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Abstract——Residential heating, ventilation and air condition‐
ing (HVAC) provides important demand response resources for 
the new power system with high proportion of renewable ener‐
gy. Residential HAVC scheduling strategies that adapt to real-
time electricity price signals formulated by demand response 
program and ambient temperature can significantly reduce elec‐
tricity costs while ensuring occupants’ comfort. However, since 
the pricing process and weather conditions are affected by 
many factors, conventional model-based method is difficult to 
meet the scheduling requirements in complex environments. To 
solve this problem, we propose an adaptive optimal scheduling 
strategy for residential HVAC based on deep reinforcement 
learning (DRL) method. The scheduling problem can be regard‐
ed as a Markov decision process (MDP). The proposed method 
can adaptively learn the state transition probability to make 
economical decision under the tolerance violations. Specifically, 
the residential thermal parameters obtained by the least-
squares parameter estimation (LSPE) can provide a basis for 
the state transition probability of MDP. Daily simulations are 
verified under the electricity prices and temperature data sets, 
and numerous experimental results demonstrate the effective‐
ness of the proposed method.

Index Terms——Residential heating, ventilation and air condi‐
tioning (HVAC), scheduling, deep reinforcement learning, least-
squares parameter estimation (LSPE).

I. INTRODUCTION 

DEVELOPING the clean energy and promoting the trans‐
formation of the energy structure vigorously are inevita‐

ble requirements for ensuring the sustainable development. 
The proportion of non-fossil energy such as wind power 
(WP) and photovoltaics (PVs) at the power supply side is in‐
creasing. However, the intermittent and uncertain outputs of 

WP and PV have made the planning, the control, and the bal‐
ance of power grid more complicated [1]. The new power 
system with high proportion of renewable energies puts for‐
ward new requirements for system flexibility [2]-[4]. Due to 
the reduction of the proportion of traditional generating 
units, the standby resources at the generation side are scarce, 
and it is necessary to fully tap the flexibility potential of oth‐
er resources. Demand response (DR) adopts the direct con‐
trol or the price guidance to regulate the flexible load re‐
sources at the demand side, so as to absorb renewable ener‐
gies and reduce the operation cost of power grid [5]-[8].

Heating, ventilation and air conditioning (HVAC) accounts 
for about 45% of average summer peak-day loads [9]. More‐
over, due to the transferability of HVAC load, it is used as 
an important DR resource to provide flexible adjustment ca‐
pabilities for the power grid [10]. Thus, on the premise of 
not having a significant impact on the thermal comfort of oc‐
cupants, formulating the optimal scheduling strategies of 
HVAC participation in power grid DR has become a hot top‐
ic of concern to scholars. Reference [11] proposes an opti‐
mal strategy for participation of commercial HVAC systems 
in frequency regulation. It assumes that the aggregator has 
signed a contract with the power grid, so it adopts the meth‐
od of direct control and does not take into account the im‐
pact of prices and environment on the model. Reference [12] 
proposes a direct load control algorithm of HVAC, which us‐
es the temperature priority list to formulate the optimal 
scheduling plan of HVAC, and uses six different outdoor 
temperature baseline loads to simulate different weather con‐
ditions. Reference [13] proposes a bi-level decision model 
for HVAC to participate in power grid DR, where the upper 
layer formulates the optimal retail electricity prices, and the 
lower layer formulates the optimal HVAC scheduling strate‐
gy to save electricity costs. In the modeling process of [12] 
and [13], the typical curve or deterministic data is used as 
the ambient temperature, and the uncertainty caused by pre‐
diction errors is ignored, which may affect the optimal poli‐
cy decision.

