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Distributed Real-time Optimal Power Flow 
Strategy for DC Microgrid Under Stochastic 

Communication Networks
Jian Hu and Hao Ma

Abstract——This paper addresses a distributed real-time opti‐
mal power flow (RTOPF) strategy for DC microgrids. In this 
paper, we focus on the scenarios where local information shar‐
ing is conducted in stochastic communication networks subject 
to random failures. Most existing real-time optimal power flow 
(OPF) algorithms for the DC microgrid require all controllers 
to work in concert with a fixed network topology to maintain a 
zero gap between estimated global constraint violations. Thus, 
the high reliability of communication is required to ensure their 
convergence. To address this issue, the proposed RTOPF strate‐
gy tolerates stochastic communication failures and can seek the 
optimum with a constant step size considering the operation 
limitations of the microgrid. These aspects make the strategy 
suitable for real-time optimization, particularly when the com‐
munication is not reliable. In addition, this strategy does not re‐
quire information from non-dispatchable devices, thereby reduc‐
ing the number of sensors and controllers in the system. The 
convergence of the proposed strategy and the optimal equilibri‐
um points are theoretically proven. Finally, simulations of a 30-
bus DC microgrid are performed to validate the effectiveness of 
the proposed designs.

Index Terms——DC microgrid, distributed optimization, sto‐
chastic communication network, consensus algorithm.

I. INTRODUCTION 

MICROGRIDS are generally categorized into AC and 
DC systems. The DC microgrids are more friendly to 

some devices such as photovoltaic (PV) panels, batteries, 
and electric vehicles because they are inherently DC devices. 
Thus, the DC microgrids can reduce the conversion process, 
which improves the efficiency and reliability. In addition, 
the DC microgrids are free of frequency regulation, reactive 
power control, or AC related power quality problems [1], 
which results in less complex control systems. The hierarchi‐
cal control is frequently utilized in DC microgrids [2], [3]. 
The most popular solution of the primary control is droop 

control [4], where load sharing is mainly determined by the 
droop coefficient. The secondary control is utilized to elimi‐
nate the voltage deviation and achieve perfect power sharing 
through centralized [5] or distributed [6], [7] methods. The 
tertiary control aims to achieve the optimal operation point 
by controlling the power flow among distribution systems 
[8]. Traditionally, the secondary control and tertiary control 
are implemented in a centralized manner [9]. However, these 
solutions encounter considerable challenges in large systems, 
including single-point failures, heavy communication burden, 
and slow dynamic processes [10]. Therefore, self-organizing 
distributed approaches, where no control center is required, 
have recently been used to develop scalable and robust algo‐
rithms [11]-[13].

Several algorithms combining real-time coordination and 
steady-state optimization are developed for both AC systems 
[14], [15] and DC systems [16]-[22] to enhance the system 
performances. These studies are inspiring because they can 
achieve optimal power flow (OPF) in real-time scenarios. In 
[16] and [17], the OPF condition is reached by utilizing con‐
sensus algorithms to ensure the incremental costs of differ‐
ent converters to be identical. In [18], a sub-gradient method 
is combined with a consensus approach to enhance the con‐
vergence performance of the system. In [19], the OPF prob‐
lem of a stand-alone DC microgrid is formulated as an exact 
second-order cone program and solved through the primal-
dual decomposition in a distributed manner. In [21], the gen‐
eration cost minimization and individual bus voltage regula‐
tion are obtained in a DC microgrid using a consensus algo‐
rithm. In [22] and [23], an event-trigger control algorithm is 
utilized to reduce the communication burden of the system. 
However, [23] focuses on the current sharing and voltage 
regulation, and it cannot achieve the OPF condition.

However, the aforementioned algorithms assume that the 
communication is ideal, which is not always true. They are 
vulnerable to some random failures that result in time-vary‐
ing communication topologies. In addition, the convergence 
and accuracy of these algorithms would be affected by non-
ideal communication, as they require static network topolo‐
gies. To the best of our knowledge, only a few studies have 
been devoted to the online optimization of DC microgrids 
with non-ideal communication. The effects of communica‐
tion delay are considered in [24] and [25]. In [26], the eco‐
nomic power dispatch (EPD) problem is discussed through a 
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dynamic communication topology. However, this requires 
the step size of the system to be diminished, which limits its 
application in real-time control. Reference [27] solves the 
EPD problem under uncertainties but its results are limited 
to static communication topologies, making it inapplicable to 
time-varying communication topologies. In [28], the package 
loss of communication is considered and analyzed. In [29], 
the EPD problem is solved using a gossip algorithm. Howev‐
er, only one communication link can transmit information at 
each iteration, which limits the convergence speed of the al‐
gorithm.

After a careful review of recent literature, we found that 
the studies that focus on online operations have not consid‐
ered the communication failures [16]-[23]. In fact, online al‐
gorithms are more sensitive to the communication failures 
because retransmission is complicated, and this process sub‐
stantially increases the transmission time. Besides, algo‐
rithms that consider the communication failures [26] - [29] 
have their own limitations. First, these algorithms need to it‐
erate on all variables in the cyber layer until the conver‐
gence is reached before the solution is applied to the power 
system. In general, intermediate results do not satisfy the 
power flow equations or operation constraints. As a result, 
these algorithms cannot be directly applied to real-time sys‐
tems. Second, these algorithms require information from all 
devices including non-dispatchable devices, e.g., fixed loads, 
PV panels, and wind turbines, which are not always practi‐
cal or economical, as the number of non-dispatchable devic‐
es is much greater than that of dispatchable ones.

