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Abstract——This paper presents a novel fault detection and 
identification method for low-voltage direct current (DC) mi‐
crogrid with meshed configuration. The proposed method is 
based on graph convolutional network (GCN), which utilizes 
the explicit spatial information and measurement data of the 
network topology to identify a fault. It has a more substantial 
feature extraction ability even in the presence of noise and bad 
data. The adjacency matrix for GCN is developed by consider‐
ing the network topology as an inherent graph. The bus voltage 
and line current samples after faults are regarded as the node 
attributes. Moreover, the DC microgrid model is developed us‐
ing PSCAD/EMTDC simulation, and fault simulation is carried 
out by considering different possible events that include envi‐
ronmental and physical conditions. The performance of the pro‐
posed method under different conditions is compared with 
those of different machine learning techniques such as convolu‐
tional neural network (CNN), support vector machine (SVM), 
and fully connected network (FCN). The results reveal that the 
proposed method is more effective than others at detecting and 
classifying faults. This method also possesses better robustness 
under the presence of noise and bad data.

Index Terms——DC microgrid, graph convolution network, 
fault detection, topological information.

I. INTRODUCTION 

OVER the last decade, the growing trend towards direct 
current (DC) power supply has ushered in a new para‐

digm in electrical power distribution. DC microgrids are an 
expedient mechanism for integrating renewable energy re‐
sources and locally connected loads to the utility grid with a 
minimum of one connection point through a bidirectional 
AC-DC converter. Despite the obvious benefits of DC pow‐
er, creating a suitable protection system for DC microgrids 
has remained a serious issue over the last decade. The diffi‐
culty originates from the fault current in a DC microgrid, 
which can rapidly increase from rated value to more than 
one hundred times during the commencement of a fault and 

has no natural zero-crossing point. Because of the nature of 
fault current in a DC microgrid, the issue must be quickly 
identified and located in a reliable manner to protect the sys‐
tem from potential dangers.

The microgrid in islanded mode has a much lower fault 
current than the grid-connected mode because of the output 
current limitation of the converters used for interfacing re‐
newable energy sources [1]. The use of distributed energy re‐
sources (DERs) directs the design of a DC microgrid based 
on a voltage source converter (VSC). Furthermore, protec‐
tion against zero-resistance faults is a severe obstacle in de‐
veloping the VSC-based DC microgrids. Any failure on the 
DC side of the converter could cause the output capacitor to 
drain suddenly, due to which the converter components may 
damage because of the high current. Another problem in the 
protection of DC microgrids arises due to the nonlinear 
source and loads. Switching action produces non-linearity in 
the V-I relationship, which results in the inclusion of harmon‐
ic content to the system and thus causes maloperation of pro‐
tecting devices.The capacity of a DC microgrid to operate re‐
liably requires resistance to shunt failures with a short recov‐
ery time, which is directly tied to the ability of the protec‐
tion scheme to identify, classify, and localize the fault accu‐
rately. Furthermore, the protection devices used to protect 
DC microgrids faster and more reliably is based on the com‐
munication infrastructure and global position system (GPS). 
These devices have the vulnerability to cyber-attacks.

There have been a number of protection plans put forth so 
far for DC microgrids, including both conventional and mod‐
ern methods. Reference [2] implementes overcurrent protec‐
tion technique for DC microgrid. However, the propensity of 
the rectifier to limit the fault current amplitude has an im‐
pact on this method. These methods are also more complex 
for implementation in DC systems and may take ample time 
for fault clearance due to their critical structure. In [3], a 
methodology is proposed based on a unit protection scheme 
with high sensitivity and faster response speed but low sensi‐
tivity for high impedance faults. Current derivative based 
protection schemes are proposed in [4], which have im‐
proved the sensitivity to low- and high-impedance faults. 
However, the values of current derivatives are influenced by 
line length, loads on the line, and fault impedance. A high 
sampling rate is required for measuring the current deriva‐
tives. Therefore, it is a challenging task to select a proper 
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threshold for fault detection. Communication assisted direc‐
tional overcurrent-based protection scheme has been pro‐
posed in recent literature [5]. According to this, the magni‐
tude and direction of the fault current will change on fault 
occurrence. Protection schemes based on impedance mea‐
surement at fault locations have significantly attracted atten‐
tion in the past. Reference [6] presents a fault-location volt‐
age and current measurement based protection method. The 
fault location estimation is made by calculating impedance 
from measured data with the help of the iterative method 
and circuit analysis. However, the methodology has lesser ac‐
curacy for high-impedance faults. A communication-based 
differential protection method is proposed for the protection 
of a medium-voltage DC microgrid in [7]. The proposed 
method uses a solid-state switch with communication infra 
for DC line protection. However, the methodology requires a 
communication infrastructure similar to the AC network and 
higher costs. Numerous techniques are available in the litera‐
ture for localizing DC faults along with these fault detection 
methodologies. These methods include the traveling wave 
based method [8], differential current based fault localization 
[9] that requires a fast and reliable communication system, 
and local measurement based methods proposed in [10]. 
Travelling wave based technique requires high-performance 
data acquisition and the microgrid with short line length 
harms the accuracy. The local measurement based method 
has less accuracy for high-resistance fault [11].