In order to make full use of HVAC flexibility resources to 
participate in DR programs and reduce costs, it is necessary 
to predict the uncertain information in advance to formulate 
the optimal control strategies that are more in line with the 
demand of the power grid and occupants. Model predictive 
control (MPC) strategies are used to cope with control prob‐
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lems with complexity and multi-variability of the environ‐
ment. In [14], a coordinated control strategy of HVACs and 
electric vehicles (EVs) based on the Markov decision pro‐
cess (MDP) method is proposed to reduce the cost and ac‐
commodate the uncertainties in the PV supply. The time-of-
use (TOU) electricity price is used to calculate the users’  
economy, and uncertainties such as outdoor temperature are 
predicted through historical data [15]. Reference [16] propos‐
es a collaborative optimization operation method for multi‐
ple smart buildings to reduce total energy costs. A rolling ho‐
rizon scheme is proposed to reduce the amount of forecast‐
ing information and computation cost. Compared with [14], 
the forecasting information required for decision-making in 
[16] is significantly reduced, but the results of the model 
forecast will still directly affect the strategic decision, and 
the forecasting information is often affected by numerous un‐
certain factors. Thus, they shall be properly addressed during 
the operation of HVAC systems.

Probabilistic solutions are used to cope with the uncertain‐
ty in the scheduling process. Fuzzy control, stochastic pro‐
gramming, and robust optimization are commonly used to 
solve such uncertain problems. Reference [17] uses fuzzy 
sets to describe the uncertainties in retail electricity prices 
and temperature. In [18], a solar thermal supplemental multi-
energy heating system controlled by fuzzy controller is pro‐
posed. Monte Carlo methods are often used to generate un‐
certain features [19]. References [20] and [21] propose an 
optimal scheduling model for microgrid based on stochastic 
programming method and use Monte Carlo method for sce‐
nario generation. The Monte Carlo method requires a large 
number of simulations to fit the convergent parameters, and 
the huge computational load hinders the development of this 
technology. In [22], a chance-constrained optimization model 
is proposed to solve the uncertainty of real-time electricity 
prices and load in home energy management systems. Refer‐
ence [23] establishes a bi-level optimal scheduling model for 
the community integrated energy system. The chance-con‐
strained model is converted into a mixed-integer linear pro‐
gramming model and solved by the CPLEX solver. In [24], 
a two-stage stochastic programming model is proposed for 
the uncertain renewable energy output, power load, and 
price in multi-energy microgrids. In [25], the electricity 
price is considered as a robust optimization technique with a 
certain degree of confidence. References [26] and [27] pro‐
pose a robust scheduling method for integrated energy sys‐
tems considering economics, where the uncertainties of out‐
door temperature and the thermal comfort of occupants are 
taken into account. Nevertheless, both the fuzzy rules of 
fuzzy control and the probability distribution of random vari‐
ables in stochastic programming require certain prior knowl‐
edge of uncertainty. Estimating the uncertain information 
with subjective experience leads to a lack of confidence in 
many practical situations. Robust optimization will obtain 
relatively conservative results, which may result in a waste 
of resources in many cases.

The uncertainty of electricity prices and environment is af‐
fected by many different factors, and the probability distribu‐
tion of uncertain features must be obtained through a large 

number of complex calculations. It is difficult for the above 
model-based methods to guarantee a low computational com‐
plexity and a good performance at the same time. Model-
free reinforcement learning (RL) is frequently employed to 
solve the decision-making problem of nonlinear systems. In 
[28], a Q-learning agent is enabled to control the HVAC sys‐
tem considering the energy consumption and temperature 
range. Reference [29] uses batch RL to realize residential 
DR of thermostatically controlled loads. However, the RL 
method is not suitable for the system with large state space, 
and the state update mechanism exhibits high computational 
cost [30]. Deep neural network uses powerful high-dimen‐
sional data feature extraction and complex mapping ability 
to approximate the value function, which can achieve the 
rapid environment perception. By combining the deep learn‐
ing technology and RL technology, deep reinforcement learn‐
ing (DRL) obtains significant success in many complex deci‐
sion-making problems [31]. With specific respect to the 
HVAC scheduling problem, the scheduling frameworks 
based on deep Q network (DQN), advantage actor critic 
(A2C), and deep deterministic policy gradient (DDPG) are 
established for building energy [32]-[35]. Reference [32] pro‐
poses an HVAC airflow direction control method based on 
DQN, aiming at achieving uniform comfort of the indoor en‐
vironment. Reference [33] designs an intelligent DQN agent 
to reduce energy usage and peak load. Reference [34] pro‐
poses an A2C method for HVAC system to minimize the en‐
ergy consumption while maintaining the thermal comfort. In 
[35], the DDPG method is applied to optimize the continu‐
ous control of multi-zone HVAC. All the above research 
works have demonstrated the effectiveness of the DRL meth‐
od in HVAC system. However, the building energy consump‐
tion is usually used as the cost function, and there is a lack 
of residential HVAC scheduling strategy adapted to time-
varying electricity prices under the background of electricity 
marketization. Simultaneously, the occupants’ comfort should 
always be taken into account.