The proposed algorithm is a real-time OPF strategy for 
DC microgrids, which can work under stochastic communi‐
cation networks. It is particularly suitable for scenarios 
where the online optimization is required and the communi‐
cation topology is time-varying. The proposed algorithm 
tracks the bus voltage and the current injection of a dispatch‐
able device to calculate their references under a non-ideal 
communication network. It tends to be robust under uncer‐
tainties and disturbances due to the fluctuating loads and vol‐
atile renewables. In addition, the proposed algorithm can op‐
erate in communication networks with random failures and 
stochastic topologies, which greatly enhances its reliability 
in real-time scenarios. Furthermore, the communication with 
non-dispatchable devices, e.g., fixed loads and renewable en‐
ergy resources, is not required, as this information can be ob‐
tained by local measurement using dispatchable devices. The 
convergence and optimality of the proposed algorithm are 
proven in this paper.

The main contributions of this paper are listed as follows.
1) The proposed algorithm can work in communication 

networks with random failures and stochastic topologies, and 
its utility can be enhanced when the communication is less 
reliable. This is a distinctive feature, which is not observed 
in most existing real-time algorithms.

2) The proposed algorithm can work under dynamic com‐
munications, which further enhances its reliability.

3) The proposed algorithm is fully distributed, and only 
the communications with neighbors are needed. In addition, 
the information of non-dispatchable devices such as PV or 

fixed loads is not required. These aspects significantly re‐
duce the number of sensors and controllers.

The remainder of this paper is organized as follows. In 
Section II, we formulate the model of stochastic communica‐
tion network and OPF problem. Section III introduces the 
proposed RTOPF strategy. In Section IV, case studies are pre‐
sented to verify the accuracy, dynamic performance, robust‐
ness to communication failure and delay, and the plug-and-
play features of the proposed algorithm. Finally, the conclu‐
sion and future work are given in Section V.

II. MODEL OF STOCHASTIC COMMUNICATION NETWORK 
AND OPF PROBLEM 

A. Model of Stochastic Communication Network

The communications between controllers may be unreli‐
able due to errors or failures. In this study, controllers com‐
municate with each other through a stochastic communica‐
tion network described by graph G = (VE), where each ver‐
tex iÎV denotes a controller; each edge eijÎ E denotes a 
communication link with positive weight wij; N is the num‐
ber of elements in V; and Ni ={ j|eijÎ E} denotes the neigh‐
bors of controller i. In the proposed algorithm, the random  
communication failures are considered. At each time interval 
of the algorithm, the communication link eij is active or inac‐
tive with probability pij or 1 - pij. The weight matrix Wk is 
used to define the behavior of communication at time inter‐
val k, whose element wij (k) is expressed as:

wij (k)=

ì

í

î

ï
ïï
ï

ï
ïï
ï

lij (ij)ÎR(k)

0 (ij)ÏR(k)

1 -∑
i ¹ j

wij (k) i = j
(1)

where R(k) is the set of active communication links at time 
interval k; and lij is the communication weight between two 
nodes.

In this paper, the following assumption on Wk is made.
Assumption 1: the weight matrix Wk is drawn independent 

identically distributed (i. i. d) from probability space F such 
that each Wk fulfills (2) and (3).

ì
í
î

1TWk = 1T

Wk1 = 1
(2)

0 < ρ(E(Wk
TWk - J))< 1 (3)

where 1 is the vector containing all ones; and J = 11T /N rep‐
resents the average matrix, which ensures that all elements 
of a vector are equal to their average value; and ρ(×) and E(×) 
are the spectral radius and expected value, respectively.

Remark 1: this assumption can be easily fulfilled by ap‐
propriate tuning of lij. Equation (2) will hold if the two-way 
communication is utilized, which means lij = lji. Equation (3) 
will hold if lij = 1/(max(Ni )+ 1), where Ni is the number of el‐
ements in Ni.

B. OPF Problem Formulation

Two main objectives need to be addressed with respect to 
a DC microgrid. One is how to efficiently dispatch the ener‐
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gy from distributed generators (DGs) to meet the demands 
of all loads economically. The other one is to maintain desir‐
able voltage profiles. Considering a DC microgrid consisting 
of N DGs, to accommodate the two objectives, a multi-objec‐
tive optimization goal is set as:

min
viii

J = α∑
i = 1

N

(ai P
2
i + bi Pi + ci )+ β∑

i = 1

N

(vi - vnom )2 (4)

Pi = viii (5)

where ai, bi, and ci are the generation cost coefficients; vi 
and ii are the bus voltage and current injection, respectively; 
Pi is the power output of each bus; vnom is the nominal volt‐
age of the system; and the positive parameters α and β are 
the trade-off weight coefficients balancing the two objec‐
tives. In practice, these parameters are selected based on the 
specific requirements. If the cost is more important, α would 
be increased. The result is that more emphasis would be 
placed on the economic aspects of the solution. By contrast, 
β would be increased if the voltage deviation is more impor‐
tant.

Because of the existence of the bi-linear term (5), the orig‐
inal problem in (4) and (5) is non-convex and it cannot be 
efficiently solved [30]. Notice that the voltage of the convert‐
er is strictly limited by operation limitations, and the voltage 
deviation can be ignored when calculating Pi [16], [21], 
[31]. Combining (4) and (5) by replacing vi with vnom yields 
a simplified convex problem as:

min
viii

J = α∑
i = 1

N

(a'ii
2
i + b'iii + ci )+ β∑

i = 1

N

(vi - vnom )2 (6)

where a'i = aiv
2
nom and b'i = bivnom. Based on Ohm’s law, the 

bus voltage and current injections are related to the conduc‐
tance matrix:

é
ë
êêêê ù

û
úúúúI

IF

= é
ë
êêêê ù

û
úúúúGDD GDF

GFD GFF

é
ë
êêêê ù

û
úúúúV

VF

(7)

where V, VF and I, IF are the vectors of the bus voltages 
and current injections connected to dispatchable and non-dis‐
patchable devices, respectively; and GDD, GDF, GFD, and GFF 
are the conductance matrices that represent the relationships 
between bus voltages and current outputs. Then, I is solved 
as:

I = (GDD -GDFG -1
FFGFD )V +GDFG -1

FF IF (8)

Three constraints in (9)- (11) are considered in the opera‐
tion. Formulas (9) and (10) are the voltage and current con‐
straints, and (11) represents the physical limitation of the re‐
al-time operation.

