by a 
three-phase grounded fault caused a 0.2 p.u. voltage increase 
in the high-voltage direct current (HVDC) converter station, 
resulting in large-scale tripping of renewable power genera‐
tion by high-voltage protection systems.

An effective means of voltage control to prevent large-
scale cascading failures using a stepwise search method is to 

determine certain security voltage control ranges for all sta‐
tions [1], [3]. This primarily deals with large-scale issues in 
wind power integration areas [4]. Voltage security regions in 
power injection spaces for distribution power systems, which 
can significantly simplify the solution to the optimization 
problem, were introduced in [5]. In the last few decades, da‐
ta and information communication applications have 
achieved tremendous progress and have become a major 
foundation for future smart grids [6]. However, certain chal‐
lenges remain.

First, insufficient dynamic reactive power reserves or con‐
ventional power plants, weak network connections, and limit‐
ed voltage/var control capabilities still exist in current power 
systems. It is generally difficult to maintain a constant volt‐
age when the demand varies in scenarios with heavy loads 
or high penetration level of renewable energies. Therefore, 
compared with the decoupled voltage control scheme, the au‐
tonomous-synergic control is more suitable for current sys‐
tems. If the voltages of all substations are controlled autono‐
mously, the reactive power control capacities will be ex‐
tremely restricted. The situation is even worse if the stations 
do not have sufficient reactive power sources, thus exhibit‐
ing conservative feasible ranges of voltage control [7]. By 
contrast, if the voltages of all substations are controlled in a 
synergistic manner, the system will not have sufficient time 
to communicate in online applications [8].

Second, the security region for large-scale systems is a 
highly nonlinear dimensional space that includes discrete 
variables and differential algebraic constraints. It is also a 
challenging issue to determine the security region for online 
applications, i. e., the accurate and efficient resolution of 
large-scale, nonlinear, mixed-integer robust optimization 
problems.

Therefore, to address these challenges, the concept of an 
autonomous-synergic voltage security region (AS-VSR) is 
proposed in this letter to prevent cascading failures in bulk 
power systems. The main contributions of this letter are sum‐
marized as follows.

1) The proposed AS-VSR method fully uses the volt/var 
characteristics of bulk power systems, thereby optimally ap‐
proximating the volt/var control using fewer hyperplanes. It 
also overcomes any conservative issues and fully utilizes the 
voltage-secure operational space.

2) A corresponding dynamic constraint coefficient pruning 
(DCCP) algorithm is proposed to increase the computational 
speed, which can be computed only by solving the linear‐
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ized problem to obtain accurate results, thus realizing real-
time calculations while guaranteeing accuracy.

II. CONCEPT AND COMPUTATIONAL APPROACH OF AS-VSR

A. Definition and Mathematical Model of AS-VSR

Constraint (1) represents the general physical operational 
constraints of power systems in a compact form under nor‐
mal (N - 0) conditions and in different N - 1 scenarios.

ì
í
î

ïï

ïï

ẋ = f s( )xsysuw

gs( )xsysuw ³ 0
(1)

where f (·) denotes differential equations that describe system 
dynamics; g(·) denotes equality and inequality constraints; s 
denotes the variables in the sth N - 1 scenario; x is the vector 
of bus voltage; y is the vector of other state variables; u is 
the vector of control variables of the var control devices; 
and w is the vector of system uncertainties such as the ac‐
tive power fluctuations in the renewable energy resources 
and power system loads. These vectors are confined to cer‐
tain feasible region spaces defined as:

Ωu: = { |uÎRn + 1
-u i £ ui £ ūii = 12...n + 1} (2)

Ωw: = { |wÎRr  cw + d ¥ £ 1} (3)

Ωx0: = { |x0ÎRn + 1 $uÎΩu"wÎΩw x
0 satisfies (1)} (4)

where Ωu is the feasible region of control variables; ui is the 
control variable of the ith var control device; -u i and ūi are the 

minimum and maximum limits of control variables of the ith 
var control device, respectively; Ωw is the variation range of 
uncertainty; c and d are the coefficients of uncertainty; Ωx0 

is the feasible region of bus voltage; x0 is the bus voltage 
under normal operating conditions; and n + 1 and r are the di‐
mensions of vectors u and w, respectively.

