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Segmented Real-time Dispatch Model and 
Stochastic Robust Optimization for Power-gas 

Integrated Systems with Wind Power Uncertainty
Ying Wang, Kaiping Qu, and Kaifeng Zhang

Abstract——This paper develops a segmented real-time dis‐
patch model for power-gas integrated systems (PGISs), where 
power-to-gas (P2G) devices and traditional automatic genera‐
tion control units are cooperated to manage wind power uncer‐
tainty. To improve the economics of the real-time dispatch in re‐
gard to the current high operation cost of P2Gs, the wind pow‐
er uncertainty set is divided into several segments, and a seg‐
mented linear decision rule is developed, which assigns adjust‐
ment tasks differently when wind power uncertainty falls into 
different segments. Thus, the P2G operation with high costs can 
be reduced in real-time adjustment. Besides, a novel segmented 
stochastic robust optimization is proposed to improve the effi‐
ciency and robustness of PGIS dispatch under wind power un‐
certainty, which minimizes the expected cost under the empiri‐
cal wind power distribution and builds up the security con‐
straints based on the robust optimization. The expected cost is 
formulated using a Nataf conversion-based multi-point estimate 
method, and the optimal number of estimate points is deter‐
mined through sensitivity analysis. Furthermore, a difference-of-
convex optimization with a partial relaxation rule is developed 
to solve the non-convex dispatch problem in a sequential optimi‐
zation framework. Numerical simulations in two testing cases 
validate the effectiveness of the proposed model and solving 
method.

Index Terms——Power-gas integrated system, robust optimiza‐
tion, real-time dispatch, multi-point estimate method, difference-
of-convex optimization.
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C. Decision Variables
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D. Uncertain Variables
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Total allowable upward wind power fluctuation

Endpoints of wind uncertainty subsets

Relax variable to convexify DC constraints

Dual variables of corresponding boundary con‐
straints

Power flow of line l at time t

Line pack in pipe mn

Baseline power output of wind farm k

Baseline power output of AGC unit i

Baseline power input of P2G j

Baseline power output of non-AGC unit m

Gas pressure of node n in gas network

Adjustment cost in the second stage

Baseline gas flow output of gas source h

Gas inflow and outflow of pipe mn

Average gas flow of pipe mn

The minimum and maximum gas flow consump‐
tions of gas turbine i

The minimum and maximum gas flow outputs 
of P2G j

Reserve down and up provided by AGC unit i

Reserve down and up provided by P2G j

Decision variables of convexification of nonlin‐
ear constraints

Total available wind power fluctuation of all 
wind farms

Total allowable power fluctuation of all wind 
farms

Available wind power of wind farm k

Actual power output of wind farm k

Actual power output of AGC unit i

Actual power input of P2G j

Actual gas flow consumption of gas turbine i

Actual gas flow output of P2G j

Available wind power fluctuation of wind farm 
k
Allowable power fluctuation of wind farm k

I. INTRODUCTION

POWER-GAS integrated system (PGIS) can utilize the 
electricity and natural gas energy synergistically and in‐

teractively, which improves the energy efficiency and opera‐
tion flexibility of the total system [1]. Recently, with the 
emerging power-to-gas (P2G) technology [2], it becomes 
possible to co-optimize traditional units and P2G devices to 
maintain the energy balance and address uncertainty issues 
from the increasing penetration of the renewable power inte‐
gration, e.g., wind power [3]. By dynamically converting ex‐
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cess power from the power system into natural gas, P2Gs 
can fast respond to the dispatch signals and participate in the 
real-time dispatch [4] - [6], which is typically undertaken by 
traditional automatic generation control (AGC) units. There‐
fore, there is an important need to find an appropriate way 
to coordinate P2Gs and traditional AGC units in the real-
time dispatch to address the uncertainty problems.

Currently, massive studies have been conducted on PGIS 
operations with wind power uncertainty. From the perspec‐
tive of optimization models, mainstream methods can be 
classified into scenario-based optimization (SO) [7], [8], in‐
terval-based optimization (IO) [9], classical robust optimiza‐
tion (CRO) [10] - [12], and distributionally robust optimiza‐
tion (DRO) [13]. To hedge the wind power uncertainty, the 
above methods usually model the problem as a two-stage 
problem, which optimizes the baseline power in the first 
stage and conducts the adjustments in the second stage. The 
adjustments are usually obtained through re-optimizations in 
unit commitment and economic dispatch, but they need to 
be immediate decisions provided by the AGC system in the 
real-time dispatch. To meet the timeliness requirements of 
the real-time dispatch, linear decision-based optimization 
methods have been proposed, in which the baseline power is 
determined in the first-stage optimization and the adjust‐
ments are implemented through participation factors [14]. 
Participation factors, also called allocation coefficients or dis‐
tribution factors, determine how much the AGC resources 
will undertake the adjustment task to level off the wind pow‐
er fluctuations[14]. When the wind power deviates from its 
baseline power, the AGC resources, including the traditional 
AGC units and P2Gs, will adjust their outputs to compen‐
sate and smooth the wind power fluctuations. Accordingly, 
the above IO, CRO, and DRO methods need to be modified 
into linear decision-based IO [15], CRO [16], [17], and 
DRO methods [18]-[20] in the real-time dispatch.

Besides the problem regarding the optimization methods 
to deal with the uncertainty problems, another critical issue 
is how to coordinate P2Gs with traditional units in the 
PGIS. In day-ahead scheduling, the P2Gs are often opti‐
mized together with other resources [11]. In real-time dis‐
patch, the participation factors of all the resources are usual‐
ly determined beforehand based on their cost efficiencies 
[14], [16]-[21]. In addition, the reliability and environmental 
objectives with P2G operation constraints have been studied 
in [22], [23].