-v £ vi £ v̄        i = 12...N (9)

-i i £ ii £
-
i i        i = 12...N (10)

I =GV +F (11)

where -v, v̄ and -i i, 
-
i i are the lower and upper bounds of the 

bus voltage and current injection, respectively; and G =GDD -
GDFG -1

FFGFD and F =GDFG -1
FF IF are the constant matrices de‐

termined by conductance matrices and non-dispatchable de‐
vices, respectively.

An assumption is made regarding the OPF problem:

Assumption 2 (Slater’s condition): V and I exist such that 
constraints (9)-(11) hold [32]. In other words, the OPF prob‐
lem is feasible.

III. RTOPF STRATEGY 

The proposed algorithm has a hierarchical structure, as 
shown in Fig. 1.

The primary control level uses droop control to maintain 
the power balance of the system:

vi = vi,ref -mi (ii - ii,ref )    i = 12...N (12)

where vi,ref and ii,ref are the reference bus voltage and current 
injection, respectively; and mi is the droop coefficient. No 
communication is required at this level. Thus, the power bal‐
ance of the system can be obtained in real time. The goal of 
the secondary control is to solve the constrained optimiza‐
tion problem in a distributed manner to determine the refer‐
ence values vi,ref and ii,ref. The voltage vector V and current 
vector I fulfill the operation relationship in (11), because 
they are real-time physical values measured by the control‐
lers.

Combining (11) and (12) yields:

I =AVref +BIref +C (13)

where Vref and Iref are the vectors of reference voltage and 
current, respectively; and A = (E +GM)-1G, B = (E +
GM)-1GM, and C = (E +GM)-1 F are the constant matrices 
determined by system parameters, M = diag{mi }, and E is 
the N-order identity matrix.

Note that if ii,ref = ii, we have vi = vi,ref based on (13). There‐
fore, (11) can be replaced with (14).

I = Iref (14)

The dual method [33] is applied to develop a distributed 
iterative approach, in which vi,ref and ii,ref are moved in the di‐
rection of minimizing the dual function. The dual function 
ϕ(λ) is defined as:

ϕ(λ)= inf
VrefÎV IrefÎ I L(VrefIrefλ)= inf

VrefÎVIrefÎ I
ì
í
î
J(VrefIref )+∑

i = 1

N

(λi )T ×

é
ë
êêêê ù

û
úúúúA iviref + (B i -Ei )iiref +

C
N

ü
ý
þ

(15)
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Fig. 1.　Control diagram of proposed algorithm.
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where V ={vi,ref|-v £ vi,ref £ v̄} and I ={ii,ref| -i i £ ii,ref £
-
i i } are the 

feasible regions of Vref and Iref to fulfill constraints (9) and 
(10), respectively; λi is the local estimation of dual vector re‐
lated to constraint (14), and λ =[λ1λ2λN ]T is the matrix 
consist of estimations in each controller; and Ai, Bi, and Ei 
are the ith columns of A, B, and E, respectively. As Salter’s 
condition (Assumption 2) holds, strong duality is achieved 
[34]. Therefore, the optimization problem in (6) is equiva‐
lent to (16).

ì

í

î

ïïïï

ïïïï

max ϕ(λ)

s.t.  λi = λj

    "ij ={12...N}
(16)

In addition, vi,ref and ii,ref can be solved analytically as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

vi,ref =
é

ë
êêêê

ù

û
úúúúvnom -

(λi )T A i

2β

v̄

-v

ii,ref =
é

ë
êêêê

ù

û
úúúú-

2αbi + (λi )T (B i -Ei )
2αai

-
ii

-i i

(17)

where the projection function [x]b
a =max(amin(xb)) is de‐

fined to limit vi,ref and ii,ref within the feasible region.
Based on Lemma 1 presented in [34], the gradient of ϕ(λ) 

is defined as:

Ñϕ(λ)=AVm + (B -E)Im +
1
N

C1T (18)

where Vm = diag{v1refv2refvNref } and Im = diag{i1refi2ref 
iNref }. It is impossible to calculate the gradient Ñϕ(λ) 
without communication as it requires the information of the 
entire system. However, the current imbalance g(λ)= I - Iref 
can be directly measured by each converter, which provides 
the information gradient Ñϕ(λ). Combining (12) and (16) 
yields:

gi (λ)= ii - ii,ref =∑
j = 1

N ¶ϕ(λ)
¶λj

i

(19)

where gi (λ) and λj
i are the ith elements of g(λ) and λj, respec‐

tively.
The pseudocode of the OPF algorithm is shown in Algo‐

rithm 1. In the algorithm, we define yi as the local estima‐
tion of g for controller i; y =[y1y2yn ]T is the status ma‐
trix of the entire system. In addition, yi

j is the jth element of 
vector yi; si and qi are the temporary variable vectors ex‐
changed between converters; and γ is the step size of the sys‐
tem. 

In the initial stage, the initial values of the local variables 
λi, vi,ref, and ii,ref are constants. The current imbalance ii - ii,ref 
can be measured using a local controller, which is used to 
set yi. In this paper, the iteration k is only used to distin‐
guish the current and next iterations. In real-time operations, 
this variable is not recorded. The controller only requires the 
current status of the local variables, and the historical vari‐
ables would not be recorded. Any DG connected to the mi‐
crogrid initializes its local variables based on constants and 
local measurements. It can then be introduced into the algo‐
rithm. This implies that the plug-and-play capacity is not af‐
fected by the initialization stage of the proposed algorithm.

Remark 2: in the proposed algorithm, only the generator 
cost is considered. If other power management algorithms 
exist such as energy storage management algorithms, the 
controlled devices are considered non-dispatchable ones. 
This means that the proposed algorithm can work in parallel 
with other real-time power management algorithms.