Besides these traditional methods, various signal process‐
ing based methodologies have been proposed in the litera‐
ture for fault diagnosis in DC microgrids. Reference [12] 
proposes a variational mode decomposition based technique 
for a low-voltage DC system with a renewable energy inter‐
face. However, fault section identification is not performed 
in this literature. Inductor-voltage observation is utilized for 
low-resistance fault detection in [13], and the ground current 
is used to discover high-resistance faults. Fault location is es‐
timated with the use of iterative methods. Oscillation fre‐
quency based protection technique is proposed in [14]. The 
frequency and transient power of the first oscillation cycle 
during the fault event are used to determine the relay trip. 
Decision time is greatly affected by damping level, response 
characteristics of the renewable energy sources, and hence 
the fault resistance.

The rising era of artificial intelligence in electrical engi‐
neering has generated enormous interest in data-driven algo‐
rithms for detecting and classifying power system faults. 
These algorithms show more remarkable performance com‐
pared with classical methods in the field of fault diagnosis. 
A wavelet-based data mining method is used for DC mi‐
crogrid fault detection in [15]. The proposed method uses 
wavelet transform for feature extraction from the current sig‐
nals received at the relay location. A decision tree algorithm 
is used for fault detection based on independent wavelet co‐
efficients. Artificial neural network based fault diagnosis is 
proposed in [16]. Two different artificial neural networks are 
used for fault detection and fault localization. A convolution‐
al neural network (CNN) based methodology is proposed in 
[17] for discrimination between inverter and photovoltaic 

(PV) fault in an islanded microgrid. The time domain signal 
is converted to grayscale images which are used as input to 
the CNN. In [18], support vector machine (SVM) based 
fault localization is proposed by using post-fault data in DC 
microgrid clusters. Single-end current measurement data are 
used to locate the DC line segment fault.

However, the artificial intelligence based algorithms dis‐
cussed above are mainly data-driven methods and do not 
consider the system topology as far as DC microgrid fault di‐
agnosis is concerned. A group of studies [19], [20] find a 
considerable influence of system topology on the power sys‐
tem performance. So, the system topology must be incorpo‐
rated along with measurement data to make a more accurate 
fault diagnosis in the DC microgrid. The power system topol‐
ogy itself can be treated as a graph, and edge information in 
the graph can also be incorporated based on network struc‐
ture. Based on the topological information of the DC mi‐
crogrid and the availability of large amounts of measurement 
data, graph convolutional network (GCN) can be adequately 
implemented for the fault diagnosis. In recent days, graph 
neural network (GNN) has gained the massive interest of re‐
searchers for power system such as power flow calculation, 
time-series prediction, and fault detection [21].

GNN was introduced in [22]. It has a strong potential for 
representation learning from graph structure and has been ap‐
plied to several domains for classification and prediction 
problems. Reference [23] proposes graph signal processing 
based fault classification in a PV array. GCN is implemented 
in [24] for fault diagnosis of the power transformer. GNN-
based fault detection and classification approach for ship‐
board power system is presented in [25] that uses dynamic 
bus voltages and network topology information as input. In 
[26], GCN-based fault diagnosis method is proposed for dif‐
ferent scenarios. Structural analysis is used for the prediagno‐
sis of the fault, and then an association graph is obtained 
from the prediagnosis result. Further measurement data and 
graphs are fed to the input layer of GCN. Transmission line 
transient fault detection based on GCN is proposed in [27]. 
In [28], a deep GCN-based fault localization is proposed for 
the distribution system.

