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Abstract——Regional photovoltaic (PV) power prediction plays 
an important role in power system planning and operation. To 
effectively improve the performance of prediction intervals 
(PIs) for very short-term regional PV outputs, an efficient non‐
parametric probabilistic prediction method based on granule-
based clustering (GC) and direct optimization programming 
(DOP) is proposed. First, GC is proposed to formulate and clus‐
ter the sample granules consisting of numerical weather predic‐
tion (NWP) and historical regional output data, for the en‐
hanced hierarchical clustering performance. Then, to improve 
the accuracy of samples’ utilization, an unbalanced extension is 
used to reconstruct the training samples consisting of power 
time series. After that, DOP is applied to quantify the output 
weights based on the optimal overall performance. Meanwhile, 
a balance coefficient is studied for the enhanced reliability of 
PIs. Finally, the proposed method is validated through multi‐
step PIs based on the numerical comparison of real PV genera‐
tion data.

Index Terms——Regional photovoltaic outputs, prediction inter‐
vals, granule-based clustering, direct optimization program‐
ming, nonparametric probabilistic prediction.

I. INTRODUCTION 

NOWADAYS, the high penetration and inherent variabili‐
ty of renewable energy generation introduce significant 

challenges to the power system operation [1] - [5]. Accurate 
prediction of renewable energy generation variations allows 
timely adjustment of the dispatching schedules [6]-[8], so as 
to reduce system reserves and consequent operational 
costs [9].

Several studies concerning probabilistic predictions of re‐
newable generation have been done in the past years [10], 
[11]. These probabilistic predictions are very important for 
the quantitative prediction of photovoltaic (PV) system gen‐
eration, similar to wind power generation [12], [13]. In [14] 
and [15], parametric prediction intervals (PIs) based on the 
error assumption of normal distribution and deterministic pre‐
diction were studied. In [16], a multi-model approach was 
studied via a combination of parametric and nonparametric 
PIs. Even though PV generation has high randomness and 
uncertainty, which brings difficulties in accurately assuming 
the error distribution, certain periodicity helps improve the 
utilization of training samples according to the specific type 
of weather [17]. Based on weather information such as cloud 
coverage, humidity, and solar irradiance, typical days of sam‐
ples were classified as sunny, cloudy, and rainy days in [18]. 
Using the specific types of weather modeling, the perfor‐
mance of PIs was greatly improved. In [19], the prediction 
errors of PV generation were proven to be unable to com‐
pletely satisfy assumed probability distributions such as Beta 
and Gaussian. Therefore, nonparametric methods are of great 
significance for the probabilistic prediction of PV genera‐
tion. In [20], an efficient nonparametric PI approach was pro‐
posed based on extreme learning machine (ELM) and quan‐
tile regression (QR) for PV generation, achieving high reli‐
ability and efficient computation. In [21], a novel machine 
learning based linear programming (MLLP) approach was 
proposed, which considered both reliability and sharpness. 
The performance of PIs was evaluated by both reliability 
and overall performance considering sharpness [15]. Among 
them, the overall performance is a decisive criterion, the reli‐
ability is an important observation criterion, and the sharp‐
ness is an auxiliary criterion. The PI constructions of the 
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conventional nonparametric methods mainly focus on reli‐
ability or the combination of reliability and sharpness. It is 
worth mentioning that the overall performance of PIs de‐
pends not only on reliability and sharpness but also on the 
offsets of points outside PIs. Thus, to improve the forecast‐
ing performance considering overall performance and reli‐
ability, direct optimization programming (DOP) is proposed 
in this paper by directly optimizing the cost function of the 
overall performance criterion of PIs using a simple linear 
programming (LP) method.

Recently, lots of clustering techniques have been studied 
to improve the accuracy of samples’  utilization. In [22], in‐
put data were clustered based on weather stability, the uncer‐
tainty obtained by a deterministic prediction model, and the 
uncertainty defined by several numerical weather prediction 
(NWP) updates using self-organized maps (SOMs). Using 
the above clustering technique, radial basis function neural 
networks (RBFNNs) could provide quantile predictions with 
high reliability. In [23], a novel RBFNN clustered the input 
samples based on their variable importance and significantly 
improved the forecasting accuracy of PV power. In [24], 
SOM divided the data into three nonlinear parts of the wind 
power curve. In [25], an improved fuzzy C-means (FCM) 
clustering algorithm was proposed to improve the accuracy. 
In [26], a clustering-based prediction method using weather 
forecast and historical power data was studied for regional 
PV power. In [27], the hierarchical clustering-based predic‐
tion method was studied. In this application, after each itera‐
tive calculation of hierarchical clustering, the centers of clus‐
ters, quantified by calculating the average of inputs in each 
cluster, were shifted. Besides, the quantification of cluster 
centers is affected by the outliers. These, however, may 
cause inaccurate clustering. Moreover, the hierarchical clus‐
tering only considered the distance of samples, neglecting 
analysis of variance. In [28] and [29], information granule-
based neural networks (IGNNs) were designed to study the 
deterministic prediction of time-series data with the cluster‐
ing of training samples. The experimental results showed 
that neural networks constructed on a basis of information 
granules (IGs) improved the forecasting performance in an 
efficient manner and produced meaningful estimates. In [30], 
based on IGNN, a novel approach of optimal granule-based 
PIs (OGPIs) was applied for enhanced forecasting perfor‐
mance by segmenting the power time series into granules to 
capture the variability. The numerical comparison revealed 
the effectiveness of granular computation to reduce the ad‐
verse effect caused by the volatility of high-resolution (1-
min resolution) power time series. However, the IGs directly 
segmenting the power time series into granules will reduce 
the number of training samples, which may be infeasible 
due to the potential insufficiency of training samples under a 
typical season and weather condition with a resolution of 15 
min or 1 hour. Inspired by the PI construction of IG, a gran‐
ule-based clustering (GC) approach and the construction of 
related sample granule are proposed in this paper for the im‐
provement of hierarchical clustering to consider the variance 
of samples and reduce the adverse impact of cluster center 
shifting and outliers.