Remark 3: in the proposed algorithm, a quadratic cost 
function is applied. If another convex function is applied as 
a cost function, Step 3 would become an optimal problem to 
solve vi,ref and ii,ref based on local variables. This problem 
can be solved using a local controller. However, a non-con‐
vex cost function cannot be applied because it makes the 
OPF problem non-convex.

The convergence and optimality of the proposed algorithm 
are then given in Theorem 1.

Theorem 1: assuming that Assumptions 1 and 2 hold, con‐
sider the sequences λ(k) and y(k) generated by the proposed 
algorithm. Let the vector 

-
λ (k)= Jλ(k) be an average matrix 

and λ͂(k)= λ(k)- -
λ (k) is the corresponding disagreement ma‐

trix. Then, a positive number γ* exists such that if γ £ γ*, we 

have lim
k®¥

λ͂(k)= 0 and lim
k®¥

 ϕ(λ(k))= ϕ*, where ϕ* is the solu‐

tion to (16).
The proof of Theorem 1 is inspired by [35]. In [35], an 

unconstrained distributed optimization method is provided 
for stochastic communication networks. Thus, the original 
OPF problem is converted to a dual problem, which aims to 
solve the dual variable λ. A major obstacle is that ϕ(λ) is cou‐
pled between different agents, which differs from the as‐
sumption in [35]. To solve this problem, we use g(λ), which 
can be directly measured by each agent, to obtain the infor‐
mation about Ñϕ(λ).

The detailed proof is given in Appendix A.

Algorithm 1: secondary control level of OPF algorithm

Step 1: initialization. For each converter, set the iteration k = 0, λi (0)= 0;     
    initialize vi,ref (0)= vnom and ii,ref (0)=-bi /(2ai ); measure the local current  
    imbalance gi (λ(0))= ii (0)- ii,ref (0); and set yi

i (0)=Ngi (λ(0)), while other  
    elements of yi are initialized to be 0.
Step 2: local optimization of λi. For controller i, compute:

 
ì

í

î

ïïïï

ïïïï

si (k)= λi (k)- γyi (k)

λi (k + 1)= si (k)+ ∑
jÎNi

wij (k)(sj (k)- si (k))

Step 3: primary problem solution. Calculate primary variables vi,ref (k + 1)     
    and ii,ref (k + 1) by:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

vi,ref (k + 1)=
é

ë
ê
êê
ê ù

û
ú
úú
úvnom -

(λi (k))T Ai

2β

v̄

-v

ii,ref (k + 1)=
é

ë
ê
êê
ê ù

û
ú
úú
ú-

bi + (λi (k))T (Bi -Ei )
2αai

-
i i

-i i

Step 4: dynamic average consensus of yi. Measure the current imbalance    
    gi (λ(k + 1))= ii (k + 1)- ii,ref (k + 1) under new references vi,ref (k + 1) and      
     ii,ref (k + 1). Then, update yi (k + 1) with

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

qi
i (k)= yi

i (k)+N ( )gi (λ(k + 1))- gi (λ(k))

qi
j (k)= yi

j (k)  "j ¹ i

yi (k + 1)= qi (k)+ ∑
jÎNi

wij (k)(qj (k)- qi (k))

Step 5: set k: k + 1 and go to Step 2.

1588



HU et al.: DISTRIBUTED REAL-TIME OPTIMAL POWER FLOW STRATEGY FOR DC MICROGRID UNDER STOCHASTIC...

IV. CASE STUDY 

A. Test System

To validate the effectiveness of the proposed algorithm, a 
DC microgrid utilizing the skeleton of the IEEE 30-bus test 
feeder system is set, as shown in Fig. 2. We choose IEEE 
30-bus test system as the skeleton because it is a meshed 
grid that can verify our algorithm in a microgrid with 
meshed structure. The nominal voltage of the DC microgrid 
is set to be 1000 V within the ±5% deviation range. The line 
resistance values are listed in Table I.

The interval time of the secondary control is set to be 0.2 
s. In this paper, each communication link is assumed to be 
subject to random failure following a certain Bernoulli pro‐

cess. In other words, in each iteration, each communication 
link will be activated with a probability of p or deactivated 
with a probability of 1 - p. Thus, when p = 1, the simulation 
is retrograded to a fixed scenario. In this paper, p is set to 
be 0.5 in most scenarios except for a special statement.

Nine DGs are modeled as Capstone microturbines, which 
are connected to DC mircrogird via power electronic convert‐
ers. The proposed controller is also integrated in converters. 
The economic parameters of DGs are shown in Table II. 
Three PV plants are set to generate 100 kW power. We set 
the droop coefficient m = 1 and the step size γ = 0.03. The 
trade-off parameters are set as α = 1 and β = 0.01.

B. Accuracy Validation

To validate the accuracy of the proposed algorithm, the 
CVX tool [36] in MATLAB is used to solve the original 
problem given in (5). As shown in Table III, the optimal so‐
lutions of problem (5) solved by CVX, the steady-state bus 
voltages and output currents controlled by proposed algo‐
rithm, and the relative errors between the optimal solutions 
and the steady-state values are listed. It can be derived that 
relative error is less than 0.6%, which validates the accuracy 
of the proposed algorithm.

C. Dynamic Process

As in a time-varying environment, the available power of 
PVs fluctuates rapidly over time [37] - [39]. In this subsec‐
tion, the impact of the load change and PV fluctuation are 
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Fig. 2.　Test system for proposed algorithm.

TABLE I
LINE RESISTANCE VALUES

Line 
No.

1-2

3-4

4-6

6-8

9-11

12-13

12-16

15-18

10-20

10-22

22-24

25-26

27-29

8-28

Resistance 
(Ω)

0.06

0.04

0.04

0.04

0.21

0.14

0.20

0.22

0.21

0.15

0.18

0.38

0.42

0.20

Line 
No.