Most of the literature discussed above explores the fault 
classification problem by data analytics from the retrieved 
signals. However, concerning the different configurations of 
the network, the incorporation of network topology as a 
graph with the signal-based analysis constitutes a more domi‐
nant feature than that of the analysis exclusively dependent 
upon the signal perspective. Thus, exploitation of such an 
idea is incorporated by GCN, which contributes to the fea‐
ture in non-Euclidean space and leads to better classification 
accuracy.

This paper presents GCN-based fault detection and identi‐
fication method for a low-voltage DC microgrid. GCN is an 
extension of the CNN model, which learns the information 
from multiple measurement data in conjunction with spatial 
information of the system. The fault identification task is for‐
mulated as a node classification problem over the undirected 
graph, and GCN is used as a solution. We will show that the 
GCN has improved fault detection and isolation ability by in‐
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tegrating the microgrid topology with measurement variables 
obtained from voltage and current sensors. The contribution 
of the paper, in brief, are as follows.

1) The GCN is implemented for fault detection in the DC 
microgrid.

2) A novel idea of incorporating network topology as a 
graph by virtue of GCN is provided. The elegance of incor‐
poration of network topology as a graph with subsequent 
learning by GCN enhances the fault detection accuracy as 
compared with existing machine learning methods, which 
consider the time series signal as the dominant feature for 
fault detection objectives. It is worthy of mentioning that 
GCN can also map the analysis in non-euclidean space with 
that in Euclidean space.

3) Further, the performance of GCN in the presence of 
noise and bad data is demonstrated by a series of simulation 
results. The effectiveness of the proposed method is then 
evaluated by comparison with the state-of-the-art machine 
learning methods.

The rest of this paper is summarised as follows. Section II 
gives an introduction to the GCN. The GCN for fault identi‐
fication, including problem formulation, system description, 
and workflow of the suggested method are covered in Sec‐
tion III. Results and discussion are presented in Section IV, 
along with a comparison to alternative machine learning 
methods. Finally, this paper is summarized in Section V.

II. INTRODUCTION TO GCN

A. Mathematical Notation of a Graph

A basic graph can be expressed in the following way:

G =G(VE) (1)

where V is the set of nodes; and E is the set of edges. For a 
node viÎV, the value of ejk = (vjvk )ÎE represents an edge 
between vj and vk. Typically, it is common to represent a 
graph through adjacency matrix AÎRN ´N, where N is the 
number of nodes, i.e., N = |V|. The elements of adjacency ma‐
trix Ajk represent presence of an edge between nodes vj 
and vk.

Ajk =
ì
í
î

1    vjvkÎE and j ¹ k

0    otherwise
(2)

In practice, a graph may have a node feature matrix, often 
known as node attributes XÎRN ´ f, where f is the dimension 
of node feature vector. The degree matrix DÎRN ´N is a di‐

agonal matrix that can be calculated as Djj =∑
j = 1

N

Ajk.

B. GCNs

GCN can be thought of as an extension of CNN. The orig‐
inal derivation of GCN was made on the fundamentals of 
graph theory in association with convolutional theorem hav‐
ing an intention to be applied in the data processing. 
Throughout the consistent enhancement and optimization of 
the GCN, it becomes easier to understand the concept. The 
GCN was proposed by [29], whose one layer of operation is 
given by:

Z = σ(D͂-1/2 A͂D͂-1/2 XW )= σ(ÂXW ) (3)

where σ is the activation function, e.g., ReLU function; A͂ is 
the adjacency matrix with self-loop; Â is the self normalized 

adjacency matrix, Â = D͂
-

1
2 A͂D͂

-
1
2; and W is trainable weight 

matrix. The adjacency matrix A is normalized to keep the 
scale of the eigenvector unaltered after multiplication. A͂ =A +
I makes each node consider the eigenvector of self and ev‐
ery other node in the graph, where I is the identity matrix. 
Similar to CNN, GCN uses graph Fourier transform (GFT) 
for feature extraction from the graph. 