The practical VSR of the pilot buses should be the inter‐
section of certain voltage limits and should satisfy all opera‐
tional constraints, as expressed in (5) and shown in Fig. 1, 
where xP is the vector of voltages of pilot buses; xP,min and 
xP,max are the controllable voltage ranges of pilot bus in N - 0 
and N - 1 scenarios, respectively; and -x P and 

-
x P are the orig‐

inal voltage ranges of pilot bus.

[ xPmin xPmax ] = [ -x P
-
x P ]  { |xP xPÎΩx0} (5)

The definition of AS-VSR is as follows: if the voltage of 
the pilot bus is controlled within a certain range, the voltage 
of the other buses can be independently controlled within 
their own ranges around the pilot bus without considering 
the operational details of the other buses/stations. For exam‐
ple, as shown in Fig. 1(c), the pilot and other buses can con‐
trol their voltages within [ ]xPmin xPmax  and [ ]x'imin x'imax  in 

a decoupled manner. As the volt/var feasible region is al‐
ways hyperquadrangular in the voltage operational space, 
AS-VSR provides a promising and practical method for 
large-scale automatic voltage control (AVC) systems. It 
should be noted that the AS-VSR proposed in this letter is 

determined in the voltage operational state space. For opera‐
tors, it is sometimes critical to determine certain voltage con‐
trol ranges, particularly for pilot buses in power systems. In 
these situations, operators can monitor the voltage security 
of power system by determining whether the voltages of the 
pilot buses are located in their own security regions. The red 
and green regions in Fig. 1 represent the autonomous volt‐
age security region (A-VSR) [7], [8] and AS-VSR in the 
power systems, respectively, where the AS-VSR uses a more 
feasible voltage operational space compared with the A-VSR.

To formulate the mathematical model of the AS-VSR, 
the (n + 1) -dimensional voltage vector x is reordered as 

x = [ ]xP x1 x2  xn

T

, where the subscript P denotes the pi‐

lot bus. For convenience, a mapping function f: Rn + 1®Rn + 1 
is defined in (6) to describe the AS-VSR. The AS-VSRs in 
2- , 3- , and (n + 1) -dimensional spaces are depicted in Fig. 
1(a), 1(b), and (c), respectively. In different dimensional spac‐
es, according to the definition of the AS-VSR, the different 
2-dimensional projections of the AS-VSR are also quadran‐
gular. It should be noted that in field applications, power sys‐
tem operators often choose buses with higher voltage levels, 
relatively higher short-circuit ratios, large power plant capaci‐
ty allocations, or heavy system loads as pilot buses. Usually, 
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Fig. 1.　AS-VSR in voltage operational space of different dimensions. (a) 2-
dimensional. (b) 3-dimensional. (c) (n + 1) -dimensional. (d) Comparison of 
A-VSR.

687



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

pilot buses are critical system generators, loads, and substa‐
tions that allocate a large capacity of reactive power devices. 
It is essential to maintain and control the voltages of these 
pilot buses within their security regions. One purpose in this 
letter is to construct a maximal hyperquadrangular to deter‐
mine the VSRs, of which the hyperplanes can be used in op‐
timization problems as security constraints, thus decreasing 
the problem scales and saving computational time.

x′= f ( x ): = x - xP[ ]0 11 ´ n
T

(6)

Finally, the AS-VSR can be formulated as an optimization 
problem expressed by (7) and (8) that aim to obtain the larg‐
est inner hyperparallelograms (7) in the feasible regions (8) 
while considering system uncertainties.

max
u

  λT( )x '0
max - x '0

min (7)

s.t.

x′ 0ÎΩx′0    "x'0
i Î [ ]x '0

minx '0
max "wÎΩw (8)

where λ is the weight matrix provided by system operators;
x′ 0 is voltage amplitude of AS-VSR; and x ' 0

max and x ' 0
min are 

the maximum and minimum voltage amplitudes of AS-VSR, 
respectively.