1-3

2-5

5-7

6-9

9-10

12-14

14-15

18-19

10-17

21-22

23-24

25-27

27-30

6-28

Resistance 
(Ω)

0.19

0.02

0.12

0.21

0.11

0.26

0.20

0.13

0.08

0.02

0.27

0.21

0.60

0.06

Line 
No.

2-4

2-6

6-7

6-10

4-12

12-15

16-17

19-20

10-21

15-23

24-25

28-27

29-30

Resistance 
(Ω)

0.17

0.18

0.08

0.56

0.26

0.13

0.19

0.07

0.07

0.20

0.33

0.40

0.45

TABLE III
ACCURACY COMPARISON

DG 
No.

DG1

DG2

DG3

DG4

DG5

DG6

DG7

DG8

DG9

CVX

Voltage (V)

992.1

995.9

995.3

1001.3

989.4

1003.7

983.4

996.6

1042.1

Current (A)

9.96

8.18

5.00

159.54

8.52

166.62

5.00

5.00

32.16

Proposed algorithm

Voltage (V)

992.1

995.9

995.3

1001.3

989.4

1003.7

983.4

996.6

1042.1

Current (A)

9.99

8.19

5.00

159.52

8.51

166.62

5.03

5.00

32.17

Relative error (%)

Voltage

0

0

0

0

0

0

0

0

0

Current

0.305

0.065

0.000

-0.016

0.077

-0.002

0.577

0.090

0.041

TABLE II
ECONOMIC PARAMETERS OF DGS

Model

Capstone 330
(high pressure)

Capstone 330
(liquid fuel)

Capstone C65

Capstone C200

DG No.

DG1

DG2, DG5

DG3, DG7, 
DG8

DG4, DG6, 
DG9

Economic parameter

ai

(¢/kW2h)

0.0248

0.0680

0.0045

0.0019

bi

(¢/kWh)

2.366

1.730

3.253

2.232

ci

(¢/h)

21.43

21.46

29.51

82.33

Imax

(A)

  28

  26

  65

200

Imin

(A)

5

5

5

5
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analyzed. In this scenario, the power of PV1 drops by 80% 
of the output power at a speed of 8 kW/s at t = 10 s. The 
power of PV1 recovers at the same speed at t = 60 s. These 
fluctuations resemble those reported in [37] - [39]. In addi‐
tion, a new load L = 70 kW connected to bus 3 begins to 
drain the power at t = 40 s. Dynamic output currents of DG1-
DG4 and dynamic bus voltages of DG7 and DG9 are shown 
in Fig. 3.

DG1-DG4 are four different types of generators for the 
output current; DG7 and DG9 have the maximum and mini‐
mum bus voltages, respectively. After the PV power drops, 
all DGs begin to increase the output power to maintain the 
power balance. Simultaneously, the secondary control also 
adjusts references ii,ref and vi,ref to find the new optimal work‐
ing point of the system. Finally, both the current injection 
and bus voltage converge to the optimal solution shortly af‐
ter the PV power stops decreasing. Similarly, when the PV 
power recovers, the DGs decrease their power outputs to 
reach the new optimum. After the loads are connected to the 
microgrid, the output current ii of each converter immediate‐
ly increases to satisfy the power balance derived from the 
primary control. The secondary control then begins to adjust 
the references ii,ref and vi,ref to find the new optimal working 
point of the microgrid. Finally, both the current injection and 
bus voltage converge to an optimal solution within 20 s. It 

can also be observed that the ranges of the current and volt‐
age are recovered after the transient process. In summary, 
the proposed algorithm can drive the microgrid to a new op‐
timal state under fluctuating PV and load power.

D. System Performance Under Different Communication 
Failure Ratios

Next, the dynamic current injection of DG1 using the pro‐
posed algorithm under different p is examined in Fig. 4.

In this scenario, a new load L = 70  kW connected to bus 3 
starts to drain the power at t = 4 s. Simultaneously, the pow‐
er of PV4 drops to 70 kW. When p is close to 1, e. g., 
p = 0.9, the curve is smooth and resembles the dynamics of 
the fixed topology case. When p is low, e.g., p = 0.1, which 
means that only 10% of communication is successful, the os‐
cillation occurs and the convergence is slower. However, the 
algorithm still converges to the optimal solution. The ability 
of the proposed algorithm to withstand communication fail‐
ure is thus validated. To investigate the effect of p on the 
convergence time, a Monte Carlo test is performed. The sim‐
ulation contains 10 sets with even distributed p from 0.1 to 
1. Each set contains 500 cases. A box plot of Monte Carlo 
test of convergence time is presented in Fig. 5, where the 
middle-horizon red line represents the median of each set, 
the blue box represents the middle 50% of all cases, and the 
vertical blue lines represent the ranges of all cases.

If p = 0.1, the convergence is slow. The median of the con‐
vergence time is approximately 110 s. In addition, the con‐
vergence time is distributed in a long range from 50 s to 
200 s, which means that the randomness has a tremendous 
effect on the convergence. When p increases, the conver‐
gence becomes faster and the distribution range becomes nar‐
rower. This indicates that with a larger p, the randomness 
will have a smaller effect on the convergence. When p ³ 0.5, 
the convergence time stops decreasing and nearly all cases 
converge at the same time. It could be observed that under 
these cases, the random communication failures have little 
effect on the convergence and the system behavior is similar 
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Fig. 4.　Dynamic current injection of DG1 under different p.
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Fig. 5.　Box plot of Monte Carlo test of convergence time with different p.
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to one without random communication failure.