C. GFT

Consider the undirected graph G = (VεA) in which ε repre‐
sents the set of edges. The eigen decomposition of the nor‐
malized graph Laplacian matrix Ln is used to calculate the 
GFT of a signal X over a graph G. The Laplacian of a sig‐
nal at a given point can be considered as a measure of how 
different the signal is from its neighbors. For a graph with 
adjacency matrix A and degree matrix D, the unnormalized 
graph Laplacian matrix Lu, as shown in Fig. 1, is given as:

Lu =D -A (4)

The normalized graph Laplacian matrix then becomes:

Ln =D
-

1
2 Lu D

-
1
2 = IN -D

-
1
2 AD

-
1
2 (5)

where IN is an identity matrix of order N; and Ln is a sym‐
metric matrix that has real eigenvalues and orthogonal eigen‐
vectors. The eigen decomposition of Ln is represented by Ln =
UΛU T, where U =[u1u2...un ] is the vector of orthonormal 
eigenvectors of Ln, and Λ = diag(λ1λ2...λn ) is a diagonal 

matrix with non-negative eigenvalues. The GFT of X is de‐
fined as [30]:

Z =U T X (6)

The original signal X can be computed by using inverse-
GFT as:

X =UZ (7)

The convolution on a graph in the spectral domain can be 

2

3

5
4

1

An example graph Degree matrix

3    0    0    0    0

0    2    0    0    0

0    0    3    0    0

0    0    0    2    0

0    0    0    0    2

0    1    1    1    0

1    0    1    0    0

1    1    0    0    1

1    0    0    0    1

0    0    1    1    0

 3     �1    �1    �1     0

�1     2     �1     0     0

�1    �1     3      0    �1

�1     0      0       0    �1

 0      0     �1    �1     2

� =

Adjacency matrix Laplacian matrix

Fig. 1.　Illustration of graph Laplacian matrix.
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done in the same way as on discrete Euclidean spaces with 
the use of the Fourier transform. To put it another way, the 
following is the spectral convolution of the two signals g 
and f:

g*f =U((U T g)(U T f ))=Udiag(ĝ1ĝ2...ĝn )U T f (8)

where  indicates the elementwise multiplication of two vec‐
tors.

A typical structure of the GCN model is given in Fig. 2.

III. GCN FOR FAULT IDENTIFICATION 

In this section, first, we will briefly go through the fault 
location task, and thereafter, we will recall the concept of 
spectral graph convolution. Further, we will discuss the gen‐
eration of test cases for low-voltage DC microgrid under dif‐
ferent physical and environmental operating conditions. We 
will show how a GCN can be constructed for DC microgrid 
fault identification.

A. Formulation of Fault Identification Problem

In this paper, the fault identification problem is formulat‐
ed as node classification, where each node belongs to a par‐
ticular class. The adjacency matrix is formulated by consider‐
ing the common bus between the cables in the physical mi‐
crogrid. If cable j and cable k have a common bus in the mi‐
crogrid, Ajk = 1; otherwise, Ajk = 0 in the adjacency matrix. 
Training data are generated by operating the case in different 
scenarios, including changing the connected load by differ‐
ent values and adding or removing different DGs to fault at 
different cables with variation in fault resistances and fault 
locations. It is assumed that the measurement of voltage of 
each bus and current through each cable is available. Thus, 
we have access to all these measurements. A data sample 
from measurements can be represented as XÎRn0 ´ f0, where 
n0 is the number of observations, and f0 is the number of 
measured parameters. Using a data sample matrix Xi as a 
preliminary step, the faulty line can be obtained by 
yi =ψ(X i ), where ψ is the specific model for fault classifica‐
tion.