While many publications have studied either the PGIS op‐
eration optimizations with wind power uncertainty or PGIS 
real-time dispatch, much less attention has been directed to 
coordinating P2Gs and traditional AGC resources with wind 
power uncertainty in the real-time dispatch. Specifically, in 
the existing real-time dispatch models [14], [16]-[21], all the 
AGC resources usually follow the traditional linear decision 
rule with the participation factors that are already deter‐
mined through optimization. In another sentence, the adjust‐
ment task will be assigned to these resources based on the 
fixed participation factors regardless of the real-time degree 
of the wind power uncertainty. As we know, the efficiency 
of converting power to natural gas is comparatively lower 

(50%-60%) [16], and thus it is expensive to keep the P2G 
operation all over the time [2]. In fact, it is costly and unnec‐
essary for P2Gs to always participate in leveling off the 
wind power fluctuations. When the wind power fluctuates 
slightly, it is entirely possible to reduce or even shut down 
the P2G operation to enhance economical efficiency. To this 
end, we are motivated to upgrade the traditional linear deci‐
sion rule into a segmented linear decision rule, which di‐
vides the wind power uncertainty into different segments, 
and assigns the adjustment task to the AGC resources by dif‐
ferent decision rules when wind power uncertainty falls into 
different segments. With the segmented rule, the AGC re‐
sources, including the P2Gs, will be given different priorities 
to fulfill the adjustment task to improve the economics.

Moreover, it is noticed that most of the existing real-time 
dispatch methods of PGIS are based on IO, CRO, and DRO 
methods. In order to combine the benefits of stochastic and 
robust optimizations, we introduce stochastic robust optimi‐
zation (SRO) [21] to the real-time dispatch of PGIS. The 
SRO method optimizes the expected cost under the empiri‐
cal distribution and builds the security constraints with ro‐
bust optimization. Considering that the empirical distribution 
better fits the wind power historical data and is closer to its 
actual distributions, the SRO tends to be more economical 
than traditional robust strategies under general wind distribu‐
tions. Different from SRO, this work improves the SRO 
with a segmented linear decision rule to better coordinate 
the P2Gs and traditional AGC resources to increase the cost 
efficiencies. Meanwhile, compared with the SRO that only 
focuses on power system operation and formulates the empir‐
ical distribution with a three-point estimate method, this pa‐
per applies SRO to the PGIS and extends it to a multi-point 
estimate method, and the optimal number of the estimate 
points is determined by sensitivity analysis.

In this paper, we propose a segmented stochastic robust 
optimization (SSRO) method to better coordinate P2Gs and 
traditional AGC resources in the real-time dispatch of PGIS. 
The segmented linear decision rule actually upgrades parame‐
terized wind uncertainty set into a variable-involved segment‐
ed uncertainty set. However, such a modification will make 
the security constraints in the power system non-convex and 
the gas flow transmission constraints are also intrinsically 
non-convex. To solve the real-time dispatch of PGIS with 
complex non-convex constraints, we design an effective con‐
vexified solution. To sum up, the main contributions of this 
paper are as follows.

1) A segmented real-time dispatch model of the PGIS is 
constructed to cooperate the traditional AGC units and P2Gs 
together to cope with the wind power uncertainty. With con‐
sideration of the high operation cost of P2Gs, a new seg‐
mented linear decision rule is proposed to assign the adjust‐
ment task differently when wind power uncertainty falls into 
different segments, leading to a lower total cost of the PGIS.

2) An SSRO is proposed to address the dispatch of PGIS 
under wind power uncertainty. With SSRO, the security con‐
straints are built up with robust optimization to increase the 
system safety, while the expected cost under the empirical 
distribution is optimized based on stochastic optimization to 
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reach economical efficiency. A multi-point estimate method 
is developed for the expected cost formulation.

3) A partial relaxation-based difference-of-convex optimi‐
zation (DCO) is developed to solve the non-convex dispatch 
problem. To be specific, the bilinear constraints converted 
from the uncertain constraints from the power system and 
the non-convex constraints from the gas system are equiva‐
lently transformed to difference-of-convex (DC) constraints 
with the tight and relaxed rule, respectively, and then solved 
by DCO method. Besides, a sequential optimization proce‐
dure is developed to correct the initialization of convexifica‐
tion.

II. LITERATURE REVIEW

A.　PGIS Operation with Wind Power Uncertainty

As stated in the introduction, typical methods for optimiz‐
ing the PGIS operation with wind power uncertainties in‐
clude SO, IO, CRO, and DRO. The common thread of the 
SO, IO, CRO, and DRO methods is to minimize the operat‐
ing cost with sufficient resources to accommodate real-time 
uncertainty, but they differ in uncertainty representations and 
mathematical formulations. In specific, [7] and [8] propose 
the scenario-based stochastic optimization method, which de‐
scribes wind uncertainty with sampled scenarios and estab‐
lishes security constraints in all scenarios. However, scenario-
based methods can hardly cover all the extreme scenarios 
since the number of scenarios is restricted by the computa‐
tion effort. Different from stochastic optimization, interval or 
robust methods guarantee the system safety under the worst 
case within an interval or uncertainty set. Existing robust op‐
timization methods mainly include CRO and DRO. CRO de‐
scribes the wind uncertainty by uncertainty set, i.e., the feasi‐
ble region of wind power scenarios [11], [12]. CRO usually 
minimizes the cost in the worst-case scenarios or the expect‐
ed scenario, which ignores the probability distributions of 
the wind power, and the optimization results generally tend 
to be conservative or inefficient [24]. As for DRO, it uses an 
ambiguous set to describe wind uncertainty, i.e., the feasible 
region of wind distributions. Commonly-used ambiguous set 
includes probability density-based [25], distance-based [26], 
[27], and statistical moments-based methods [28], [29]. DRO 
minimizes the expected cost under extreme wind distribu‐
tions, which is less conservative than CRO.