The proposed sample granule represented by a matrix 
composed of several clustering samples is studied to im‐
prove the clustering performance, and is constructed based 
on the iterative quantifications of mergence and division pro‐
cesses for the training samples. Each row vector in the ma‐
trix represents a clustering sample consisting of PV power 
time series as prediction model input and solar irradiance 
from NWP. After the granulation process of clustering sam‐
ples, the sample granules are clustered. Then, the sample 
granules are restored to original samples, of which the PV 
power data are used as prediction model input for training 
with unbalanced extension of training samples rather than 
the conventional clustering methods that only study the high 
correlation samples or directly segment the time series into 
granules. The objective of the proposed GC and unbalanced 
extension is to improve the training performance and avoid 
the potential lack of training samples for probabilistic predic‐
tion.

Moreover, in recent years, several research works have 
been devoted to regional power prediction. In [31], the statis‐
tical upscaling method was utilized to predict the very short-
term PIs of regional PV power generation. The performance 
of the prediction model was affected by the accuracy of sub‐
region division and the selection of representative PV sta‐
tions. In [32], a prediction model for regional power output 
was proposed, considering the smoothing effect. The effec‐
tiveness of the smoothing method by weighting the historical 
regional wind power output was proved in [33]. From the 
perspective of regional power output, the influence of output 
fluctuations of local wind farms is ameliorated and the aggre‐
gated regional power output tends to be smooth, compared 
with the power output of a single wind farm. Similarly, the 
regional PV generation based analysis can reduce sudden 
changes of outputs and the impact of scattered clouds on the 
uncertainty of PV generation.

So far, with the increasing demands for effective predic‐
tion technologies, the significance of probabilistic predic‐
tions for regional PV power generation has also increased. 
In this paper, a novel nonparametric PI method for very 
short-term regional PV power generation is proposed. The 
main contributions of this paper are as follows.

1) GC is proposed in this paper, which can construct sam‐
ple granules to improve the clustering performance. It reduc‐
es the adverse impacts caused by the iterative calculation, in‐
cluding shifted cluster centers and outliers, and provides rea‐
sonable analysis of sample variance for the enhanced cluster‐
ing performance.

2) After unbalanced extension for accurate utilization of 
all training samples, DOP is proposed to improve the overall 
performance of PIs based on the criterion of interval score 
by efficient LP. Moreover, a balance coefficient is proposed 
to enhance the reliability of PIs for better robustness.

The rest of the paper is organized as follows. In Section 
II, the methodology of the proposed method is described. 
The construction of PIs is presented in Section III. Case 
studies are performed to verify the performance of the pro‐
posed method in Section IV. Finally, conclusions are drawn 
in Section V.
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II. METHODOLOGY OF PROPOSED METHOD 

In this section, the proposed GC is presented first. Then, 
the training samples are extended with unbalanced multiples 
by different weights to enhance the utilization of samples. Fi‐
nally, DOP is proposed to obtain the output weights for opti‐
mal overall performance and reliability of PIs, considering 
the balance coefficient.

A. GC Theory

In the proposed GC, training samples are divided into 
sample granules based on their significant differences, which 
can reduce the deviation in the clustering process. Then, hier‐
archical clustering is utilized for the sample granules. The di‐
agram of the proposed GC consisting of three stages is 
shown in Fig. 1, where gG denotes the number of the exist‐
ing sample granules. First, the data are processed in stage 1. 
Then, in stage 2, the sample granulation process, including 
the division process and the mergence process, is quantified. 
Finally, in stage 3, hierarchical clustering is utilized for the 
sample granules.

1)　 Stage 1: Data Preprocessing
Based on the time series of historical PV power genera‐

tion and solar irradiance from NWP, the set of training sam‐

ples is formed. Besides, considering that irradiance has a di‐
rect correlation with PV generation [18], its forecasting data 
are helpful in enhancing the clustering performance. Based 
on the capacity and solar irradiance forecast of each PV sta‐
tion, the regional composite irradiance is defined as:

Rc =
∑
i = 1

M

Ci Ii

∑
i = 1

M

Ci

(1)

where Rc is the value of regional composite irradiance; M is 
the number of PV stations; and Ci and Ii are the capacity 
and the irradiance of the ith PV station, respectively.
2)　Stage 2: Sample Granulation Process

Sample granules consisting of regional PV power observa‐
tions and regional composite irradiances are studied, and 
their input variables are in turn utilized as analysis variables. 
At each iteration, sample granules are divided or merged 
based on the Wikis likelihood criterion for optimal critical 
values of variables [34]. Each sample granule with a signifi‐
cant difference is divided into two new granules, while the 
sample granules with no significant difference are merged. 
The values of F statistic are utilized to determine whether 
the sample granules need to be divided or merged. This pro‐
cess goes on until all sample granules can no longer be di‐
vided or merged.

The F statistic of two sample granules e and h is quanti‐
fied by:

F(dne + nh - d - 1)=
1 -Λ
Λ

ne + nh - d - 1
d

(2)

Λ =
|| A
|| A +B

(3)

A =∑
i = 1

ne

(ei - ē)T (ei - ē)+∑
h = 1

nh

(hj - h̄)Τ (hj - h̄) (4)

B =
nenh

ne + nh

(ē - h̄)T (ē - h̄) (5)

ē =
1
ne
∑
i = 1

ne

ei (6)

h̄ =
1
nh
∑
j = 1

nh

hj (7)

where F is the value of F statistic; Λ is the auxiliary vari‐
able, and the smaller the value of Λ, the larger the difference 
between the sample granules; A is the sum of squares of dif‐
ferences within groups; B is the sum of cross-product ma‐
trix; ei and hj are the ith and jth row vectors of e and h, re‐
spectively; ē and h̄ are the mean vectors, which represent 
the centers of sample granules e and h, respectively; ne and 
nh are the numbers of samples of e and h, respectively; and 
d is the number of variables in each sample. F1 - αF

 is the crit‐

ical value of F statistic that determines if the difference of 
two sample granules is significant, which represents the val‐
ue of F1 - αF

(d ne + nh - d - 1), and 1 - αF is the predetermined 

confidence. If F ³F1 - αF
, there is a significant difference be‐

Input PV power time series and NWP 

data as samples

Stage 2

Stage 1

Set all the samples as a sample granule 

Quantify the mergence process of the existing

 sample granules

Y

Y

Y

N

N

N

Start

End

n=0

n=n+1

Quantify the division process of the nth 

sample granule

n=gG?