B. System Description and Generation of Test Cases

PSCAD/EMTDC simulation is used for the modeling of 
DC microgrid and generation of test cases. The basic config‐
uration of the DC microgrid is extracted from the test sys‐
tem proposed in [13], [31], and the parameters of the DC mi‐
crogrid components are given in Table I. DC microgrid is 

simulated in two modes, namely grid-connected mode and is‐
landed mode. The network consists of a PV system (250 
kWp) that operates under the maximum power point track‐
ing (MPPT) mode to deliver the maximum power to the sys‐
tem. A DC battery energy storage system with a bidirection‐
al DC-DC converter is simulated as a storage unit. Charging/
discharging control for the energy storage system is imple‐
mented as per state of charge (SOC) control, allowing the 
battery to charge when SOC is less than 40% and block 
charging when it crosses the 95% level.

The algorithm permits discharging when SOC lies be‐
tween 40% to 95% and blocks discharging when it reaches 
below 40%. A 400 kVA DG with AC-DC converter is simu‐
lated, which works as a local generating unit. A 500 kVA bi-
directional AC-DC converter integrates the DC microgrid 
with the AC utility grid. During normal operation, the VSC 
controls the DC voltage of the grid by balancing active pow‐
er in grid-connected mode. A variable (0-500 kW) DC load 
is connected to the system with a DC-DC converter. The fre‐
quency-dependent phase model of underground cable is con‐
sidered as lines in the system. The core conductor resistivity 
is 2.0 ´ 10-8 Ω·m and the sheath resistivity is 30 ´ 10-8 
Ω·m [32].

For the system depicted in Fig. 3, three different types of 
faults are simulated: pole-to-pole, positive pole-to-ground, 
and negative pole-to-ground for five possible levels of fault 
resistances in each cable. The addition and removal of loads 
in steps of 25% in the range of 0-100% in grid-connected 
and islanded modes are also simulated. Figure 4 shows the 
variation of voltage, current, and power at point of common 
coupling (PCC) with addition of 50% load in the grid-con‐
nected mode, while Fig. 5 shows the variation in fault cur‐
rent contribution from the utility grid (Idc) for various cable 
faults. Connection and disconnection of DGs are also incor‐
porated while generating the test cases. Each case is simulat‐
ed for nine sets of solar irradiance and temperature values 
for the PV system. In this way, we have a total of 2457 cas‐
es in grid-connected mode as given in Table II, and 2385 
cases in islanded mode operation of the DC microgrid.

ReLU ReLU ReLU Softmax

Dense layer

Input (X,A)

Graph

convolution

layer

Graph

convolution

layer

Output (Y)

�

Fig. 2.　Typical structure of GCN model.

TABLE I
PARAMETERS OF DC MICROGRID COMPONENTS

Parameter

DC grid voltage

Base power

Grid VSC

Solar panel

PV converter

Diesel generator (DG)

Battery

Battery DC-DC converter

Filter capacitance

Cable length

DC load

Value

600 V

500 kW

500 kW

Vmp = 54.7 V, Imp = 5.58 A at standard test 
condition (STC)

250 kW

400 kVA

220 V/0.65 kAh

250 kW

20 mF

0.75-1.5 km

0-500 kW
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The fault inception time is 0.6 s, and the fault duration is 
0.05 s. The PSCAD model of microgrid has a sampling fre‐
quency of 20 kHz, which means 1000 fault sample values 
will be generated in the fault period of 0.05 s. Each cable 
fault case is simulated with 9 sets of different values of so‐
lar irradiance and temperature and with 5 different values of 
fault resistance (Rf ). Figure 6 shows the PV cable fault cur‐
rent variations with different fault resistances during pole-to-
pole fault. Three fault types are simulated in both the grid-
connected mode and islanded mode. After down sampling 
the data set, a total of 11666 samples are considered for 
fault identification, which is further divided into training and 
testing data with the ratio of 7:3.

Before being fed into GCN, each feature vector is normal‐
ized using the min-max normalization (9) to correspond to 
the range of [0, 1], because the model performance may be 
negatively impacted by the wide disparity in the numerical 
values of the feature vectors.

Xscaled =
X -Xmin

Xmax -Xmin
(9)

where X is the attributes matrix; Xmin and Xmax are the mini‐
mum and maximum values in X, respectively; and Xscaled is 
the attributes matrix after normalization.