To combine the advantages of the above-mentioned meth‐
ods, some hybrid optimization methods, e.g., stochastic inter‐
val optimization (SIO) [30] - [32] and SRO [33], [34] meth‐
ods, are proposed. In [30], the SO and IO are implemented 
sequentially over the horizon with a switching time to bal‐
ance the cost and security premium in the power systems. In 
[31], [32], scenarios and uncertainty sets are used for model‐
ing different uncertain variables in multi-energy systems. 
Reference [33] proposes an SRO for power system unit com‐
mitment, which considers both the scenario-based expected 
cost and the worst-case cost in the objective function. The 
SRO in [34] models the wind power and price uncertainties 
by uncertainty set and scenarios, respectively. However, the 
above methods can hardly be directly applied to real-time 

dispatch due to the timeliness requirements in real-time dis‐
patch.

B.　Real-time Dispatch with Wind Uncertainty

To meet the timeliness requirement of real-time dispatch, 
linear decision-based optimization methods are proposed, in 
which the baseline power and the participation factors are de‐
termined. References [16] and [17] establish the optimal dis‐
patch for the PGIS with the linear decision-based CRO meth‐
od. However, these methods usually optimize the baseline 
operation cost but ignore the adjustment cost. Compared 
with the linear decision-based CRO, the linear decision-
based DRO takes the baseline cost and the adjustment cost 
into account by minimizing the expected cost under the ex‐
treme distributions, and thus the linear decision-based DRO 
is generally superior to the linear decision-based CRO in 
term of cost efficiency. However, the linear decision-based 
DRO focuses only on the expected cost under extreme distri‐
butions while ignoring the expected cost under general distri‐
butions, and thus it is less economical under most possible 
distributions because the extreme distributions rarely occur. 
In order to improve the economy of linear decision-based ro‐
bust optimization under general distributions, [21] proposes 
the linear decision-based SRO for power system dispatch 
problems, which formulates the expected generation cost un‐
der the empirical wind distribution in the objective and satis‐
fies the system security constraints within the uncertainty 
set. However, the above literature has not specifically consid‐
ered how to coordinate P2Gs and traditional AGC units in 
setting the participation factors.

III. SEGMENTED REAL-TIME DISPATCH

A.　General Idea of Segmented Real-time Dispatch

To cope with the wind power uncertainty, real-time dis‐
patch optimizes the baseline state of generation units, wind 
power and gas sources as well as the participation factors of 
AGC resources. When wind power deviates from the base‐
line state, AGC resources regulate to neutralize the power 
imbalance, while non-AGC resources will operate at the 
baseline state. In general, when wind power fluctuates up‐
ward, the generation-side AGC units need to decrease the 
output power while the load-side AGC resources need to in‐
crease the power consumption. In contrast, when wind pow‐
er fluctuates downward, the generation-side AGC units need 
to increase the output power while the load-side AGC re‐
sources need to decrease the power consumption.

In this paper, the AGC resources mainly include the AGC 
units and P2Gs. With regard to the current inadequate con‐
version efficiency and high cost of P2Gs (water electrolysis 
and methanation) [2], [16], the PGIS will tend to make less 
use of the P2Gs in the real-time adjustment. Therefore, we 
propose a segmented real-time dispatch model for the PGIS, 
which sets different dispatch strategies of the AGC units and 
the P2Gs when the wind power uncertainty falls into differ‐
ent segments. The general idea of the segmented real-time 
dispatch at different uncertainty levels is illustrated in Fig. 1. 
The wind power uncertainty, i.e., the forecast error, is divid‐
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ed into four segments. When the wind power uncertainty 
fluctuates upward and falls into segment ② , all the adjust‐
ment tasks will be assigned to the traditional AGC units, and 
the P2G devices will be kept at the baseline power. When 
the wind power uncertainty exceeds the adjustment capabili‐
ty of the traditional AGC units and falls into segment ① , 
the traditional AGC units will decrease the output at first un‐
til reaching their maximum adjustment capability, and then 
P2G devices will increase the power consumption to fulfill 
the remaining adjustment task. Similarly, when wind power 
fluctuates downward, the wind power uncertainty may fall 
into segments ③ and ④ . In these two segments, the P2Gs 
are given priority to decrease the power input due to their 
high costs. When the wind power uncertainty exceeds the 
P2G adjustment capability, the exceeding part will be as‐
signed to the traditional AGC units.

B.　Wind Power Uncertainty Set

For each wind farm, P̂ w
kt is represented as the summation 

of P we
kt  and ûkt, i.e.,
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In the real-time dispatch, the forecasted available wind 
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PGIS when it exceeds its adjustment capability, and then the 
excessive power will be curtailed. The wind power curtail‐
ment strategy can be described as:
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When taking the the allowable upward wind power fluctu‐
ation into consideration, the uncertainty set of the allowable 
wind power can be described as:
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C.　Segmented Linear Decision Rule-based Real-time Dis‐
patch

In the dispatch mode, the traditional linear decision rule is 
upgraded to the segmented linear decision rule. The wind 
power uncertainty, i. e., the total wind power fluctuation, is 
first divided into four segments.
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where ξt0 = -π t ξt1 = -π͂
p2g
t  ξt2 = 0 ξt3 =

-
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they satisfy:

ξts - 1 £ ξts    "s (8)

The adjustment task is assigned to resources by different 
decision rules when wind power uncertainty falls into differ‐
ent segments.

1) When the wind power uncertainty falls into segment ② 
in Fig. 1, i.e., wind power fluctuates little upward and does 
not exceed the maximum adjustment capability of the AGC 
units, AGC units will reduce the power output, and the P2Gs 
will stay at the baseline power as:
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2) When the wind power uncertainty falls into segment ① 
in Fig. 1, i. e., wind power fluctuates upward and exceeds 
the maximum adjustment capability of the AGC units, AGC 
units will reduce the power output until reaching the maxi‐
mum adjustment capability and the P2Gs increase the power 
consumption to fulfill the remaining part as:
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3) When the wind power uncertainty falls into segment ③ 
in Fig. 1, i.e., wind power fluctuates downward and does not 
exceed the maximum adjustment capability of the P2Gs, 
P2Gs will reduce the power consumption as:
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4) When the wind power uncertainty falls into segment ④ 
in Fig. 1, i.e., wind power fluctuates downward and exceeds 
the maximum adjustment capability of the traditional P2Gs, 
P2Gs will reduce the power consumption until reaching the 
maximum adjustment capability and the AGC units increase 
the power output to fulfill the remaining part as:
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In the above four situations, constraints (13) and (14) 
need to be satisfied.
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Fig. 1.　Illustration of segmented real-time dispatch at different uncertainty 
levels.
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(14)