 Update the number of sample granules as gG

Can the 

sample granules be 

divided?

Can the 

sample granules be 

merged?

Utilize hierarchical clustering based on sample granulesStage 3

Fig. 1.　Diagram of proposed GC consisting of three stages.
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tween the sample granules. In the division process, the sam‐
ple granules with submatrices of significant differences are 
divided, while the sample granules with insignificant differ‐
ences are merged.

Based on (2)-(7), the division process is as follows.
Step 1: for each variable, sort the clustering samples ac‐

cording to their values. For ne varying from 1 to ne + h - 1, 
where ne + h is the number of samples of the original sample 
granule, quantify the values of Λ.

Step 2: obtain the minimum Λ and the corresponding criti‐
cal values F1 - αF

 and F. If F ³F1 - αF
, the granule needs to be 

divided into two new granules.
The detailed division process of sample granules is shown 

in Fig. 2, which aims to determine if the submatrices with 
the maximum F statistic value Fmax need to be divided.

Figure 3 shows the mergence process of sample granules, 
where Fmin represents the minimum F statistic value. After 
each iteration of the division process, the existing sample 
granules are quantified in pairs with respect to the minimum 
Λ and the corresponding value of F, to determine whether 
the sample granules need to be merged.

3)　Stage 3: Hierarchical Clustering
Based on the result of granulation process, the centers of 

granules can be obtained by quantifying the mean value of 
the clustering samples. Then, the hierarchical clustering ap‐
proach [27] is utilized to cluster the centers of sample gran‐
ules. Different from the utilization of granules as inputs of 
the neural network in [30], the proposed granulation process 
is only used for enhanced clustering, not for prediction mod‐
el training. After clustering, the sample granules are restored 
to the original samples, and then the PV output data are 
used for model training. In the proposed method, clustering 
samples are used for GC, while training samples are used 
for model training, given by:

Sti ={SciRi } (8)

where Sti and Sci denote the ith clustering sample and train‐
ing sample, respectively; and Ri is the corresponding region‐
al composite irradiance.

B. Unbalanced Extension of Samples

The clustering method is usually utilized to select the sam‐
ples with high correlation for training to improve the fore‐
casting performance [8]. However, for the probabilistic pre‐
diction model, the removal of samples through screening 
will result in a certain loss of training sample information. 
In order to improve the accuracy of training samples’  utiliza‐
tion, based on the clustering results, the unbalanced exten‐
sion of samples is used to process the training samples. 
Based on the distances of clusters, the similarity of clusters, 
which is set as the coefficient of unbalanced extension, is 
quantified by:

Simi = exp ( - ∑
j = 1

d

( p̄j - c̄ij )
2 ) (9)

where Simi denotes the similarity between the cluster to be 
predicted and the ith cluster of training samples; p̄j denotes 
the jth variable of the center of the cluster to be predicted; 
and c̄ij denotes the jth variable of c̄i which denotes the ith 
cluster center.

In the proposed method, a cluster center is defined by:

Import the original sample granule for division process 

Y

j>d?

N

N

N

Start

End

i=0, j=1

Y

Y

j=j+1, i=0

i=i+1

According to the values of the jth variable, sort the samples

Based on the sort, set the matrix consisting of the 1th to ith samples

 and that consisting of other samples as new sample granules

According to (1)-(7), quantify F statistic value between the new

 sample granules to obtain the difference

i=ne+h−1?

Record the maximum F statistic value as Fmax and the related

 new sample granules

Fmax>F1−αF
?

Divide the original sample granule into new sample granules

 which are the matrices with Fmax

Fig. 2.　Diagram of division process of sample granules.

Start

   

Y

N

End

Import the sample granules for merging process

Based on (1)-(7), quantify F statistic value between every 

two sample granules 

Fmax>F1−αF

?

Merge the sample granules with the minimum F statistic

 value as a new sample granule

Fig. 3.　Diagram of merging process of sample granules.
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ḡj =
1
Tg
∑
i = 1

Tg

gij (10)

where ḡj and gij denote the jth variables of the cluster center 
and the ith sample, respectively; and Tg denotes the number 
of samples.

The extension multiple to the samples from the cluster to 
be predicted is defined by:

Ei = ë ûSimi /ε + 1    i = 12...N (11)

where Ei denotes the extension multiple of samples for the 
ith cluster; ε is the partition coefficient; ë û denotes the func‐
tion of rounding down the number; and N denotes the num‐
ber of clusters. 

The unbalanced extension is applied to adjust the effects 
of sample clusters on the testing samples, rather than simply 
removing clusters of samples with low correlations. The 
training samples Str for a sample cluster to be predicted are 
reconstructed by:

Str ={ S1...S1

E1

 S2...S2

E2

...   SN...SN

EN

}
(12)

Si ={S i1Si2...SiT }    i = 12...N (13)

where Si denotes all training samples of the ith cluster, and 
its extension multiple is represented by Ei; Si1Si2SiT 
denote the 1th to T th samples of the ith cluster; and T is the 
number of training samples.