E. System Performance Under Communication Delay

To verify the performance of the proposed algorithm un‐
der a communication delay, the dynamic response of the pro‐
posed algorithm under random communication is performed. 
The delay time is set randomly between 0 s and 2 s, and the 
failure ratio of the communication remains 50%. The dynam‐
ic current injection of DG1 under a random communication 
delay of 0-2 s is illustrated in Fig. 6. It could be concluded 
that the algorithm converges to an optimal solution under a 
random delay. However, the oscillation occurs and the algo‐
rithm converges more slowly. Again, it could be concluded 
that the algorithm could operate under a communication de‐
lay. However, this delay will degrade the performance of the 
algorithm.

F. Plug-and-play Capacity

The plug-and-play capacity of the proposed algorithm is il‐
lustrated in Fig. 7.

The dynamic responses of DG1-DG4 and DG9 are provid‐
ed. When DG9 is disconnected from the microgrid at t = 5 s, 
other DGs increase their outputs to compensate the power 
imbalance derived from the disconnection. The secondary 
control then navigates the microgrid to a new optimal point 

in 10 s. At t = 25 s, DG9 is recovered. The outputs of other 
DGs decrease. The secondary control starts to lower the ref‐
erence current to recover the original optimal point. Finally, 
the system returns to its original working point at t = 45 s.

G. Comparison of Original and Simplified Models

Finally, to justify the rationality of the simplification of 
the OPF problem as described in Section II, a Monte Carlo 
test containing 4000 cases is performed to compare the solu‐
tions of the OPF problems (3)-(5). In each case, the parame‐
ters of the system are selected with a normal distribution 
with expectation μ and variance σ. The system setup for 
Monte Carlo simulation is presented in Table IV.

First, all random cases are solved based on the simplified 
model (5) to obtain a sub-optimal solution. Then, the global 
optimization method provided by MATLAB, which uses the 
scatter-search mechanism, is used to find the optimal solu‐
tion of (5). The relative error Er between the two models is 
calculated by:

Er =
Jsub - Jopt

Jopt
(20)

where Jopt and Jsub are the values of the objective function 
based on the original model (3) and simplified model (5), re‐
spectively.

A histogram of relative error Er is shown in Fig. 8. It 
could be concluded that the relative error is less than 1% for 
all cases. In addition, in most cases, the relative error is less 
than 0.3%. Based on the aforementioned discussion, we 
could conclude that the simplification described in Section II 
is reasonable.

V. CONCLUSION AND FUTURE WORK 

In this paper, a real-time OPF algorithm for DC mi‐
crogrids is proposed. We prove that our algorithm converges 
to the optimal solution, even under a stochastic communica‐
tion network. This aspect significantly enhances the reliabili‐
ty of the proposed algorithm. Moreover, our algorithm can 
obtain information from non-dispatchable devices by local 
measurement of dispatchable devices, which significantly re‐
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Fig. 6.　Dynamic current injection of DG1 under a random communication 
delay of 0-2 s.

TABLE IV
SYSTEM SETUP FOR MONTE CARLO SIMULATION

Parameter

ai

bi

ci

μ

0.03

3.00

50.00

σ

0.01

1.00

25.00

Parameter

Imax (A)

Imin (A)

Load (kW)

μ

100

  5

100

σ

33

 1

33

100

200
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Fig. 8.　Histogram of relative error.
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duces the need for controllers and communication lines. To 
validate our algorithm, simulations on a IEEE 30-bus DC mi‐
crorid are adopted including the accuracy, dynamic perfor‐
mance, and plug-and-play capacity.

Our future research will attempt to extend the algorithm 
to the following scenarios.

1) The proposed algorithm will be extended for OPF con‐
trol for AC microgrids.

2) Because the proposed algorithm is not suitable for mi‐
crogrids with varying electrical topologies, developing an al‐
gorithm that can solve the OPF problem under these condi‐
tions is an interesting topic for future work. The proposed al‐
gorithm is validated under random communication delay, but 
analytical analysis of the performance of the proposed algo‐
rithm under communication delay remains an open problem.

APPENDIX A 

A. Preliminary

In our proof, we use ||X||F, ||X||1, and ||X||2 for the Froben‐
ius norm, 1-norm, and 2-norm of matrix X, respectively, and 

AB
F
 for the Frobenius inner product of two matrices. We 

define the average vector 
-
X = JX, where all its elements are 

equal to the average of the elements of vector X. Several im‐
portant lemmas are presented before the optimum and con‐
vergence of the proposed algorithm are discussed.

Lemma 1: an equation is given as A-B
F
= -

A -B
F
.

Proof 1: based on the definition of the Frobenius inner 
product, we have:

A-B
F
= tr(AT JB)= tr((JA)T (JB))= -

A -B
F (A1)

where the third equality is derived from J = J 2.
Lemma 2: let λ͂(k) = λ(k) - -

λ (k) and y͂(k) = y(k) - ȳ(k) be 
the corresponding disagreement matrices. Let X (k)=

E ( )∑
i = 0

k

||λ͂(k)||2 , Y (k)= E ( )∑
i = 0

k

||y͂(k)||2 , and Z(k)=

E ( )∑
i = 0

k

||ȳ(k)||2  be expected energy from 0 to k. Then, we 

have:

X (k)£
s1 p2

1 - s1 s2

Z(k)+
q1 + s1q2

1 - s1 s2
(A2)

Y (k)£
p2

1 - s1 s2

kZ(k)+
q2 + s1q1

1 - s1 s2
(A3)

where s1 =
2 γη

1 - η
; q1 =

2 E ( )||λ͂(0)||2

1 - η2
; s2 =

2 NL(1 + η)
1 - η

; 

p2 =
2 NL(1 + η)γ

1 - η
; and q2 =

2 E ( )||y͂(0)||2

1 - η2
.