However, (7) and (8) cannot be directly solved, particular‐
ly for large-scale systems, because of online application de‐
mands. Thus, an efficient approach for obtaining an accurate 
AS-VSR result is introduced in Sections II-B and II-C.

B. Linear Optimization Problem of AS-VSR

If the constraints in (7) and (8) are all linear, an equiva‐
lent optimization model can be derived (as shown in the Ap‐
pendix A) as (9) and (10).

max
u

  λT( )x '0
max - x '0

min (9)

s.t.

gscur+ [ ]sgsu K -1
+( )x '0

min-x '0cur + [ ]sgsu K -1
-( )x '0

max-x '0cur +

    [ ]sgswc-1
-

- [ ]sgswc-1
+

³0    s=01...nsK= [ ]sz′0u 1:( )n+1
(10)

where [A]+ = max{A, 0} and [A]- = min{A, 0} denote the posi‐
tive and negative matrices of A, respectively; [A]1:n denotes 
the matrix consisting of the first nth row of matrix A; super‐
script cur denotes the current value; matrix sxu is adopted to 
define the partial differentiation sxu ≡ ∂x/∂u; and ns is the 
number of faults set by the system.

C. Nonlinear Optimization Problem of AS-VSR

Based on the linearized problem, the DCCP method is in‐
troduced to obtain accurate computational results and reduce 
the number of linearization errors. Accurate AS-VSR results 
for nonlinear problem (7) and (8) can be obtained by solving 
linearized problem (9) and (10) several times with modified 
coefficients using the DCCP method in each iteration step.

For convenience, the ith vertex vi of the hyper-quadrangu‐
lar AS-VSR is defined as (11), and a vertex set Ωact is de‐
fined to represent the active vertex, i.e., the elements in the 
set hold constraint (12) with the physical meaning of locat‐
ing the vertex outside the feasible region. The superscript  

denotes the variable values or sets in the corresponding itera‐
tion step and 0 represents the initial state.
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Ω( )0
act  { }|v( )0

i min
j

g j( )v( )0
i £ 0iÎ { }12...2n + 2 (12)

Following the linearization, the DCCP method uses a 
known active vertex as the starting vertex. Then, the con‐
straint acting at this vertex is considered as the equality con‐
straint to maximize the objective function (7), and the other 
constraints remain unchanged for the moment. This process 
is repeated until the convergence condition is satisfied. The 
detailed processes of the DCCP method are as follows.

1) Process 1: set the step index k→ 0 and Ω(k)
act→Æ.

2) Process 2: while k < kmax, solve linearized problem (9) 
and (10). In this process, the approximate largest inner hy‐
perparallelograms in the feasible regions can be obtained. 
Next, we determine whether the vertex obtained by Process 
2 belongs to Ωact according to (11).

3) Process 3: solve the nonlinear problem. If the new ver‐
tex satisfies (12), update the active set Ω(k)

act→Ω(k)
act v(k)

i . 
Then, the constraints acting on this vector are considered as 
equality constraints, and the other constraints remain un‐
changed.

4) Process 4: modify and update coefficients.
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pq
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pq
sig′ ( )Λp

sig′ ( )Λp = 1 + sig ( )2Λp - min
mÎ { }|m Λm > 0

Λm

[ ]v( )k
i q

- v0cur
q

[ ]g ( )v( )k
i

q
- v0cur

q

(13)

where p and q denote the pth row and qth column of the ma‐
trix, respectively; and Λp is the Lagrange multiplier of the 
pth constraint in (9) and (10); m is the number of state vari‐
ables; v0cur

q  is the current vertex of the hyper-quadrangular 
AS-VSR; sig(·) is the signal function; and sig′(·) is the deriva‐
tive of the signal function.