C. GCN for Fault Line Identification

Finally, the GCN is applied to the fault location task as 
described by the workflow shown in Fig. 7. The adjacency 
matrix, unnormalized graph Laplacian, and normalized graph 
Laplacian are represented in Fig. 8. We utilize commonly 
used GCN for graph convolution operation in the form of 
feature transfer and aggregation through a self-normalized 
adjacency matrix. The first GCN layer takes node attribute 
matrix X and adjacency matrix Â as inputs and multiplies 
both to transfer and aggregate the feature of adjacent nodes. 
Finally, the first GCN layer output (Z 1 ) is produced, on 
which all nodes contain the first-order neighborhood informa‐
tion.

 PV cable
Cable 3

Cable 6 Cable 1

PCC AC utility grid

Transformer

DC load

0-500 kW

DG with

AC-DC

converter

Cable 8

Cable 4

Cable 7

Cable 2

Cable 5

PV array

with DC-DC

converter

Bidirectional

VSC 500 kVA

AC

DC

Battery with

bidirectional

DC-DC converter

Fig. 3.　Single-line diagram of DC microgrid under consideration (grid-con‐
nected mode).
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Fig. 4.　Variation of voltage, current, and power at PCC with addition of 
50% load in grid-connected mode.
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Fig. 5.　Variation in fault current contribution from Idc for various cable 
faults.

TABLE II
VARIOUS TEST CASES GENERATED ON DC MICROGRID IN 

GRID-CONNECTED MODE

Disturbance 
event

Events of nor‐
mal switching

Normal

Fault event

Parameter variation

Load addition (0-100% in four steps)

Load removal (0-100% in four steps)

Simultaneous DG (DG/battery/PV) addi‐
tion (3) with varying load (4)

Simultaneous DG (DG/battery/PV) remov‐
al (3) with varying load (4)

No variation

Three different faults at two different loca‐
tions with 5 different fault resistance (0-

15 Ω) in eight different cables

Number of 
cases

4

4

3 ´ 4 = 12

3 ´ 4 = 12

1

3 ´ 2 ´ 5 ´ 8 =
240

0.7

0.6

0.615

0.5

0.3

0.2

0.1

0.4

0.595 0.605 0.6350.625

C
u

rr
en

t 
(k

A
)

Time (s)

I
dc

 with PV cable fault

I
dc

 with cable 1 fault

I
dc

 with cable 2 fault

I
dc

 with cable 3 fault

I
dc

 with cable 4 fault

I
dc

 with cable 5 fault

Fig. 6.　PV cable fault current variations with different fault resistances dur‐
ing pole-to-pole fault.
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It might be deduced that the output neurons of k GCN lay‐
ers can express k-order neighborhood information. In this 
way, the hidden layers of GCN provide more prior informa‐
tion for the model training, so the hidden layer neurons have 
more extraordinary feature extraction ability after training. 
The output of the last graph convolution layer is flattened in‐
to a vector, which is then fed to the fully connected layer, 
which uses the softmax activation function to produce output.

The hyperparameter selection of GCN is made by taking 
[33] as a reference that states that the hidden layer in a 
GCN is usually set to be 2 or 3. After testing and comparing 
the effects of different layers, we choose a model with two 
hidden layers. The number of hidden neurons is finalized to 
be 70 for each of the two layers. ReLU is selected as an acti‐
vation function for each hidden layer. Cross entropy error is 
usually preferred as a loss function for multiclass classifica‐
tion problems because it calculates the loss through a simple 
derivative and has a fast convergence rate [34]. The expres‐
sion is as follows:

CE(pq)=-∑
i = 1

C

piln qi (10)

where C is the number of categories; pi is the true positive 
value; and qi is the predicted value. Adam optimizer is con‐
sidered due to its fast convergence speed, small memory re‐
quirements, and high learning efficiency.

IV. RESULTS AND DISCUSSION 

A. Performance Evaluation and Comparison with Previous 
Methods

To verify the effectiveness of the proposed technique, the 
model is tested under different situations and operating 
modes, as illustrated in Fig. 9 with the confusion matrix 
(CM). The labels are explained in Table III. CM gives the 
count of true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN).

1) TP: a label is correctly predicted and belongs to the 
original class.

2) TN: a label is correctly predicted but does not belong 
to the original class.

3) FP: a label is predicted as positive but does not belong 
to the original class.