Given this context, we propose an adaptive scheduling 
strategy for residential HVAC based on model-free DRL to 
cope with the dual uncertainty of time-varying electricity 
prices and ambient temperature. Specifically, DRL methods 
can be divided into value-based methods and policy-based 
methods, which are often used to solve control problems in 
discrete spaces and continuous spaces, respectively. Since 
the residential HVAC system is typically an on/off type unit 
[11], [36], the value-based dueling DQN algorithm is used to 
solve the above problem. The main contributions of this pa‐
per are summarized as follows.

1) The adaptive scheduling strategy for residential HVAC 
based on DRL including the definition of state, action, and 
reward is established. The state transition probability of the 
complex nonlinear system is learned by deep neural net‐
work, and the adaptive scheduling strategy is formulated. 
Deep neural network can deeply tap the historical electricity 
prices and the temperature information. The residential 
HVAC agent formulates the scheduling strategy according to 
the time-varying electricity prices, which can not only re‐
spond to the demand of the power grid, but also ensure the 
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good economy of occupants.
2) The LSPE method is used to obtain the thermal capaci‐

ty and the thermal resistance parameters of the residence, 
which provides a definite basis for the state transition of the  
state dimension of HVAC operation temperature. In this pa‐
per, a large number of historical temperature measurements 
are used to estimate the heterogeneous thermal parameters of 
residence based on the HVAC state equation.

3) The proposed optimal scheduling strategy is validated 
on real datasets. The effectiveness of the proposed method 
in terms of economy and comfort is demonstrated by com‐
paring with the MPC method, the uncontrolled methods, and 
other DRL methods.

II. RESIDENCE THERMAL PARAMETER ESTIMATION 
BASED ON LSPE 

A. HVAC State Equation

The indoor temperature is an important state variable to 
characterize the dynamic operation characteristics of HVAC. 
For simplicity, the first-order thermal transfer function is uti‐
lized to model the dynamic indoor temperature of a building 
[37] - [40]. The residential HVAC in cooling mode can be 
modeled as:

Tit + 1 = aiTit + biToutt + giuit (1)
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where Tit + 1 and Tit are the indoor temperatures of the ith res‐
idence at time steps t + 1 and t, respectively; Toutt is the am‐
bient temperature at time step t; uit is the binary variable  
representing the HVAC on/off status of the ith residence at 
time step t; ai, bi, and gi are the coefficients of thermal func‐
tion of the ith residence; Ri and Ci are the thermal resistance 
and capacitance of the ith residence, respectively; η is the 
cooling efficiency of the ith residence; and Prated is the rated 
power.

B. Thermal Parameter Estimation Based on LSPE

During the residential HVAC operation, the indoor temper‐
ature needs to be controlled within a certain range according 
to the comfort requirements of occupants, i. e., T low

in < Tit + 1 <
T up

in . The thermal parameters of the residence affect the rate 
of change of indoor temperature. However, it is difficult to 
quantify the indoor building structure, facility layout, and oc‐
cupants’  behavior, and the thermal parameters cannot be 
measured directly. The LSPE is proposed to obtain the ther‐
mal resistance parameters and the thermal capacity parame‐
ters. The measurement equation of LSPE is expressed as:

Y =Ax + e (3)

J =∑
t = 1

T

e2
t = ( )Y -Ax

T( )Y -Ax (4)

x = ( )AT A
-1

ATY (5)

where x = [aibigi ]; A = [T iToutui ]
T
, T i =

[Ti1TitTiT ], Tout = [Tout1TouttToutT ], ui =

[ui1uituiT ]; and Y = [Ti2Tit + 1TiT + 1 ].
Equation (4) can be obtained by minimizing the total 

square sum of errors of multiple groups of measurement re‐
sults et as the objective function, and (5) can be obtained by 
solving (4).