To obtain accurate computational results of AS-VSR, (13) 
is used to determine the pruning coefficient for the linear‐
ized problem. It should be noted that the active vertices are 
still located on the boundary of the nonlinear feasible region 
after the coefficients are modified, which is a strictly accu‐
rate optimal solution for the original nonlinear problem (as 
shown in Appendix A).

5) Process 5: k = k + 1 and repeat Processes 2-4 until the 
convergence conditions in (14) are satisfied.
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ẋ = f s( )v( )k
i





g ( )v( )k

j
¥
< ε

    "v( )k
i ÎΩ( )k

act "jÎ {12...2n + 2} (14)

Figure 2 shows the computational process of the AS-VSR 
using the DCCP algorithm in a two-dimensional projection 
space. In each iteration step, the irregular elliptical-shaped re‐
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gion represents the nonlinear feasible region, and the region 
surrounded by black straight lines denotes the linearized re‐
gion considering (9) and (10). For example, in the first itera‐
tion process shown in Fig. 2, following the linearization solu‐
tion (Step 3), the physical operational constraints are as‐
sessed using (14), and vertices B and C belong to Ωact (Step 
4). Then, the coefficients of the linearized problem are modi‐
fied by the rules of (13), but the convergence condition in 
(14) does not hold (Step 5). This must be determined in a 
new iteration step by first solving the linearization problem 
(Step 6). Following several iterations, the computation ends 
and accurate results are finally obtained.

III. CASE STUDY

Three systems (i.e., IEEE 118-bus, IEEE 300-bus, and IEEE 
2383-bus systems) were used in this letter to demonstrate the 
properties of the proposed AS-VSR. All systems were tested 
using a laptop computer (processor: Intel Core i5-3230M; 
CPU: 2.60 GHz; RAM: 8 GB).

First, 2000 operational points were generated around the 
current operational state. Then, different N - 1 contingencies 
were simulated for all operational points, where the secure 
points were plotted in green in the voltage operational space or 
in red otherwise. The N - 0 condition is the base condition of 
the power system without any contingencies. Regarding the 
N - 1 contingencies, they are usually derived from the short 
circuit of the pilot bus and tripping faults of the transmission 
lines. In field applications as well as in this letter, different N -
1 contingencies were selected by contingency screening using 
a large amount of historical data. This letter used the 30% 

most severe N - 1 contingencies as the contingency set. For an 
operational point, if the system not only operated normally un‐
der the N - 0 conditions but also after any N - 1 contingencies, 
it was identified with secure operating points (green). In other 
words, all the operational limits held under N - 0 conditions 
and after all N - 1 contingencies, including the terminal volt‐
age constraints of substations and the capacity constraints of 
each transmission line. By contrast, after an N - 1 contingency, 
if any operational limit was violated (its upper or lower bound 
was exceeded), it was identified as having insecure operational 
points (red). Different two-dimensional projections of the AS-
VSR are shown in Fig. 3. Three characteristics and advantages 
of the AS-VSR could then be obtained.

1) Advantages of autonomous-synergic voltage control: it 
can be observed from Fig. 3 that the proposed method can 
guarantee the feasibility of the AS-VSR and parallelogram 
located in green. As Fig. 3 shows, the real voltage security 
region is similarly quadrilaterally shaped. Thus, the AS-VSR 
represents one of the optimal VSR approximations using rel‐
atively fewer hyperplanes.

2) Computational accuracy: the vertices of the AS-VSR 
are near the secure boundary. Some insecure red points are 
near but outside the AS-VSR. In fact, if the convergence 
threshold is set at a lower value, the computational result 
will be more accurate. It should also be noted that insecure 
red points exist outside the VSR. In other words, there is at 
least one scenario in which some physical operational con‐
straints cannot hold, which may further cause large-scale cas‐
cading failures. In these situations, if an N - 1 contingency 
occurs in the power system, the physical operational con‐
straints are violated, and the secure operations of the power 
system cannot be 100% guaranteed. Thus, it may result in a 
risk of voltage insecurity.