Fault simulation

Data processing

Splitting training and test data

Testing dataTraining data

Classifiers Other methods

DG

PV system Data normalization

GCN

Performance analysis and visualization

Adjacency matrix

Topology information

Battery energy storage

with charging�discharging control

Bi-directional

AC-DC VSC

PSCAD simulation

of DC microgrid

Network topology
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4) FN: a label is predicted as negative but belongs to the 
original class.

The accuracy for each class in grid-connected mode is giv‐
en in Table III. The overall classification accuracy is found 
to be 99.32%, which shows that the proposed method can 
classify faults and disturbances with higher accuracy. Howev‐
er, the average accuracy may be unable to provide a com‐
plete analysis of the model performance. Therefore, the clas‐
sification performance is further evaluated with the F1-score 
to investigate how the classifier acts for specific fault class‐
es. The F1-score, a function of recall/sensitivity and preci‐
sion, is regarded as ideal when it equals one and as the 
worst when it equals zero. The precision, also referred to as 
the positive predictive value, is defined as follows:

Precision =
TP

TP +FP
(11)

Another metric, recall, which is known as the true posi‐
tive rate or the sensitivity of the classifier, can be defined as:

Recall/Sensitivity =
TP

TP +FN
(12)

F1-score which takes precision and recall into account is 
obtained as:

F1 - score =
2(Precision ×Recall)
Precision +Recall

(13)

The average (Macro) values of precision and F1-score for 
the proposed method are found to be 99.32% and 99.34%, 
respectively.

Further, the proposed method is compared with CNN, 
SVM, and fully connected network (FCN) based classifier, 
and the results are given in Table IV. It is observed from Ta‐
ble IV that the performance of the proposed method outper‐
forms among all.

CNN architecture has 3 convolutional layers followed by 
dropout layers and two dense layers. The hyperparameter of 
CNN architecture is finalized by a random search algorithm 
with Keras tuner [35]. After making five trials in the Keras 
tuner, the parameter is finalized to be 128 neurons in the 
first hidden layer and 64 neurons in both the second and 
third CNN layers. The first dense layer has 48 neurons fol‐
lowed by 14 neurons in the last dense layer. Adam optimizer 
with a learning rate of 0.001 is selected. The kernel size is 
chosen to be 3. A polynomial function is selected as a kernel 
in SVM, and 5-fold cross-validation with grid search is used 
to optimize the parameter values. At last, γ is set to be 1 and 
the value of C is found to be 100. At last, the FCN with 
three hidden layers with fully connected neurons is imple‐
mented to compare the efficacy of the proposed method. Af‐
ter continuous tuning and testing, the number of neurons in 
each of the three hidden layers is selected to be 80, 320, and 
48, respectively.

B. Performance of Proposed Method with Bad Data

We are further adding some bad data to analyze the perfor‐
mance of the proposed method. Two types of bad data are 
considered in this paper.

1) Inaccurate measurement is modeled by randomly modi‐
fying the standard measurement data. The modification is 
done by multiplying 2% of each standard measurement data 
sample with a random number ranging from 0.75 to 1.25.

2) The effect of data loss is tested by arbitrarily discard‐
ing the measurement data points. The number of samples 
loosed is set to be 2% of the total samples.

3) Further, we have also tested the robustness of the pro‐
posed method against noise. The fault data samples are sub‐
jected to Gaussian noise with SNRs of 10 dB, 25 dB, and 
40 dB, respectively, as shown in Fig. 10, while the remain‐
ing parameters of the model keep unchanged.

TABLE III
RESULTS OF PROPOSED METHOD FOR DIFFERENT CABLE FAULTS IN 

GRID-CONNECTED MODE

Fault type

No disturbance (No_Dist.)