The coefficients of thermal transfer function can be solved 
by substituting the measured data into (5), and then the ther‐
mal resistance and thermal capacity can be solved, which 
can provide a basis for the state transition probability matrix 
of MDP.

III. ADAPTIVE SCHEDULING STRATEGY BASED ON 
DUELING DQN 

A. MDP Problem Description

In this paper, an MDP with discrete time step is applied to 
formulate the real-time scheduling strategy for HVAC 
against the randomness of time-varying electricity prices and 
ambient temperature. The electricity prices fluctuate over 
time, which is different from fixed prices or TOU prices. 
The interval of price change is one hour. At time step t, we 
can observe the real-time prices, the indoor temperature, and 
the ambient temperature, and then we choose the switch ac‐
tion of HVAC. After the action is executed, it can be ob‐
served from (1) that the indoor temperature will change ac‐
cordingly, which will affect the state at the next moment. 
The new system state can be observed and the new action 
can be chosen at time step t + 1. In particular, the thermal pa‐
rameters of the residence are used in the calculation of state 
transition. The method takes one day as the cycle to formu‐
late the scheduling strategy of the residential HVAC. Its com‐
plexity is that the time-varying electricity prices and the am‐
bient temperature state are difficult to be accurately predict‐
ed by the model-based method, and the policy decision is af‐
fected. DRL can solve this problem well.

B. DRL Method

The model-free DRL method is often used to solve the 
policy decision problems of nonlinear complex systems. 
Based on a large number of historical data, the DRL method 
can capture the law of real-time prices and ambient tempera‐
ture fluctuation well to guide the agent to make decision.

1) State: the state parameter of the problem consists of 
four parts, i. e., the time step of the day t, indoor tempera‐
ture, ambient temperature, and electricity prices Pt. The un‐
certainty of the state variables mainly comes from ambient 
temperature and electricity prices. The ambient temperature 
and electricity prices in the past 24 hours are used as the 
state input for training in the reinforcement learning. There‐
fore, the state vector at time step t is s t =
[ tTitTouttToutt - 1 ]Toutt - 23PtPt - 1Pt - 23 , which con‐

tains 50 dimensions. In particular, it is necessary to maintain 
the indoor temperature Tit within the range set by occupants, 
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i.e., T low
it £ Tit £ T up

it .
2) Action: the action at represents the switch state of resi‐

dential HVAC ut at time step t. When the indoor temperature 
is close to the upper limit and the electricity price is low, the 
residential HVAC agent automatically chooses the “on” sta‐
tus. When the indoor temperature is close to the lower limit 
and the electricity price is high, the HVAC agent automati‐
cally chooses the “off” status.

3) Reward and return: the reward rt consists of two parts, 
i.e., power purchase cost and boundary crossing penalty. To 
ensure less cost, the reward rt is defined as:

rt =-l1 ECO - l2COF (6)

where ECO =Ptut is the power purchase cost; COF =
max ( )0Tit - T up

it +max ( )0T low
it - Tit  is the boundary cross‐

ing cost of indoor temperature; and l1 and l2 are the weights 
of economy and comfort, respectively. Let l = l1 l2, rt can be 
expressed as:

rt =-lPtut - [max (0Tit - T up
it ) +max (0T low

it - Tit ) ] (7)

The reward decreases as the electricity price rises. When 
the indoor temperature crosses the bounds, the agent will 
make the corresponding punishment. The more boundary is 
crossed, the greater the punishment will be. The parameter l 
is the coefficient to balance occupants’  demands for comfort 
and economy.