C. DOP

The reliability of PIs is evaluated by the average coverage 
error (ACE), which is the accuracy of PI coverage probabili‐
ty (PICP) according to PI nominal confidence (PINC) [35], 
given by:

| ACE | = | PICP -PINC | (14)

The sharpness of PIs is given by:

δαt (x i )=U α
t (x i )- Lα

t (x i ) (15)

where x i is the ith input sample; δαt (x i ) is the width of the ith 
interval; U α

t (x i ) and Lα
t (x i ) are the ith upper and lower 

bounds as the prediction targets, respectively; and α denotes 
the PINC. To evaluate the overall performance of PIs, the in‐
terval score is utilized [14], [20], [30], [36]-[38] and formu‐
lated as:

Scαt (x i )=

ì

í

î

ïïïï

ïïïï

-2(1 - α)δαt (x i )- 4(Lα
t (x i )- ti )     ti < Lα

t (x i )

-2(1 - α)δαt (x i )                                         tiÎ I αt (x i )

-2(1 - α)δαt (x i )- 4(ti -U α
t (x i ))     ti >U α

t (x i )

(16)

Scαt =
1
Tp
∑
i = 1

Tp

Scαt (x i ) (17)

where I αt (x i ) denotes the ith PI; ti denotes the ith prediction 
target; Tp is the number of testing samples; Scαt (x i ) is the 
score of the ith point; and Scαt  is the interval score.

DOP is proposed to directly quantify the output weights 
of the optimal overall score. In (16), the interval scores for 
three cases, including the actual points above, below, and in‐
side the intervals, are expressed. The interval score is nega‐
tive, and the closer to zero its value is, the better the interval 

overall performance is. Equations (16) and (17) can be modi‐
fied as:

| SQ | = 1
T∑i = 1

T

(-2αδαt (x i )+ 2Di ) (18)

Di =
ì
í
î

ïï
ïï

||U α
t (x i )- ti + || Lα

t (x i )- ti      tiÏ Ii

U α
t (x i )- Lα

t (x i )                          tiÎ Ii

(19)

where | SQ | denotes the absolute value of interval score SQ, 

and the smaller value of | SQ | is, the better the overall perfor‐

mance is; and Di denotes the sum of distances between the 
ith observation and the ith bound of PI. When the actual value 
of power is within the PI, Di is the width of the interval. 
Otherwise, the value of Di is quantified based on the width 
of the ith interval and the offset of the point outside PI. The 
overall performance of PIs is determined not only by the ac‐
curacy of coverage and the width of PIs, but also by the off‐
sets of points outside PIs. Thus, the average offset (AO) of 
points outside PIs, considered by the interval score, is uti‐
lized to observe the performance, which is defined by:

AO =
1

No
∑
i = 1

No

Oi (20)

Oi =
ì
í
î

ïïti -U α
t (x i )    ti >U α

t (x i )i = 12...No

Lα
t (x i )- ti     ti < Lα

t (x i )i = 12...No

(21)

where Oi denotes the offset of the ith interval; and No de‐
notes the number of points outside PIs.

Based on (18), the cost function of LP for optimal overall 
performance with PINC of α is given by:

min
ξ̄i-ξ i

βUβL

∑
i = 1

T
é
ë

ù
û-2αk( f (x iβU )- f (x iβL ))+ 2

-
ξ i + 2 -ξ i

(22)

s.t.

f (x iβU )- f (x iβL )³ 0 (23)

ì
í
î

0 £ f (x iβU )£ 1

0 £ f (x iβL )£ 1
(24)

-ξ̄i £ ti - f (x iβU )£ ξ̄i (25)

- -ξ i
£ ti - f (x iβL )£ -ξ i (26)

ì
í
î

ïï
ïï

-
ξ i ³ 0

-ξ i
³ 0

(27)

where f (×  ) denotes the output function of ELM; βU and βL 
denote the output weights of upper bound f (x iβU ) and low‐
er bound f (x iβL ), respectively; ξ̄i denotes the distance be‐
tween the upper bound and the ith actual value; -ξ i

 denotes 

the distance between the lower bound and the ith actual val‐
ue; and k is the balance coefficient for the reliability and 
overall performance, which is selected to avoid cases, where 
the interval score is optimal but the reliability is low. Similar 
to direct quantile regression (DQR) [34], the proposed DOP 
formulates the model input and output based on ELM, 
which has an extremely fast learning speed. Besides, the 
ELM-based method overcomes the limitations of convention‐
al neural networks, such as overtraining, local minimum, 
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and high computational burden. ELM becomes a linear sys‐
tem after the hidden layer, which motivates its effective inte‐
gration with the LP-based approaches, and compared with 
other neural network methods including deep learning meth‐
ods, it is not affected by the iterative calculation of the train‐
ing process.

III. CONSTRUCTION OF PIS 

In this section, the construction of PIs is presented. Since 
GC, unbalanced extension, and DOP have been analyzed, 
the steps of the proposed method for construction of PIs are 
briefly summarized as follows.

Step 1: the parameters are initialized, and the dataset is 
imported after normalization.

Step 2: the clustering samples consisting of regional PV 
output observations and solar irradiance data from NWP are 
constructed and clustered based on the proposed GC.

Step 3: after GC, the unbalanced extension of samples 
consisting of regional power time series is formulated ac‐
cording to the similarity coefficients between the centers of 
the specified cluster and other clusters.

Step 4: the output weights of PIs are quantified based on 
DOP, by successively assuming that the testing samples be‐
long to each cluster.

Step 5: according to the cluster labels of testing samples 
and the output weights, the bounds of PIs can be quantified.

In the quantification of sample granules, considering solar 
irradiance data further improves the clustering performance 
of the future trend of power time series. It should be noted 
that the solar irradiance data will not be used in model in‐
puts while training and testing. That is, the input of a train‐
ing or testing sample only consists of PV power time series 
due to the inadequate prediction accuracy of NWP for very 
short-term prediction. In the proposed method, the hyperpa‐
rameters of GC and unbalanced extension, including the par‐
tition coefficient ε, the confidence aF, and the cluster num‐
ber of GC, are selected mainly based on the prior tests of 
training samples, considering the computational efficiency 
and forecasting performance. Here, the above hyperparame‐
ters can be obtained according to the forecasting perfor‐
mance of deterministic or probabilistic prediction. To ensure 
the consistency of hyperparameter selection in the numerical 
comparisons of deterministic and probabilistic predictions, 
the hyperparameters of GC and unbalanced extension are op‐
timized according to the deterministic prediction accuracy.