The above segmented decision rule can be described in a 
compact form as
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    "s (15)

D. Constraints

The constraints of the PGIS mainly include the power sys‐
tem constraints [35], the natural gas system constraints [36], 
and the coupling constraints.
1)　Security Constraints of Power System

In the following context, x and x͂ represent the baseline 
and the actual value of the decision variables, respectively; 

-x͂  and 
-
x͂ represent the possible extreme boundaries at the ad‐

justment stage; and -x and x̄ represent the actual minimum 
and maximum limits, respectively.∑

i
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Formula (16) represents the power balance constraint of 

the power system; (17) represents the minimum and maxi‐
mum limits of the baseline wind power; (18) and (19) repre‐
sent the minimum and maximum power limits of the AGC 
units, respectively; (20) and (21) represent the ramping lim‐
its of the AGC units; (22) and (23) represent the minimum 
and maximum power input limits of the P2Gs, respectively; 
and (24) and (25) represent the power limits and ramping 
limits of the non-AGC units, respectively.

Note that the extreme adjustment of AGC units and P2Gs 
is caused by extreme total wind power fluctuations. There‐
fore, power output/input limits of AGC units and P2Gs are 
established by extreme scenarios, as shown in (18) and (22). 
However, the power flow in transmission lines depends on 
the actual power output of each wind farm and cannot be de‐
scribed by extreme scenarios. To address this problem, the 
uncertain variable ut is introduced into the power flow con‐
straints as:
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(26)

To sum up, the security constraints of the power system 
can be described in the following unified form.

At x t + αts x t £ ct    "ts (27)

Ht (x t )+ max
utÎΞts

(Gtαtsut )£ d t    "ts (28)

Note that (28) contains the uncertain variables, and it can 
be transferred into the deterministic constraints using dual 
theory as:
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2)　Security Constraints of Natural Gas System
In the natural gas system, natural gas loads are supplied 

by natural gas sources through pipelines and compressor sta‐
tions [36]. The gas flow constraints include (30)-(39).∑

hÎ n
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 M t
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MmnT ³Mreq (35)

 q2
mnt = cmn (p2
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nt )    "mnÎΩncp (36)
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 qmnt = (qin
mnt + qout

mnt )/2    "mnÎΩncp (37)

 -K mn pmt £ pnt £
-
K mn pmt    "mnÎΩcp (38)

 qout
mnt = (1 - σmn )qin

mnt    "mnÎΩcp (39)

Formula (30) represents the gas flow balance constraint of 
the natural gas system; (31) represents the output limit of 
the gas source; (32) represents the nodal gas pressure limit; 
(33) - (35) represent the line pack constraints of the pipeline 
without a compressor; (34) indicates the line pack stored in 
the pipeline mn is proportional to the average gas pressure 
of the pipeline; (35) indicates that the total line pack stored 
in the natural gas system cannot be lower than a specified 
value Mreq after dispatch; (36) and (37) indicate that the aver‐
age gas flow in the pipeline is related to the gas pressures of 
the two ends; (38) and (39) represent the constraints of the 
pipeline with the compressor; (38) represents the pressuriza‐
tion ratio limits of the compressor; and (39) represents the 
gas consumption of the compressor.

For the P2Gs and natural gas turbines which participate in 
the AGC service, they need to respond to the uncertain wind 
power, and further bring the uncertainty and fluctuations to 
the gas output (P2Gs) or input (gas turbine) of the natural 
gas system. In practice, the above gas uncertainty will be 
mainly balanced by the line pack in the pipeline, which 
leads to pressure fluctuations in the pipeline. Extreme fluctu‐
ations of the gas pressure will possibly bring about low-pres‐
sure or high-pressure events [17]. Therefore, the security 
constraints of the natural gas system in the extreme scenari‐
os caused by gas turbines and P2Gs are considered. The se‐
curity constraints under three extreme scenarios are formulat‐
ed as (40), in which the equivalent gas inputs/outputs of the 
gas turbines and P2Gs are the minimum, maximum, and 
baseline values, respectively.
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(40)

3)　Coupling Constraints
The power system and natural gas system are coupled 

through the gas turbines and P2Gs, and the coupling con‐
straint are given as:
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E.　Objective Function

The segmented real-time dispatch model optimizes the 
baseline cost in the first stage and the expected adjustment 
cost in the second stage, as shown in (43). The baseline cost 
includes the fuel cost of generation units, the cost of gas 
sources, and the operation cost of P2Gs.

min
x
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Note that the operation cost of P2Gs is mainly associated 
with the cost of electric power and the cost of materials, i.e., 
H2O in the water electrolysis and CO2 in the methanation 
and other catalysts. The electric power cost of P2Gs has al‐
ready been included in the generation cost of units, and 
hence the operation cost coefficient of P2Gs pj actually indi‐
cates the material cost.