3) Computational effectiveness: it can be observed from 
Table I that the computational time increases approximately 
linearly with the system scale. Regarding large-scale sys‐
tems, the computation requires approximately 8-12 iteration 
steps to reach convergence. In real regional systems, the volt/
var control/dispatch time interval is usually set at the 5- or 
15-min min level. Thus, this method meets the requirements 
of real applications.

In addition, the voltage security regions in previous stud‐
ies were compared based on the following aspects.

1) Definition space: [3], [5], [7] are defined in the power 
injection space to determine the power outputs of each node, 
whereas [1], [2], [8], and the proposed methods are defined 
in the voltage operational state space to determine the volt‐
age secure operational range for each bus.

2) Uncertainties: [1]-[3] and the proposed method consid‐
er system uncertainties, whereas [5], [7], [8] do not.

3) Conservative issues: [7] and [8] suffer from conserva‐
tive issues when hypercubes are constructed to determine 
VSRs, whereas the proposed method fully considers the volt/
var control characteristics and constructs hyperquadrangulars 
to determine VSRs.

4) Independent/decoupled voltage control: [3], [7], [8], 
and the proposed method can achieve independent voltage 
control, whereas other studies do not mention this issue.
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Fig. 2.　Computational process of AS-VSR using DCCP algorithm in a two-
dimensional projection space.
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5) System dynamics: [5] and the proposed method consid‐
er system dynamics, whereas others do not.

IV. CONCLUSION

This letter introduced and proposed the concept of AS-
VSR and the corresponding DCCP computational method, 
which can be used to overcome previous computational bur‐
den and conservative issues. The main characteristics and ad‐
vantages of the AS-VSR, including volt/var control indepen‐
dence, computational speed, and accuracy, were illustrated 
and verified through analysis of three systems. The proposed 
method presents guidelines for constructing the largest inner 
hyperparallelograms in the feasible region and provides an 
opportunity for conveniently applying them to nonlinear 
highly dimensional bulk power systems.

APPENDIX A

The equivalent linear optimization model described in Sec‐
tion II is first proven as follows.

A. Proof of Sufficient Condition

When the constraints in (1) are all linear, vector z′ is defined 
as z′= [ x′; y ] ÎRn +m + 1. When (1) and (6) are differentiated, 
the partial differentiation sz′0u between control variable u and 

state variable z′ 0 can be derived as (A1).

sz′0u =
é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú-1 0 0
1n ´ 1 -In 0

0 0 -Im

s-1
f 0 z0 sf 0u (A1)

Considering the linear constraint hypothesis, the explicit 
function determined in (1) can be described by (A2) for the ith 
control variable ui. For convenience, Aij denotes the entry in 
the ith row and jth column of the matrix A.

ui = ucur
i +∑

j = 1

n + 1

[ ]s-1
g0u

ij
( )x′ 0j - x′ 0cur

j +∑
j = 1

l

[ ]K -1 sx′0w ij
wj (A2)

In general, the number of uncertainty-related constraints k 
of a power system described in (3) is less than the dimension 
of Ωw (r). These two conditions are described as follows.

1) k = r. The invertible mapping of g: Rr®Rr can be de‐
fined using (A3):

w = g ( )w′ º c-1w′- c-1d (A3)

2) k < r. The subspace generated by the row vector of matrix 
c is denoted by (A4). Obviously, a complementary space W ′c 
can be constructed that satisfies (A5).
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Fig. 3.　Different two-dimensional projections of AS-VSR. (a) AS-VSR between bus 4 and bus 8 in IEEE 118-bus system. (b) AS-VSR between bus 66 
and bus 69 in IEEE 118-bus system. (c) AS-VSR between bus 12 and bus 13 in IEEE 300-bus system. (d) AS-VSR between bus 152 and bus 153 in IEEE 
300-bus system. (e) AS-VSR between bus 16 and bus 17 in IEEE 2383-bus system. (f) AS-VSR between bus 1536 and bus 1537 in IEEE 2383-bus sys‐
tem.