Remark 1: the output prediction performance of a PV sta‐
tion is easily affected by scattered clouds which can block 
solar radiation [26]. However, the overall analysis of region‐
al PV power generation and composite irradiance is not sen‐
sitive to a small number of floating clouds, so it is of signifi‐
cance to study.

Remark 2: in conventional hierarchical clustering [27], Eu‐
clidean distance which only quantifies the samples’  differ‐
ence is the criterion for clustering. Besides, after each itera‐
tive calculation of hierarchical clustering, the centers of clus‐
ters will be shifted. Those shifts with high frequencies and 
outliers reduce the accuracy. Therefore, in the proposed GC, 
a granulation process is used to classify the samples before 

their hierarchical clustering, considering the variance of sam‐
ples and reducing the frequency of cluster centers’  move‐
ment and the adverse effects of outliers.

Remark 3: in the preprocessing of training samples, clus‐
tering is usually applied to remove the samples with low cor‐
relation [14] and improve the accuracy of deterministic pre‐
diction. Different from deterministic prediction, probabilistic 
prediction requires all samples to be considered to exploit 
the potential information of probability. Removing some 
samples can result in a shortage of training sample informa‐
tion for probabilistic analysis. Hence, the unbalanced exten‐
sion of samples is important to improve the accuracy of sam‐
ples’  utilization.

Remark 4: the LP of nonparametric PIs is applied to quan‐
tify the output weights based on reliability and sharpness 
[21]. In the proposed method, DOP considering the optimal 
interval score including AO is utilized to quantify the output 
coefficients. In addition, the balance coefficient is used to 
improve the robustness of the proposed method.

IV. CASE STUDIES 

A. Introduction of Dataset

To verify the effectiveness of the proposed method, two 
datasets are considered. In each dataset, the data on the days 
with high irradiance, humidity, or cloud coverage are select‐
ed to form a sample group with the weather condition of 
sunny days, rainy days, or cloudy days, respectively. The da‐
tasets are given as follows.

1) Dataset 1: this dataset consists of the output and NWP 
data of 20 PV stations with 15-min resolution in the north‐
east of China in March-June 2019. And each sample group 
consists of 30-day data, of which 9-day data are used for 
testing and the rest data are used for training.

2) Dataset 2: this dataset consists of the output and NWP 
data of 45 PV stations with 1-hour resolution in October-
February of the Global Energy Forecasting Competition 
2014 (GEFCom2014) [39]. And each sample group consists 
of 90-day data, of which 30-day data are used for testing 
and the rest data are used for training.

The time series of regional PV power and irradiance data 
are used as clustering samples, and considering the predic‐
tion accuracy and correlation of NWP, only the time series 
of PV power are utilized as sample inputs for PIs of very 
short-term forecasting [15]. The time horizon to be predicted 
for Dataset 1 is 07:00-17:00, and the daytime data are used 
for Dataset 2. The generalization performance of ELM is sta‐
ble on a wide range of numbers of hidden nodes [40]. Fur‐
thermore, the lengths of input data are 8 and 4 for Datasets 
1 and 2, respectively. Datasets 1 and 2 are used after normal‐
ization, according to the installed capacities and the maxi‐
mum historical observations, respectively.

B. Numerical Comparison of Clustering Methods

To verify the effectiveness of the proposed GC, K-means-
based method [41], hierarchical clustering-based method 
(CM) [27], and IGNN [28] are utilized as benchmarks for 
the numerical comparison of deterministic prediction perfor‐
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mances based on the efficient ELM. The root mean squared 
errors (RMSEs) and mean absolute errors (MAEs) of deter‐
ministic predictions [15] on sunny days, rainy days, and 
cloudy days are shown respectively from different datasets 
to reveal the effectiveness of the proposed GC for enhanced 
performance.

Tables I and II reveal the numerical comparisons covering 
March to June from Dataset 1 and October to February from 
Dataset 2, respectively, of which the look-ahead time for de‐
terministic prediction is 1-hour. The hyperparameters of all 
the methods are selected according to the prediction accura‐
cy while training. Meanwhile, the irradiance data from NWP 
are considered with PV output observations for clustering, 
and only the PV output observations are utilized for model 
training of the neural network.

According to the comparison result, in most cases, the pre‐
diction accuracy of IGNN is better than that of K-means 
based method and hierarchical CM. However, segmenting 
the power time series into IGs tends to result in potential in‐
sufficient training data. For very short-term forecast of PV 
output, the output observations need to be classified and 
used according to season and weather conditions, and each 
classification roughly covers 1 to 3 months to ensure the ac‐
curate use of training data. If the dataset spans too many 
days, it will lead to confusion about different seasonal char‐
acteristics which reduces the performance of model training, 
while if the dataset spans only few days, it will lead to poor 
training effect of the prediction model. The above dataset ap‐
plication of PV output for very short-term forecast reveals 
the need for efficient and comprehensive training sample 
construction. Hence, to ensure the sufficient and precise 
training data, the proposed sample granules are restored to 
the original samples with reasonable multiples rather than di‐
rectly studying the sample granules, similar to the conven‐
tional utilization of IGs. Besides, with iterative quantifica‐
tions of mergence and division processes, the proposed GC 

tends to find out the differences between the samples or sam‐
ple granules, which can further improve the clustering perfor‐
mance. According to the numerical comparison between the 
deterministic prediction methods shown in Tables I and II, 
the proposed GC has the highest deterministic prediction ac‐
curacy.

C. Numerical Analysis of PIs

To reveal the prediction performance of DOP, the data 
from Datasets 1 and 2 on rainy days, during which the PV 
generation has strong volatility and uncertainty and the pre‐
diction performance is the worst with PINC of 90% and 
look-ahead time of 1-hour, are used to display the influence 
of balance coefficient k in (22).