The generation costs of coal-fired generation units are qua‐
dratic functions associated with their outputs as:

ì
í
î

Costi (P
agc
it )³ ai (P

agc
it )2 + bi P

agc
it + ci

Costm (P nagc
mt )³ am (P nagc

mt )2 + bm P nagc
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(44)

Traditionally, the expected value is modeled by the ran‐
dom sampling method. However, the results of random sam‐
plings depend on the sampled points, and an accurate estima‐
tion usually requires sampling a large number of points. 
Thus, this paper conducts the multi-point estimate method, 
which is indeed a deterministic estimate method and can uni‐
formly cover the uncertain wind power fluctuation with few‐
er estimate points [37]. Here, the uncertain variable in the 
multi-point estimate method is the total available wind pow‐
er fluctuation. The wind power variables between different 
time periods are assumed to be independent of each other, 
and thus the multi-point estimate method is indeed to esti‐
mate the expected response function of a single uncertain 
variable as:

EpÎ(Q(xπ̂))=∑
t
∑
wÎN

ωwQt (x tπ̂tw ) (45)

π̂tw =F -1
t (Φ(zw )) (46)

The number of estimate points (N ³ 3) is usually an odd 
number for reaching a certain accuracy [38]. The values of 
the estimate point zw and the corresponding weights with dif‐
ferent N are available in [38]. The sensitivity analysis of N 
will be conducted in the case studies. The adjustment cost in 
the second stage includes the adjustment costs of the AGC 
units and P2Gs, and the penalty costs of the wind power cur‐
tailment. For each estimate point of the total available wind 
power fluctuations (π̂tw), we assume that when the estimate 
point is within the sth uncertainty segment, the correspond‐
ing sign variable σtws is 1, otherwise 0. The second-stage ad‐
justment cost at each estimate point is given as:
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πtw £
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(47)
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IV. SOLUTION METHODOLOGY

A.　Convexification of Nonlinear Constraints

The nonlinear constraints in this model include the bilin‐
ear constraints (18), (22), (29) of the power system and the 
gas flow transmission constraint (36) of the natural gas sys‐
tem. This paper adopts DCO to deal with nonlinear con‐
straints. One of the features of DCO is that the constraints 
of the optimization problem are convex or can be expressed 
as the difference between two convex functions. For exam‐
ple, xy can be expressed as 0.5[(x + y)2 - x2 - y2 ]. In view of 
this, the bilinear constraints (18), (22), (29) expressed in the 
compact form as (50) are transformed to DC constraint 
as (51). ∑ax1 y1 -∑bx2 y2 +C(xy)£ 0 (50)

C(xy)+∑0.5a [ ](x1 + y1 )2 - x2
1 - y2

1 +∑0.5b [ ](x2 - y2 )2 - x2
2 - y2

2 £ 0 (51)

Then, gas flow transmission constraint (36) is replaced by 
two inequations (51) and (52), where (51) is a second-order 
cone constraint (convex) and (52) is non-convex as a DC 
constraint.

q2
mnt /cmn + p2

nt - p2
mt £ 0 (52)

p2
mt - p2

nt - q2
mnt /cmn £ 0 (53)

Thus, the real-time dispatch of PGIS with nonlinear con‐
straints is converted to the below compact form with DC 
constraints.
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s.t.  fi (x)- gi (x)£ 0
(54)

Furthermore, the DCO is introduced to optimize the prob‐
lem (53). The problem is convexified as:
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min ( )Fv (x)+∑
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ρv δi

s.t.  fi (x)-[gi (xv )+ (Ñgi (xv ))T (x - xv )]£ δi

      δi ³ 0

(55)

DCO iteratively updates the linearized base point and 
solves the updated problem to look for a high-quality solu‐
tion. The algorithm converges when the optimization results 
of the two steps are close enough [39], [40]. Please see Algo‐
rithm 1 for the detailed steps of the DCO.

Fv -Fv + 1 £ ε1 Fv + 1 (56)

max
i
δi £ ε2 (57)

Partial relaxation rule: in this paper, a partial relaxation 
rule is incorporated into the DCO to accelerate the conver‐
gence of the algorithm. To be specific, it is found that the 
decision variables in nonlinear constraints in the power sys‐
tem ("iÎP) have large impacts on the objective function. 
As a result, it usually requires many iterations in DCO for 
the relaxed variables δi to converge to 0. Therefore, we let 
the relaxed variables in nonlinear power flow constraints to 
be strictly equal to 0, and these constraints hold strictly dur‐
ing the iteration process to speed up the convergence. As for 
the nonlinear gas flow constraints ("iÎG), the decision vari‐
ables have minor impacts on the objective function, and 
meanwhile, it is difficult to find an initial feasible solution. 
Thus, there is no need to let the relaxed variable to be 0 for 
nonlinear gas flow constraints.

B. Initialization

For the nonlinear constraints in the power system 
("iÎP), the initial point must be a feasible solution. Note 
that if the initial solution is feasible, the iteration will also 
be feasible for the convexification when letting the relaxed 
variable be 0 [38].

Firstly, the nonlinear constraints (18), (22), and (29) are 
linearized using the extreme scenarios as:
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k
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-
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Algorithm 1: DCO for the non-convex problem

Step 1: initialization: given an initial solution x0, let the iteration step v = 0

Step 2: convexification: convexify the nonlinear constraint by (54), and 
solve the convex problem

Step 3: stop when the following conditions (56) and (57) hold or the maxi‐
mum iteration step limit is reached; otherwise, update ρv + 1 =
min(kc ρvρmax ), v = v + 1, and go to Step 2.
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Secondly, we ignore the non-convex constraint (52) of the 
natural gas system and optimize the baseline cost and the al‐
lowable upward wind power fluctuations, as shown in (61), 
such that the problem to obtain the initial values of the vari‐
ables involved in DC constraints is convex.
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C.　Sequential Optimization Framework

The sign variables σtws in the objective function of the 
SSRO also bring challenges for solving the problem and 
need to be determined in advance. In order to deal with the 
non-convex constraints and the sign variables together, we 
propose a two-step sequential optimization framework for re‐
al-time dispatch, as shown in Fig. 2, and the detailed steps 
are described as below.

Step 1: ignore the P2G adjustment for the wind power 
fluctuations and solve the stochastic robust dispatch model 
to obtain the sign variables σtws. The process is divided into 
two sub-steps. In each sub-step, let β -

jtβ
+
jt-S jt

-
S jt be 0.

1) Solve the traditional real-time robust dispatch without 
the P2G adjustment. To be specific, optimize the objective 

function (61) with system constraints, where nonlinear con‐
straints (18), (22), (29) are replaced by (57)-(60) for the ini‐
tial solution (denoted as Problem 1 - a0). Then, use the re‐
sults of Problem 1 - a0 as the initial solution, and optimize 
the objective function (61) with the original DC constraints 
(18), (22), (29) (denoted as Problem 1 - a) to obtain the ap‐
proximated allowable upward wind power fluctuations 

-
π͂ t.