Cable-1 fault (C1_F)

Cable-2 fault (C2_F)

Cable-3 fault (C3_F)

Cable-4 fault (C4_F)

Cable-5 fault (C5_F)

Cable-6 fault (C6_F)

Cable-7 fault (C7_F)

Cable-8 fault (C8_F)

PV cable fault (C_PV)

Addition of load (ADL)

Simultaneous addition of load with DG 
(ADLDG)

Removal of load (RML)

Simultaneous removal of load and DG 
(RMLDG)

Average

Accuracy (%)

96.61

100.00

97.92

100.00

100.00

100.00

98.11

100.00

100.00

100.00

100.00

100.00

97.87

100.00

99.32

Recall (%)

96.61

100.00

97.92

100.00

100.00

100.00

98.11

100.00

100.00

100.00

100.00

100.00

97.87

100.00

99.32

TABLE IV
PERFORMANCE COMPARISION OF DIFFERENT METHODS FOR STANDARD 

FAULT CONDITIONS

Method

FCN

SVM

CNN

GCN

Accuracy (%)

96.61

90.74

97.92

99.32

Precision (%)

96.74

89.53

97.96

99.37

F1-score (%)

96.62

89.50

97.93

99.34

No_Dist.

C1_F

C2_F

C3_F
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Fig. 9.　CM of GCN-based classifier in grid-connected mode.
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These bad data are added to the original samples, which 
are further divided into training and testing data in the ratio 
of 7: 3. The classification accuracy of the proposed method 
with bad data is depicted in Table V. Figure 11 shows the 
voltage sample of bus 1 with standard data and bad data. It 
is obvious that after adding bad data, the waveform of the 
fault data becomes more complicated. The average classifica‐
tion accuracy of the proposed method is still achieved as 
97.53%, as shown in Table V.

Figures 12 and 13 represent the curves of training and val‐
idation accuracy and loss with standard data and bad data, 
respectively, and show that the model performs better even 
with the presence of bad data. Table VI shows the classifica‐
tion accuracies of different methods with the presence of 
noise. When the SNR is 40 dB, the proposed method has an 
average accuracy of 98.69%. Hence, the classification perfor‐
mance of the proposed method is quite encouraging even in 
presence of noise with SNR above 25 dB.

C. Fault Identification in Islanded Mode

Similar to the grid-connected mode, the proposed fault 
classification method is also tested in the islanded mode op‐
eration of the DC microgrid test system.

Different fault cases are simulated, and the fault data sam‐
ples are preprocessed. The classification accuracy for differ‐
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Fig. 11.　Voltage samples of bus 1 with standard data and bad data.
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TABLE V
CLASSIFICATION ACCURACY OF PROPOSED METHOD WITH BAD DATA

Fault type

No_Dist.

C1_F

C2_F

C3_F

C4_F

C5_F

C6_F

C7_F

C8_F

C_PV

ADL

ADLDG

RML

RMLDG

Average

Accuracy (%)

With standard data

96.61

100.00

97.92

100.00

100.00

100.00

98.11

100.00

100.00

100.00

100.00

100.00

97.87

100.00

99.32

With bad data

95.28

98.05

95.94

97.12

98.20

98.90

97.34

97.24

98.38

98.18
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ent cable fault types and other disturbances in islanded mode 
is given in Table VII. It is evident from Fig. 14 that the sug‐
gested GCN-based fault detection method also works well in 
islanded mode.

V. CONCLUSION 

A new method for fault detection in DC microgrids is pro‐
vided in this paper. Considering the electrical power network 

as an inherent graph, the proposed method utilizes spatial in‐
formation from the test system to formulate the fault identifi‐
cation problem as node classification.

First, we propose a method for defining the nodes and 
edges of the graph. After that, subsequent inclusion of the 
network topology is made so that the fault data samples 
should have both temporal and spatial information. It pro‐
vides better knowledge for the classification task and im‐
proves the classifier performance. The fault dataset is simu‐
lated considering various situations such as variations in tem‐
perature and irradiance, fault resistance, and fault distance. 
Experimental results show that the proposed method distin‐
guishes different types of disturbances including faults with 
high accuracy. The proposed method is also tested with the 
existence of bad data and noise in fault data samples and 
shows better performance.

Although the proposed method uses the spatiotemporal in‐
formation of power network for better classification out‐
comes, the flexibility of the proposed method is constrained 
by the dependency of adjacency matrix on the grid topology. 
Concerning the topology change, the adjacency matrix will 
be reformulated with subsequent training. However, the con‐
sideration of dynamic graphs for the frequent system-chang‐
ing condition can be a possible solution that will be consid‐
ered in the future work.
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