Figure 4 reveals the interval scores and | ACE | in the 
cross-validation of training with different values of balance 
coefficients. When k = 1, the interval score is directly applied 
as the cost function of DOP without the balance of reliabili‐
ty and overall performance. As shown in Fig. 4(a) and (b), 
DOPs with k = 1.029 and k = 0.976 have the best performanc‐
es in terms of reliability and overall performance of PIs, re‐
spectively. The interval score, as the cost function of LP (k =
1), is sometimes less sensitive to | ACE |, resulting in low reli‐
ability. Thus, the balance coefficient should be optimized. 
Here, for numerical comparison, the methods based on DQR 
[20], [34], MLLP [21], bootstrap-based ELM (BELM) [15], 
and the conditional probability-based PIs (CPPI) [14] are uti‐
lized as benchmarks. The least absolute shrinkage and selec‐
tion operator (LASSO) penalty coefficient in MLLP and the 
selection of divided intervals for conditional probability in 
CPPI are both optimized by particle swarm optimization 
(PSO).
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Fig. 4.　 PI performances with different values of balance coefficient. (a) 
Dataset 1. (b) Dataset 2.

For a comprehensive comparison, the forecasting perfor‐

TABLE II
PREDICTION ERRORS BASED ON DATASET 2

Method

K-means

Hierarchical CM

IGNN

GC

Sunny days

MAE 
(%)

5.43

5.70

5.41

4.71

RMSE 
(%)

9.36

7.71

7.42

6.83

Rainy days

MAE 
(%)

8.19

8.13

8.08

7.27

RMSE 
(%)

11.13

11.22

10.07

9.42

Cloudy days

MAE 
(%)

7.85

7.88

7.22

6.71

RMSE 
(%)

12.36

12.21

9.55

8.17

TABLE I
PREDICTION ERRORS BASED ON DATASET 1

Method

K-means

Hierarchical CM

IGNN

GC

Sunny days

MAE 
(%)

3.11

4.10

3.70

2.58

RMSE 
(%)

4.28

5.44

4.76

3.44

Rainy days

MAE 
(%)

6.31

6.15

5.79

5.19

RMSE 
(%)

7.93

7.51

7.17

6.57

Cloudy days

MAE 
(%)

7.48

7.76

6.71

5.78

RMSE 
(%)

9.53

9.36

9.24

7.31
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mances of the benchmarks and DOP are shown in Tables III-
V. In Table III, the PI performances with the look-ahead 
time of 1-hour are given to reveal the numerical comparison 
of all the criteria analyzed in Section II-C. Meanwhile, con‐
sidering the data resolutions of Datasets 1 and 2 are 15-min 
and 1-hour, respectively, the numerical comparisons with the 
look-ahead time of 30-min and 90-min for Dataset 1 are giv‐
en in Table IV, while the numerical comparisons with the 
look-ahead time of 1-hour and 2-hour for Dataset 2 are giv‐
en in Table V. As analyzed in Section II-C, interval score is 
the decisive criterion, reliability is an important observation 
criterion, and sharpness and AO are the auxiliary criteria. 
That is, the reasonable PIs require excellent overall perfor‐

mance and low coverage deviation. Among all the methods, 
DOP with the optimal balance coefficient has the best fore‐
casting performance, since the reliability and overall perfor‐
mance are directly used as the optimization target. BELM 
and CPPI are methods of parametric PIs, which are affected 
by the accuracy of point prediction and error assumption. 
BELM, DQR, and CPPI quantify PIs mainly based on the re‐
liability, while for MLLP, both the reliability and sharpness 
are considered. However, based on the quantification of inter‐
val score, the offsets of points outside PIs should be consid‐
ered, which means that the PIs should not deviate too much 
from the points outside PIs to improve the rationality of 
probabilistic prediction.

In Tables VI and VII, the results of upscaling method 
(UM) [31], CM [27], IGNN [28], OGPI [30], hierarchical 
clustering-based DOP (HDOP) with the removal of low cor‐
relation samples, and DOP are used as benchmarks for the 
proposed method. Datasets 1 and 2 are utilized for numerical 
comparisons, respectively. In UM, the PV stations with both 

MAE and RMSE less than 10% and the correlation with re‐
gional output of more than 0.9, are selected as representative 
PV stations. UM and CM quantify the bounds of PIs based 
on the results of deterministic prediction and error assump‐
tion. The cluster numbers of all the CMs are obtained ac‐
cording to the prior test of training samples. In the numeri‐

TABLE V
COMPARISON RESULTS WITH DIFFERENT LOOK-AHEAD TIME BASED ON DATASET 2

Method

DQR

MLLP

BELM

CPPI

DOP (k = 1)

DOP (optimal k)

Sunny days

1-hour

PICP (%)

91.82

88.48

86.36

83.94

87.27

89.09

Score

-0.0684

-0.0657

-0.0741

-0.0738

-0.0600

-0.0588

2-hour

PICP (%)

92.42

92.73

86.97

86.06

95.45

91.21

Score

-0.0908

-0.0857

-0.0995

-0.0966

-0.0837

-0.0819

Rainy days

1-hour

PICP (%)

87.88

92.73

88.18

91.82

92.12

89.39

Score

-0.0931

-0.0894

-0.0896

-0.0923

-0.0889

-0.0885

2-hour

PICP (%)

91.21

92.42

94.26

91.82

92.73

89.70

Score

-0.1305

-0.1222

-0.1235

-0.1223

-0.1200

-0.1192

Cloudy days

1-hour

PICP (%)

85.15

84.55

88.18

84.55

88.18

89.09

Score

-0.0965

-0.0906

-0.1017

-0.0939

-0.0830

-0.0827

2-hour

PICP (%)

87.27

87.56

85.15

88.48

88.79

90.61

Score

-0.1273

-0.1179

-0.1362

-0.1247

-0.1082

-0.1067

TABLE III
COMPARISON RESULTS WITH LOOK-AHEAD TIME OF 1-HOUR BASED ON DATASET 1

Method

DQR

MLLP

BELM

CPPI

DOP (k = 1)

DOP (optimal k )

Sunny days

PICP (%)

93.77

93.77

93.50

94.31

92.14

91.60

AW

0.1622

0.1725

0.1524

0.1622

0.1428

0.1397

AO

0.0202

0.0094

0.0280

0.0205

0.0197

0.0195

Score

-0.0375

-0.0367

-0.0402

-0.0371

-0.0348

-0.0345

Rainy days

PICP (%)