Proof 2: since Wk J = JWk = J, we could obtain:

λ͂(k + 1)=Ak (λ͂(k)- γy͂(k)) (A4)

where Ak =Wk - J. Then, based on the inequality of the 2-
norm [40], we have:

E ( )||λ͂(k + 1)||2 =E ( )||Ak (λ͂(k)- γy͂(k))||2 £E ( )||Ak λ͂(k)||2 +

E ( )||γAk y͂(k)||2 £ ηE ( )||λ͂(k)||2 + γηE ( )||y͂(k)||2 (A5)

According to the convergence property of energy of ran‐
dom variables [35], let v(k)=E ( )||λ͂(k)||2  and w(k)=

γηE ( )||y͂(k)||2 , and then we have:

X (k)£ s1Y (k)+ q1 (A6)

Similarly, we can yield:

y͂(k + 1)=Ak y͂(k)+AkDgm (λ(k))) (A7)

Then, taking the norm expectation of both sides yields:

E ( )||y͂(k + 1)||2 £E ( )||Ak y͂(k)||2 +E ( )||AkDgm (λ(k))||2 £
①

ηE ( )||y͂(k)||2 +E ( )| max ( )g(λ(k + 1))- g(λ(k) | £
②

ηE ( )||y͂(k)||2 +E ( )||Ñϕ(λ(k + 1))-Ñϕ(λ(k))||1 £
③

ηE ( )||y͂(k)||2 + N E ( )||Ñϕ(λ(k + 1))-Ñϕ(λ(k))||F £
④

ηE ( )||y͂(k)||2 + N LE ( )||λ͂(k + 1)- λ͂(k)- γȳ(k)||F £
⑤

ηE ( )||y͂(k)||2 +NL ( )E ( )||λ͂(k + 1)||2 +E ( )||λ͂(k)||2 + γE ( )||ȳ(k)||2

(A8)
where Dgm (λ(k))=N × diag{g(λ(k + 1))- g(λ(k))}; ① is derived 
from the definition of Dgm (λ(k)) and the fact that E ( )||Ak||2 <
1; ② is derived in the next subsection; and ③ -⑤ are de‐
rived from the inequality between matrix norms [40]. Com‐
bining (A5) and (A8) yields:

E ( )||y͂(k + 1)||2 £ ηE ( )||y͂(k)||2 +NL(1 + η) (E ( )||y͂(k)||2 +

)γE ( )||y͂(k)||2 (A9)

Utilizing the convergence of the energy of random vari‐
ables [35] and letting v(k)=E ( )||y͂(k)||2  and w(k)=NL(1 +

η) (E ( )||λ͂(k)||2 + γ||y͂(k)||2 ), we obtain:

Y (k)£ s2 X (k)+ p2 Z(k)+ q2 (A10)

Combining (A6) and (A10) completes the proof.
Lemma 3: convergence of random sequence. Let (ΩF ) be 

a probability space and F0ÌF1Ì ...ÌFk be a sequence of σ 
subfields of F. Let v(k) a(k), and w(k) be non-negative ran‐
dom variables, the following relationship then holds for "k ³
0:

E ( )v(k + 1 |) F £(1 + a(k))v(k)- u(k)+w(k) (A11)

where ∑
k = 0

¥

a(k)£¥ and ∑
k = 0

¥

w(k)£¥. Then, v(k) converges to 

some random variables v, and we further have ∑
k = 0

¥

u(k)£¥.

B. Proof of Convergence Theorem

Proof 3: by properly intertwining the optimization and dy‐
namic consensus steps, we can rewrite the proposed algo‐
rithm in a compact form as:

λ(k + 1)=Wk (λ(k)- γy(k)) (A12)

y(k + 1)=Wk (y(k)+Dgm (λ(k))) (A13)

To investigate the convergence properties of the proposed 
algorithm, we first consider the following auxiliary sequence 
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that runs analogously to (A12) and (A13) in the average 
space:

-
λ (k + 1)= -

λ (k)- γȳ(k) (A14)

ȳ(k + 1)= ȳ(k)+Dḡm (λ(k)) (A15)

Function ϕ(λ) is a concave second-order Lipschitz continu‐
ity with constant L. In other words, for "λ1λ2ÎRn ´ n, we 
have:

ϕ(λ2 )£ ϕ(λ1 )+ Ñϕ(λ1 )λ2 - λ1
F
+

L
2

||λ2 - λ1||
2
F (A16)

In addition, based on (A16) and the conservation property 
of the averaging matrix [42], we immediately obtain:

Ñ-
ϕ (λ(k))= JÑϕ(λ(k))= ḡm (λ(k))= ȳ(k) (A17)

Taking conditional expectation on Fk and plugging λ2 =-
λ (k + 1) and λ1 =

-
λ (k) into (A16) yields:

E(ϕ(
-
λ (k + 1))) £

①
ϕ(

-
λ (k))- γ Ñϕ(-λ (k))ȳ(k)

F
+

Lγ2

2
||ȳ(k)||2

F=
②
ϕ(

-
λ (k))- γ Ñ-

ϕ (λ(k)ȳ(k)
F
+

Lγ2

2
||ȳ(k)||2

F + γ Ñ-
ϕ (λ(k)-Ñϕ(-λ (k)))ȳ(k)

F
=
③
ϕ(

-
λ (k))-

γ||ȳ(k)||2
F +

Lγ2

2
||ȳ(k)||2

F + γ Ñ-
ϕ (λ(k)-Ñϕ(-λ (k)))ȳ(k)

F

(A18)

where ① and ③ are derived from (A16) and (A17), respec‐
tively. In addition, based on the Lipschitz continuity of ϕ(λ), 
we have:

Ñ-
ϕ (λ(k)-Ñϕ(-λ (k)))ȳ(k)

F
= Ñ-

ϕ (λ(k)ȳ(k)
F
-

Ñϕ(-λ (k))ȳ(k)
F
= Ñϕ(λ(k))ȳ(k)

F
-

Ñϕ(-λ (k))ȳ(k)
F
= Ñϕ(λ(k))-Ñϕ(-λ (k))ȳ(k)

F
£

||Ñϕ(λ(k))-Ñϕ(-λ (k))||F||ȳ(k)||F £ L||λ͂(k)||F||ȳ(k)||F (A19)

Combining (A18) and (A19) yields:

E(ϕ(
-
λ (k + 1)))£ ϕ(-λ (k))- ( )γ -

Lγ2

2
||ȳ(k)||2

F + γL||λ͂(k)||F||ȳ(k)||F

(A20)

Let v(k)= ϕ(-λ (k)) and we have:

E(v(k + 1))£ v(k)- a′ ||ȳ(k)||2
2 + γNL||λ͂(k)||2||ȳ(k)||2 (A21)

where a′=Nγ2( )1/γ - L/2 .