2) Solve the stochastic robust dispatch model without the 
P2G adjustment. Here, the uncertainty set is divided into 
two segments, i.e., πt £ 0 and πt > 0. Compare 

-
π͂ t in Problem 

1 - a with the estimate points π̂tw, and the sign variables of 
each estimate point can be obtained. Then, with the solution 
from Problem 1 - a as the initial point, solve the SSRO with‐
out the P2G adjustment (denoted as Problem 1 - b).

Step 2: solve the stochastic robust dispatch model with the 
P2G adjustment (denoted as Problem 2). Based on the re‐
sults x** of Problem 1 - b, the approximated allowable wind 

power boundaries can be calculated by -π͂
p2g*
t =max ( -π t  

)-∑
j

P p2g**
jt , 

-
π͂

agc*
t = -

π͂
**
t , 

-
π͂

*
t =

-
π͂

**
t . Compare these boundary 

values with the estimate points (π̂tw), and the final signal 
variable σtws of each estimate point can be obtained. Then, 
with the solution from Problem 1 - b as the initial point, 
solve the SSRO with adjustment of AGC units and P2Gs for 
wind power fluctuations.

It should be noted that since constraint (52) only changes 
the gas flow distribution in the natural gas system, while has 
minor impacts on the power outputs of units and power in‐
put of P2Gs in the power system. Thus, the constraint (52) 
can be ignored in Step 1 to accelerate the solving process. In 
addition, when 

-
π͂ t obtained in Problem 1 - a0 is less than 0, 

the wind uncertainty set is divided into two segments, i. e., 

ξt0 = -π tξt1 =
-
π͂

agc
t ξt2 =

-
π͂ t, and the objective function and 

constraints in the SSRO need to be updated accordingly.

V. CASE STUDY: A SMALL-SCALE SYSTEM

This section conducts the simulation studies on a PGIS, 
which combines an IEEE 39-bus system and a Belgian 20-
bus natural gas system, as shown in Fig. 3. The IEEE 39-
bus system contains five AGC units, three non-AGC units, 
and four wind farms, where two wind farms have each in‐
stalled a P2G device of 60 MW. The cost and operation pa‐
rameters of the coal-fired units, gas turbines, P2Gs, and gas 
sources are given from Tables I-IV. The natural gas system 
contains two gas sources. The two systems are coupled by 
three gas turbines and two P2Gs. The wind power is as‐
sumed to satisfy the Gaussian distribution. The dispatch time 
period is from 06:00 p.m. to 07:00 p.m.. To verify the effec‐
tiveness of the proposed method, we generate 5000 stochas‐
tic scenarios based on Monte Carlo simulation (MCS) to test 
the optimized results. The models are solved by CPLEX 
solver on a computer with an Intel(R) Xeon(R) Silver 4216 
CPU and 16 GB RAM.

 

Determine the final signal variables σt,w,s

Step 1: stochastic robust dispatch

ignoring P2G adjustment

Problem

1�a0

Objective: baseline cost and wind power

    penalty, as shown in (61)

Constraints: replace the original nonconvex

    constraints (18), (22), (29) with conservative

    convex constraints (57)-(60)

Initialization for DC constraints (18), (22), (29)

Problem

1�a

Objective: baseline cost and wind power

    penalty, as shown in (61)

Constraints: the original nonconvex system

    constraints.

πt
~

πt
~

and initialization for DC constraints (18), (22), (29)

Problem

1�b

Objective: expected cost under empirical

    wind distribution, as shown in (43)

Constraints: the original nonconvex system

    constraints

and initialization for DC constraints (18), (22), (29)

Step 2: stochastic robust dispatch with P2G adjustment

Objective: expected cost under empirical wind

    distribution, as shown in (43)

Constraints: the original nonconvex system

    constraints

Problem

2

Fig. 2.　Two-step sequential optimization framework for real-time dispatch.
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A.　Effects of P2G Participation in AGC Service

Figures 4 and 5 show the baseline power and downward/
upward fluctuations (DF/UF) of wind power undertaken by 
the gas turbines among AGC units and the P2Gs. The results 
show the gas turbines operate at the lowest power due to 
their high generation cost.

As a result, they only undertake the DF adjustment since 
there is no room for a downward adjustment of the gas tur‐
bines. The baseline power of P2Gs is zero in this case be‐
cause their operation costs are comparatively high, and the 
wind power is not redundant during this time period. Mean‐
while, P2Gs undertake a large amount of UF adjustment 
tasks since the adjustment capability from AGC units is in‐
sufficient in this case. The results also verify the necessity to 

TABLE I
PARAMETERS OF COAL-FIRED UNITS

Unit

C1

C2

C3

C4

C5

AGC

No

Yes

No

Yes

No

a ($/
(MWh)2)

0.0069

0.0098

0.0055

0.0062

0.0074

b ($/
MWh)

30.915

32.342

30.070

32.100

32.271

c($)

1352

1519

1353

1984

2224

-
P 

(MW)

455.2

507.5

480.9

605.5

770.0

-P 
(MW)

135.7

152.3

144.3

181.7

231.0

r+ /r- (MW 
per 5 min)

45.5

50.8

48.1

60.6

77.0

TABLE II
PARAMETERS OF GAS TURBINES

Unit

G1

G2

G3

AGC

Yes

Yes

Yes

ηgt (%)

40

40

40

-
P (MW)

509.6

284.2

276.3

-P (MW)

135.6

231.0

118.4

r+ /r- (MW per 5 min)

152.8

85.2

82.9

TABLE III
PARAMETERS OF P2GS

P2G

P2G1

P2G2

-
P

p2g
 (MW)

50

50

ηp2g (%)

60

60

pp2g ($/m3)

0.03

0.03

TABLE IV
PARAMETERS OF GAS SOURCES

Gas source

S1

S2

-
q s (m3/s)

30.79

35.90

q̄s (m3/s)

133.29

104.23

ps ($/m3)

0.3

0.3
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Fig. 4.　Baseline power and wind power fluctuations undertaken by gas tur‐
bines among AGC units.
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Fig. 3.　Diagram of PGIS.
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Fig. 5.　Baseline power and wind power fluctuations undertaken by P2Gs.
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involve the gas uncertainty issues in the security constraints 
of PGIS due to their highly volatile and uncertain operations 
caused by the wind power uncertainty.