88.62

91.33

87.80

87.80

87.53

89.43

AW

0.2372

0.2351

0.2238

0.2271

0.2209

0.2301

AO

0.0284

0.0323

0.0339

0.0320

0.0237

0.0231

Score

-0.0604

-0.0582

-0.0613

-0.0611

-0.0560

-0.0558

Cloudy days

PICP (%)

82.11

88.08

83.47

87.80

86.72

88.35

AW

0.2297

0.2737

0.2423

0.2466

0.2294

0.2347

AO

0.0311

0.0260

0.0440

0.0385

0.0318

0.0317

Score

-0.0682

-0.0672

-0.0776

-0.0681

-0.0628

-0.0623

TABLE IV
COMPARISON RESULTS WITH DIFFERENT LOOK-AHEAD TIME BASED ON DATASET 1

Method

DQR

MLLP

BELM

CPPI

DOP (k = 1)

DOP (optimal k )

Sunny days

30-min

PICP (%)

94.31

92.14

92.14

94.04

93.50

88.89

Score

-0.0274

-0.0267

-0.0289

-0.0263

-0.0250

-0.0242

90-min

PICP (%)

94.04

94.31

87.26

85.45

92.95

89.16

Score

-0.0492

-0.0473

-0.0526

-0.0482

-0.0439

-0.0401

Rainy days

30-min

PICP (%)

87.26

88.62

88.08

88.35

88.08

90.24

Score

-0.0456

-0.0422

-0.0441

-0.0414

-0.0391

-0.0387

90-min

PICP (%)

85.37

91.60

85.91

88.89

88.08

90.51

Score

-0.0787

-0.0721

-0.0774

-0.0746

-0.0695

-0.0693

Cloudy days

30-min

PICP (%)

81.30

87.53

81.03

84.28

84.12

88.35

Score

-0.0467

-0.0450

-0.0540

-0.0491

-0.0412

-0.0411

90-min

PICP (%)

82.93

85.91

85.37

85.91

84.55

89.16

Score

-0.0898

-0.0890

-0.0984

-0.0949

-0.0786

-0.0760
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cal comparison of probabilistic predictions, IGNN quantifies 
parametric PIs based on the deterministic prediction and pre‐
diction errors of assumed Gaussian distribution, and even 
though its deterministic prediction is accurate, the probabilis‐
tic prediction performance is still affected by the accuracy of 

error assumption. OGPI is a novel granule computing-based 
framework for PI construction without the adverse effect of 
deterministic prediction and prior error assumption, and the 
parameters are optimized by PSO. 

As analyzed in [30], by segmenting the power time series 
into granules, OGPI captures the variability of data with 
high resolution (1-min resolution) and has a good forecast‐
ing performance. However, for the resolutions of 15-min and 
1-hour, the effectiveness of OGPI is not stable. In most cas‐
es, the methods based on granule-based PIs including IGNN 
and OGPI have better forecasting performances than the con‐
ventional UM and CM, but their forecasting performances 
are not as good as the DOP. In the proposed method, to en‐
sure the sufficient and precise training data, after the pro‐
posed GC, the utilization of training samples is based on an 

unbalanced extension rather than the conventional method of 
removing the low correlation samples. From the comparison 
of DOP and HDOP, the removal of low correlation samples 
cannot obviously improve the forecasting performance of 
DOP which quantifies PIs without deterministic prediction, 
while the proposed unbalanced extension of samples and GC 
improve the forecasting performance, compared with DOP. 
The proposed method quantifies the upper and lower bounds 
of PIs directly with the optimal overall performance and reli‐
ability. This means that the objective of PI construction is to 
obtain the optimal forecasting performance considering the 

TABLE Ⅶ
COMPARISON RESULTS OF PIS IN OCTOBER-FEBRUARY BASED ON DATASET 2

PINC 
(%)

90

95

Method

UM

CM

IGNN

OGPI

HDOP

DOP

Proposed

UM

CM

IGNN

OGPI

HDOP

DOP

Proposed

Sunny days

PICP (%)

91.54

91.21

89.09

89.09

87.58

89.09

90.30

94.04

93.03

93.03

93.33

95.76

94.24

94.55

AW

0.2971

0.2354

0.2418

0.3592

0.2053

0.2409

0.2186

0.3547

0.3355

0.3051

0.4251

0.2628

0.2784

0.2746

AO

0.0685

0.0425

0.0412

0.0227

0.0365

0.0243

0.0319

0.0673

0.0605

0.0480

0.0184

0.0437

0.0269

0.0255

Score

-0.0826

-0.0620

-0.0663

-0.0818

-0.0588

-0.0588

-0.0561

-0.0515

-0.0504

-0.0439

-0.0474

-0.0337

-0.0340

-0.0330

Rainy days

PICP (%)

93.10

92.42

88.48

90.91

89.39

89.39

90.30

96.06

96.36

94.85

94.55

93.94

94.24

95.15

AW

0.4459

0.3950

0.3301

0.4182

0.3697

0.3759

0.3840

0.4884

0.4908

0.4037

0.4638

0.3939

0.4000

0.4289

AO

0.0375

0.0498

0.0463

0.0314

0.0337

0.0313

0.0221

0.0529

0.0311

0.0504

0.0205

0.0353

0.0389

0.0236

Score

-0.0995

-0.0941

-0.0873

-0.0951

-0.0883

-0.0885

-0.0854

-0.0572

-0.0536

-0.0507

-0.0508

-0.0480

-0.0490

-0.0475

Cloudy days

PICP (%)