TABLE I
COMPUTATIONAL EFFECTIVENESS OF DIFFERENT IEEE SYSTEMS

System

IEEE
118-bus

IEEE
300-bus

IEEE
2383-bus

Itera‐
tion 
step

5

6

9

Computational time (s)

Average 
linearized 

model 

0.54

1.57

7.10

Model 
linearization 

0.01

0.03

0.15

Time 
domain 

simulation

0.69

1.80

6.28

Total

6.20

20.40

121.77

Compu‐
tational 

error 
(%)

0.72

0.59

0.84
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Wc = span ( )c1c2...ck (A4)

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

W ′c = span ( )ck + 1ck + 2...cr

dim ( )W ′c = r - k

dim ( )WcÅW ′c = r

(A5)

where span(·) donates the span of vectors (c1c2...ck ); and 
dim(·) represents the dimension of vectors.

Thus, the general matrices c and d can be constructed as ex‐
pressed in (A6), which also satisfies the mapping defined in 
(A3). Here, M denotes a matrix with a relatively large positive 
number for each entry:

ì
í
î

ïï

ïï

c = [ ]cT
1 cT

2 ... cT
r

T

d = [ ]1T M
T

(A6)

With "x′0i Î [ x'0
iminx

'0
imax ],"wÎΩw, and with the focus on 

the ith constraint of (10), g s
i  satisfies (A7), and the constraint in 

(10) holds. It can be similarly proven that constraint (10) holds 
(i.e., x′0ÎΩx′0); thus, the proof of a sufficient condition is pro‐

vided.

g s
i =g scur

i +∑
j=1

n+1

[ sgsu ]
ij
( )uj-ucur

j +∑
k=1

r

[ sgsw ]
ik

wk=g scur
i +

∑
j=1

n+1

[ sgsu ]
ij
∑
k=1

n

K -1
jk ( )x′j-x′cur

j +∑
j=1

r

[ sgsw ]
ij
∑
k=1

n

c-1
jk w′k =g scur

i +

∑
j=1

n+1

[ sgsu K -1 ]
ij
( x′j-x′cur

j ) +∑
k=1

r

[ ]sgswc-1

ik
w′k ³g scur

i +

∑
j=1

n+1

[ sgsu K -1 ]-
ij
( )x′max j-x′cur

j +∑
j=1

n+1

[ ]sgsu K -1
+

ij
( )x′min j-x′cur

j +

∑
k=1

r

[ sgswc-1 ]-
ik
-∑

k=1

r

[ sgswc-1 ]+
ik
³0 (A7)

B. Proof of Necessary Condition

For entry g s
i , the corresponding x'0

j  and w′k are first construct‐
ed as (A8).

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

x'0
j = ( )x'0

jmax - x'0
jmin sig ( )[ ]sgsu K -1

ij
+ x'0

jmin

w′k = 2sig ( )[ ]sg0wc-1

ik
- 1

(A8)

When (A8) is substituted into constraint (8) while consider‐
ing the linear constraint hypothesis, the expression of the posi‐

tive value/function g s
i ( x'0

j w′k ) can be obtained as (A9), thereby 

proving the necessary condition.