Table V compares the optimization and MCS results with 
and without participation of P2G in AGC service. The re‐
sults show that participation of P2G in the AGC service has 
overwhelming superiority in integrating uncertain wind pow‐
er, and the allowable upward wind power fluctuation increas‐
es significantly from 1274.8 MW to 1918.7 MW. Mean‐
while, the results show that the participation of P2G in the 
AGC also reduces the operation cost. The costs in MCS are 
close to the SSRO results, which validates the effectiveness 
of the multi-point estimate of the empirical distribution.

B.　Effects of Segmented Optimization

Table VI compares the optimization and MCS results of 
segmented and non-segmented methods. The segmented 
method illustrates the advantage of using fewer P2Gs. Com‐
pared with the non-segmented method in which AGC units 
and P2Gs respond simultaneously to the wind power fluctua‐
tions, the segmented method makes less use of the P2Gs, 
and their power consumption decreases largely from 71.8 
MW to 14.0 MW compared with the non-segmented method. 
Accordingly, the adjustment cost of the segmented method is 
lower, which shows better economics. Meanwhile, the wind 
curtailment of the segmented method is less than the non-
segmented method, indicating that the segmented method 
will not decrease wind power integration.

Figure 6 shows the adjustment tasks undertaken by differ‐
ent AGC resources in SSRO. The results show that the UFs 
of wind power are undertaken by both the P2Gs and AGC 
units. Meanwhile, the AGC units undertake the UF at first, 
and P2Gs undertake the UF when the uncertainty is compara‐
tively large. As for the DFs of wind power, they are all un‐
dertaken by the AGC units in this case. The reason for this 
result is that the baseline power of P2Gs is zero, and thus 

they have no more capability to undertake the adjustment 
task to cope with DFs of wind power.

C.　Comparison of Different Robust Methods

To verify the effectiveness of the proposed SSRO method, 
this subsection compares SSRO with CRO [16] and DRO 
[41]. Note that the segmented linear decision rule is applied 
in all three methods for a fair comparison, thus the CRO 
and DRO are actually upgraded to segmented CRO and seg‐
mented DRO (SCRO and SDRO). The differences between 
the above methods are: SCRO optimizes the baseline cost, 
SDRO optimizes the expected cost of extreme distributions, 
and the proposed SSRO optimizes the expected cost under 
empirical distribution. The system security constraints of 
these three robust methods are the same. Table VII compares 
the optimization and MCS results of the three methods. The 
simulation is conducted with partial relaxation-based DCO. 
The results with original capacity of 1.00 show that SCRO 
is the most conservative method, which does not curtail 
wind power. However, integrating all the wind power is at 
the expense of the highest total cost in MCS. Because 
SCRO optimizes the baseline cost and ignores the adjust‐
ment cost, this increases the actual total cost in MCS. As for 
SDRO and SSRO, they optimize the expected cost and save 
the total cost with a small amount of wind power curtail‐
ment. Compared with SSRO, SDRO minimizes the expected 
cost under extreme distribution, and thus its cost is higher, 
especially when the actual distribution is closer to the empiri‐
cal distribution rather than the extreme distribution. To test 
the performance when the AGC resources are insufficient, 
the adjustment capability, i.e., the ramping rate of the AGC 
units and the conversion capacity of the P2Gs, is reduced to 
75% of the original data. The results show that wind curtail‐
ment is inevitable when the AGC resources are inadequate. 
With limited adjustment capability, the proposed SSRO can 
still save the total cost. Meanwhile, the computation time is 
the shortest with SSRO.

D.　Impacts of Number of Estimate Points

In the multi-point estimate method, the number of esti‐
mate points directly affects the optimization results and the 
computation time. Therefore, this subsection compares the re‐
sults of different numbers of estimate point. The number of 
the estimate points is usually selected as an odd number 
such as 3, 5, and 7 (N ³ 3). 

TABLE V
OPTIMIZATION AND MCS RESULTS WITH AND WITHOUT PARTICIPATION OF 

P2G PARTICIPATION IN AGC SERVICE

System

Without P2G

With P2G

Optimized result

-
π͂ (MW)

1274.82

1918.70

Objec‐
tive ($)

229363

229281

MCS result

Wind curtail‐
ment cost ($)

52.000

0.449

Adjustment 
cost ($)

378

355

Total 
cost ($)

229389

229309

TABLE VI
OPTIMIZATION AND MCS RESULTS WITH NON-SEGMENTED AND 

SEGMENTED METHODS

Method

Non-segmented

Segmented

Opti‐
mized re‐
sult ($)

229399

229281

MCS result

Wind cur‐
tailment 
cost ($)

2.22

4.49

P2G in‐
put (MW)

71.82

13.97

Adjust‐
ment 

cost ($)

472

355

Total 
cost ($)

229432

229309
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Fig. 6.　Adjustment tasks undertaken by different AGC resources in SSRO.
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Figure 7 shows that the allowable upper bound of wind 
power fluctuations with 3-point estimate is lower than the 
others. It is because the maximum CDF of 3-point estimate 
is 95.84%, which can hardly cover the wind power fluctua‐
tions. In contrast, the upper bounds with the 5-point and 7-
point estimate are higher, while the 7-point estimate nearly 
reaches the forecast one since it covers 99.99% of the wind 
power fluctuations.

Table VIII compares the optimization results with differ‐
ent numbers of estimate points.