92.48

83.44

89.09

83.94

88.48

89.09

90.91

96.54

86.69

93.64

91.21

94.24

93.94

94.55

AW

0.4342

0.3042

0.3145

0.3404

0.2647

0.3255

0.3209

0.7109

0.3628

0.3652

0.4127

0.3614

0.3679

0.3784

AO

0.0543

0.0665

0.0516

0.0317

0.0587

0.0403

0.0385

0.0492

0.0762

0.0582

0.0286

0.0440

0.0411

0.0352

Score

-0.1032

-0.1044

-0.0854

-0.0885

-0.0800

-0.0827

-0.0782

-0.0785

-0.0767

-0.0513

-0.0513

-0.0463

-0.0468

-0.0455

TABLE Ⅵ
COMPARISON RESULTS OF PIS IN MARCH-JUNE BASED ON DATASET 1

PINC 
(%)

90

95

Method

UM

CM

IGNN

OGPI

HDOP

DOP

Proposed

UM

CM

IGNN

OGPI

HDOP

DOP

Proposed

Sunny days

PICP (%)

93.22

94.04

92.41

94.63

92.41

91.60

91.33

96.48

96.48

95.93

96.59

96.75

94.85

95.12

AW

0.1885

0.1650

0.1659

0.1925

0.1596

0.1397

0.1471

0.2213

0.2154

0.1983

0.2359

0.2115

0.1720

0.1882

AO

0.0220

0.0264

0.0262

0.0180

0.0124

0.0195

0.0119

0.0236

0.0309

0.0351

0.0143

0.0127

0.0229

0.0132

Score

-0.0436

-0.0393

-0.0422

-0.0424

-0.0357

-0.0345

-0.0335

-0.0255

-0.0259

-0.0255

-0.0255

-0.0228

-0.0219

-0.0214

Rainy days

PICP (%)

88.35

85.09

89.43

92.68

89.43

89.43

90.24

92.68

89.43

95.93

95.85

93.22

93.50

94.58

AW

0.3432

0.2057

0.2398

0.2591

0.2264

0.2301

0.2217

0.4087

0.2430

0.3037

0.3181

0.2529

0.2533

0.2574

AO

0.0543

0.0325

0.0252

0.0290

0.0236

0.0231

0.0270

0.0464

0.0311

0.0397

0.0249

0.0239

0.0269

0.0244

Score

-0.0939

-0.0605

-0.0586

-0.0603

-0.0552

-0.0558

-0.0549

-0.0544

-0.0375

-0.0368

-0.0359

-0.0318

-0.0323

-0.0310

Cloudy days

PICP (%)

92.91

83.47

88.89

88.54

86.99

88.35

89.97

96.75

88.35

94.04

96.10

92.95

92.68

95.66

AW

0.3159

0.2559

0.2963

0.3082

0.2439

0.2347

0.2423

0.3820

0.2873

0.3530

0.3836

0.2958

0.2733

0.3101

AO

0.0509

0.0387

0.0387

0.0228

0.0285

0.0317

0.0312

0.0548

0.0402

0.0341

0.0157

0.0265

0.0334

0.0212

Score

-0.0784

-0.0768

-0.0764

-0.0721

-0.0636

-0.0623

-0.0610

-0.0453

-0.0475

-0.0434

-0.0408

-0.0371

-0.0371

-0.0347

1458



SUN et al.: NONPARAMETRIC PROBABILISTIC PREDICTION OF REGIONAL PV OUTPUTS BASED ON GRANULE-BASED CLUSTERING AND

reliability, sharpness, and offsets of points outside PIs, rather 
than the conventional methods, which only aim at reliability 
or consider both reliability and sharpness. When the value of 
PICP is 100%, all the actual power values are within PIs, 
then, “none” is defined to denote AO. Of all the methods, 
PIs of the proposed method have the best forecasting perfor‐
mance.

A PC with Intel(R) Core(TM) i7-7700 CPU @ 2.8 GHz and 
8 GB RAM is used for computations. The computational 
time of GC and DOPs of all clusters is 71 s and 49 s, re‐
spectively, while the prediction time of the proposed probabi‐
listic prediction method is not more than 5 s. Since the train‐
ing of the prediction model is usually carried out at least ev‐

ery few days, and the prediction time scale of very short-
term is usually tens of minutes, the proposed method has 
good computational efficiency and forecasting performance, 
so it is suitable for very short-term probabilistic prediction.

Based on Datasets 1 and 2, Figs. 5 and 6 illustrate the PIs 
at different time points under different weather conditions 
with PINC of 90%. The sampling time of Figs. 5 and 6 is 
15 min and 1 hour, respectively. It is clear from Fig. 5(a) 
and Fig. 6(a) that the PIs have high reliability and sharpness 
on sunny days, because the curve of power output changes 
smoothly. On rainy days and cloudy days, the curves of pow‐
er outputs which change dramatically are more uncertain, 
compared with the outputs on sunny days.

V. CONCLUSION 

In this paper, a novel nonparametric method of very short-
term probabilistic prediction for regional PV outputs based 
on GC and DOP is proposed. First, DOP is proposed to opti‐
mize the overall performance of nonparametric PIs. Com‐
pared with the conventional methods of PIs, the proposed 
DOP can effectively quantify the output weights of the opti‐
mal overall performance. The numerical comparison of calcu‐
lation methods for PIs verifies the effectiveness of DOP un‐
der different weather conditions. Second, the balance coeffi‐
cient is proposed to further improve the robustness of DOP, 
which considers the possibility that PIs with excellent over‐
all performance have low reliability caused by the strong vol‐
atility and uncertainty of PV generation. The effect of bal‐
ance coefficient is analyzed by numerical comparison. Third, 
the proposed GC is used to improve the clustering perfor‐
mance, and its effectiveness is verified by the numerical 
comparison of deterministic predictions with the prediction 
methods based on hierarchical clustering and K-means. 

Then, an unbalanced extension of samples is applied to en‐
hance the samples’  utilization, which is verified to be effec‐
tive by numerical comparison among HDOP, DOP, and the 
proposed method. Finally, the effectiveness of the proposed 
method is verified by the numerical comparisons with the ex‐
isting methods for regional PV power output.

Since the forecasting performance of PV power is obvious‐
ly affected by the classification accuracy of daily weather 
types which usually have certain changes within a few 
hours, it is necessary to further consider the time scale of 
half a day or even several hours for optimized classification, 
which will be studied in future work.
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