0£g s
i =g scur
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[ ]sgsu
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r

[ ]sgswc-1

ik
w′k =g scur

i +

∑
j=1

n+1

[ sgsu K -1 ]-
ij
( )x′max j-x′cur

j +∑
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n+1

[ sgsu K -1 ]+
ij
( )x′min j-x′cur

j +

∑
k=1

r

[ ]sgswc-1
-

ik
-∑

k=1

r

[ ]sgswc-1
+

ik
(A9)

This completes the proof of an equivalent linear optimiza‐

tion model.
Second, the pruning coefficient for the linearized problem is 

proven as follows.
For the optimal solution v( )k *

i  of the linearized problem (9) 
and (10) in the kth iteration obtained by replacing the coeffi‐
cients according to the rules given in (13), there exist a corre‐
sponding positive vector εv and a modified vertex set v( )k mod

i  

defined by (A10) such that  εv
¥
< 1 and v( )k mod

i  are located on 

the boundary of the nonlinear VSR Ωx′0. In other words, v( )k mod
i  

is a strictly accurate optimal solution of the original nonlinear 
problem (7) and (8).

v( )k mod
i = εviv

( )k *
i + (1 - εvi ) v( )k *

j (A10)

"v( )k
i ÎΩ( )k

act Ω( )k
iactn (A11)

Ωv =Ω( )k
actÅΩ( )k

iactnÅΩ( )k
iactr (A12)

Ω( )k
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ì

í

î

ïïïï

ïïïï
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|

|

|

|
|
||
|

|

|

 g ( )v( )k
i

¥
< 2 min

{ }i
|
|
|||| min

j
g j( )v( )k

i < 0

 g ( )v( )k
i

¥


ü
ý
þ

ïïïï

ïïïï
iÎ { }12...2n + 2 (A13)

where Ωv is the set representing all vertices, which is further 
decomposed into three subsets given in (A12); and Ω( )k

iactn and 
Ω( )k

iactr denote the inactive-near and remote-boundary vertex 
sets, with the physical meaning that the inactive vertex is locat‐
ed inside but near or far away from the VSR boundary.

Proof  for the coefficient pruning rules given in (8), it can 
be further concluded through derivation (A14) that vertex v( )k *

i  
is located on the boundary of nonlinear VSR Ωx′0.

[ g (v( )k *
i ) ]

q
=g scur

q +∑
j=1

n

[ sgsu K -1 ] *
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j +
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sig′( )Λj w′ * =g scur

q +∑
j=1

n

[ ]sgsu K -1

qj
( )x′ *j -x′cur

j +

    ∑
j=1

n

[ ]sgsu K -1

qj
w′= [ ]g ( )v( )k

i
q
=0 (A14)

Clearly, v( )k *
i  is a feasible solution to the original nonlinear 

problem (6). A vector εv is then constructed as (A15).

εv = arg ( max
{ }|εv g ( )εviv

( )k *
i + ( )1- εvi v( )k *

j ³ 0 "v( )k *
i ÎΩvv

( )k *
j ÎΩ( )k

act

∏εvi ) (A15)

This guarantees that v( )k mod
i  is also located at the boundary 

of VSR Ωx′0. Based on (A15), it can be concluded that v( )k mod
i  

is a strictly accurate optimal solution to the original nonlinear 
problem (7) and (8).

It should be noted that the unusual condition with a relative‐
ly lower probability that sometimes occurs when resolving 
volt/var-related OPF problems is Ω( )0

act =Æ. However, (14) does 
not hold, with the physical meaning that all vertices of the opti‐
mal solution of the original linear problem (9) and (10) are lo‐
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cated within the VSR boundary. Under this condition, a corre‐
sponding value ε′v and vertex v′ ( )k

i  can first be constructed us‐
ing (A16) such that v′ ( )k

i  is located on the boundary of the 
VSR. 

ì

í

î

ï
ïï
ï

ï
ïï
ï

ε′v = arg ( max
{ }|ε′v g ( )v′ ( )k

i ³ 0
ε′v )

v ' ( )k
i = ( )1 - ε′ v ' ( )k cen

i + ε′vv
' ( )k
i

(A16)

where v ' ( )k cen
i  denotes the center of the cube surrounded by the 

vertex v ' ( )k
i . Therefore, the modified vertex v( )k mod

i  can be simi‐
larly constructed using (A13), which is also a strictly accurate 
optimal solution to the original nonlinear problem (7) and (8).

This completes the proof.
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