Overall, the MCS costs of 5-point and 7-point estimate 
are closer to the optimized results, showing that more esti‐
mate points will lead to a more precise estimation. Note that 
the computation time increases along with the increase of 
the estimate numbers, but such an increase is acceptable. 
Therefore, we select 7-point estimate to formulate the expect‐
ed cost objective in this paper.

E.　Computation Performances

In this subsection, the partial relaxation-based DCO is 
compared with the original complete relaxation-based meth‐
od. We also compare the results with some other methods, 
including the piecewise linearization method [42] and the di‐
rect NLP method [43]. The piecewise linearization method 
transforms the non-convex problem into MIQCP by adding 
integer variables, while NLP method directly uses the nonlin‐
ear solving algorithms. Table IX compares the results of the 
MIQCP, NLP, partial relaxation-based DCO, and complete 
relaxation-based DCO. The results show that the MIQCP 
cannot converge within the time limit, in which the added in‐
teger variables obviously slow down on the solving process.

Compared with the DCOs, the optimal cost of the direct 
NLP is larger, and the computation time is much longer. By 
comparing the partial and complete relaxation-based DCO 
methods, it can be observed that the partial relaxation-based 
DCO method significantly saves computation time and itera‐
tive times. The reason is that the non-convex constraints in 
the power system have large influences on the objective val‐
ues. When completely relaxing the non-convex constraints, 
the algorithm needs to search outside the feasible region for 
many times to enter the feasible region. To sum up, the par‐
tial relaxation-based DCO illustrates the the best perfor‐
mance among the four methods.

VI. CASE STUDY: A LARGE-SCALE SYSTEM

To further verify the effectiveness of the proposed model, 
we conduct a simulation on a large-scale PGIS, which com‐
bines the IEEE 118-bus power system [44] and a 40-bus nat‐
ural gas system. The IEEE 118-bus system contains 12 AGC 
units, 7 non-AGC units, and 6 wind farms, where 4 wind 
farms have each installed a P2G device of 40 MW. The natu‐
ral gas system is composed of two Belgian 20-bus natural 
gas systems and contains 4 gas sources. The power and gas 
systems are coupled by 8 gas turbines and 4 P2G devices. 
Table X compares the optimization and MCS results of the 
SSRO, SCRO, and SDRO in the large-scale system. In gen‐
eral, the results of the large-scale system are overall consis‐
tent with the ones of the small-scale system. In detail, 
SCRO only optimizes the baseline cost and integrates the 

TABLE VII
OPTIMIZATION AND MCS RESULTS OF ROBUST STRATEGIES IN 

ILLUSTRATIVE CASE

Capac‐
ity

1.00

0.75

Strate‐
gy

SCRO

SDRO

SSRO

SCRO

SDRO

SSRO

Optimization result

Cost ($)

230875

230718

229281

232185

230510

229304

Time 
(s)

75

88

46

161

94

34

MCS result

Wind curtail‐
ment cost ($)

0

0.211

0.449

0.680

2.360

3.200

Adjustment 
cost ($)

190

258

355

-197

346

404

Total 
cost ($)

231065

230586

229309

231989

230055

229362

TABLE IX
COMPARISON OF DIFFERENT OPTIMIZATION METHODS

Capacity

1.00

0.75

Method

MIQCP

NLP

DCO (complete)

DCO (partial)

MIQCP

NLP

DCO (complete)

DCO (partial)

Optimized 
objective ($)

Non-conver‐
gence

231261

232791

229281

Non-conver‐
gence

231314

232578

229304

Iteration

Non-conver‐
gence

1

50

11

Non-conver‐
gence

1

50

7

Time (s)

Non-con‐
vergence

319

213

31

Non-con‐
vergence

416

208

17

TABLE VIII
OPTIMIZATION AND MCS RESULTS WITH DIFFERENT NUMBERS OF 

ESTIMATE POINTS

N

3

5

7

Optimization result

Objective ($)

229218

229246

229281

Time 
(s)

39

39

46

MCS result

Wind curtail‐
ment cost ($)

41.000

0.953

0.449

Adjustment 
cost ($)

365

352

355

Total 
cost ($)

229359

229307

229309
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Fig. 7.　Allowable upper bound of wind power fluctuation with different 
numbers of estimate points.
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wind power as much as possible, thus leading to the highest 
cost. SDRO and SSRO optimize the expected cost and save 
the total cost with a little amount of wind curtailment. Fur‐
thermore, when the actual distribution is closer to the empiri‐
cal distribution, SSRO shows better performance compared 
with the SDRO.

VII. CONCLUSION

This paper proposes a segmented real-time dispatch model 
for PGIS to cooperate the traditional AGC units and P2Gs 
based on the segmented linear decision rule. Meanwhile, SS‐
RO is proposed to address the wind power uncertainty in re‐
al-time dispatch, and a partial relaxation-based DCO method 
is developed to solve the proposed model. The participation 
of the P2Gs in the AGC service enhances the system capabil‐
ity to address the wind power uncertainty and increases 
wind power integration. The segmented linear decision rule 
assigns the adjustment task differently when wind power un‐
certainty falls into different segments, which reduces the to‐
tal cost through better cooperation between traditional AGC 
units and P2Gs. Out-of-sample analysis in a testing system 
verifies the higher cost efficiency and better computation per‐
formance of the proposed SSRO compared to the convention‐
al robust methods. Besides, the developed partial relaxation-
based DCO illustrates faster convergence compared with oth‐
er methods.

It should be noted that the proposed SSRO is based on 
the empirical distribution, which is a fitting distribution de‐
veloped from historical data. When sufficient historical data 
are available and a well-done fitting method is applied, the 
fitted empirical distribution could probably be very close to 
the actual probability distribution. In such cases, SSRO will 
illustrate superior performance. However, SSRO can hardly 
guarantee good performance when the fitted empirical distri‐
bution is far away from the actual distribution. A promising 
way to address this problem may be to combine the empiri‐
cal distribution in SSRO and the extreme distribution in 
SDRO to balance the economic efficiency and robustness of 
the real-time dispatch, which will be conducted in our future 
work.
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