Taking the total expectation and sum (A21) from 0 to k, 
we obtain:

E(v(k + 1))£E(v(0))- a′E ( )∑
i = 0

k

||ȳ(i)||2
2 +

γNLE ( )∑
i = 0

k

||λ͂(i)||2||ȳ(i)||2 £E(v(0))- a′Z 2 (k)+ γNLX (k)Z(k)

(A22)

Then, the last inequality is derived from the Cauchy-
Schwarz inequality.

Invoking Lemma 2, we obtain:

X (k)Z(k)£ b1 Z 2 (k)+ b2 Z(k) (A23)

where b1 =
s1 p2

1 - s1 s2

 and b2 =
q1 + s1q2

1 - s1 s2

.

Combining (A21) and (A22) yields:

E(v(k + 1))£E(v(0))- a0 Z 2 (k)+ b0 Z(k) (A24)

where a0 = a′- γNLb1 and b0 = γNLb2 are the constants that 
depend on η and γ. Because E(v(k))³ 0, we have:

-a0 Z(k)2 + b0 Z(k)+E(v(0))³ 0 (A25)

Based on the definition of a0, we can derive that a0 > 0 
when the step size γ is sufficiently small. Because b0 > 0 and 
E(v(0))> 0, it follows from (A25) that

lim
k®¥

Z(k)<¥ (A26)

Thus, applying Markov’s inequality [43] to any ϵ > 0, we 
obtain:

∑
i = 0

¥

P(||ȳ(i)||2 > ϵ)£
∑
i = 0

¥

E ( )||ȳ(i)||2

ϵ2
<¥ (A27)

By the Borel-Cantelli Lemma in [43] and Proposition 1.2 
in [44], we have lim

k®¥
||ȳk||2 = 0. From Lemma 2, we can de‐

rive:

X (k)£
s1 p2 + p1

1 - s1 s2

Z(k)+
q1 + s1q2

1 - s1 s2

<¥ (A28)

It shows that lim
k®¥

||λ͂(k)||2 = 0. Likewise, using Lemma 2, 

we can deduce that Y (k) is bounded and lim
k®¥

||y͂(k)||2 = 0. 

Then, using (a + b)2 £ 2a2 + 2b2, we can rewrite (A21) as:

E(v(k + 1))£E(v(k))- u(k)+w(k) (A29)

where u(k)= a′||ȳ(k)||2
2 and w(k)= 2NL(||λ͂(k)||2 + ||ȳ(k)||2

2 ). Based 
on the previous discussion, we have:

∑
k = 0

¥

w(k)£ 2NL ( )lim
k®¥

X 2 (k)+ lim
k®¥

Z 2 (k) £¥ (A30)

Then, when Lemma 3 is applied, the sequence v(k) con‐
verges to some random variables. Because ϕ(λ) is radically 
unbounded, 

-
λ (k) is also most likely bounded.

Based on the inequality between Frobenius norm and 2-
norm, we have lim

k®¥
||ȳk||F = 0, lim

k®¥
||y͂k||F = 0, and lim

k®¥
||λ͂k||F = 0.

Because ϕ(λ) is concave and second-order Lipschitz conti‐
nuity with constant L, we obtain:

ϕ(λ* )- ϕ(-λ (k))£ Ñϕ(-λ (k))λ* - -
λ (k)

F
=

Ñϕ(λ(k))λ* - -
λ (k)

F
+

Ñϕ(-λ (k))-Ñϕ(λ(k))λ* - -
λ (k)

F
=

Dḡm (k)λ* - -
λ (k)

F
+

Ñϕ(-λ (k))-Ñϕ(λ(k))λ* - -
λ (k)

F
£ ||ȳ(k)||F||λ* - -

λ (k)||F +

L||λ͂(k)||F||λ* - -
λ (k)||F (A31)

where λ* is the optimum of problem (16). Because 
-
λ (k) is 

bounded, we can derive that ||λ* - -
λ (k)||F £M, where M is a 

constant. Thus, from (A31), and recalling the Lipschitz conti‐
nuity of ϕ(λ), we can claim that

ϕ(λ* )- lim
k®¥

ϕ(
-
λ (k))£M lim

k®¥
(||ȳ(k)||F + L||λ͂(k)||F )= 0  (A32)
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Based on the definition of λ*, we can obtain ϕ(λ* )-
ϕ(

-
λ (k))³ 0 . Combining it with (A32) yields:

lim
k®¥

ϕ(
-
λ (k))= ϕ(λ* ) (A33)

Moreover, based on Cauchy’s mean value theorem, we 
have:

ϕ(λ(k))= ϕ(-λ (k))+ Ñϕ(λ(k)+ ξλ͂(k))λ͂(k)
F

(A34)

where 0 £ ξ £ 1. Because ||λ(k)+ ξλ͂(k)||F £ ||λ(k)||F + ξ||λ͂(k)||F  
and ||Ñϕ(λ(k)+ ξλ͂(k))||F are both bounded, we have:

lim
k®¥

|ϕ(λ(k))- ϕ(-λ (k))| £ lim
k®¥

||Ñϕ(λ(k)+ ξλ͂(k))||F||λ͂(k))||F = 0

 (A35)

Combining (A33) and (A35) yields lim
k®¥

 ϕ(λ(k))= ϕ(λ* ), 

which completes the proof.
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