The return Ut is defined as the cumulative discounted re‐
wards:

Ut = rt + γrt + 1 + + γT - triT (8)

where γÎ [01] is the discount factor that is used to trade 
off the importance between immediate and future rewards.

4) State transition: P a
ss' is the probability that the state s t 

will transfer to the state s t + 1 after taking the action at. We se‐
lect the state function as the time step of the day, the indoor 
temperature, the historical ambient temperature, and the his‐
torical electricity prices, where the state transition is influ‐
enced by the uncertain factors. Specifically, the state transi‐
tion for indoor temperature Tit is controlled by action and it 
can be expressed by the deterministic formula (1). The state 
transition of ambient temperature and electricity prices is ran‐
dom. It is difficult for model-based method to find an accu‐
rate probability distribution to describe the state transition. 
To solve this problem, an improved reinforcement learning 
method is proposed to learn the state transition, as shown in 
Section III-C.

C. Dueling DQN

Dueling DQN is an improved DQN method. The advan‐
tage function is defined to evaluate the performance of the 
action at in the current state s t. The optimal advantage func‐
tion can guide the agent to make the action, and then solve 
the policy decision problem of nonlinear complex system. 
The optimal advantage function is defined as:

A*( )sa =Q*( )sa -V *( )s (9)

where Q*( )sa  is the optimal action value function, which 
can evaluate the quality of the action a taken in the state s; 
and V *( )s  is the optimal state value function, which can 
evaluate the quality of the state s. The optimal state value 

function is regarded as the baseline. Then, the optimal advan‐
tage function A* (sa) is the advantage of action a over base‐
line.

Neural networks are used to approximate A*( )sa , V *( )s , 
and Q*( )sa , and the following formula can be obtained:

Q (sa ; wAwV ) =V (s ; wV ) +A(sa ; wA ) (10)

where Q (sa ; wAwV ) is called the dueling network; wV de‐

notes the network parameters of V (s ; wV ); and wA denotes 

the network parameters of A(sa ; wA ).
However, the state value and advantage value cannot be 

uniquely estimated by learning Q function. To solve this 
problem, [41] improves the stability by adding the advantage 
mean as baseline to the estimation.

Q ( )sa ; wAwV =V ( )s ; wV +A( )sa ; wA - mean
a

A( )sa ; wA

(11)

where mean
a

A(sa ; wA ) is the average of the advantage func‐

tion. The dueling DQN architecture is shown in the Fig. 1. 
The neural network is used to extract features of the current 
state, and the features are mapped to the advantage value 
and state value, respectively. Therefore, parameters wV and 
wA overlap partially.

D. Policy Update of Dueling Network

The temporal-difference (TD) [42] is the core prediction 
method for the policy update of DRL:

yt = rt + γ max
a

Q (s t + 1a ; w ) (12)

δt =Q (s tat ; w ) - yt (13)

where yt is called the TD target, which includes the reward 
at time step t and the maximum estimation of Q function at 
time step t + 1; δt is called the TD error; Q (s tat ; w ) is the 

estimation of Q function at time step t; and w = [wAwV ] de- 
notes the parameters of dueling network. The TD algorithm 
uses subsequent Q function estimation to update the current 
Q function estimation, which is a bootstrapping method [43]. 
Several techniques for improving the algorithm convergence 
speed and the training stability are introduced.
1)　Fixed Q Target

To prevent the overestimation of Q value, a target net‐
work is used to calculate the TD target value [44].

AgentEnvironment Dueling network
s Q(s,a)

a
Choose

action Observation

Feature

Formula

(10)

…
…

…
…

A(s,a1)

A(s,a2) Q(s,a1)

Q(s,a2)

V(s)

st

Fig. 1.　Dueling DQN architecture.

1599



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 5, September 2023

ŷt = rt + γ max
a

Q̂ (s t + 1a ; ŵ ) (14)

where Q̂ (sa ; ŵ ) is called the target network, which has the 

same network structure as Q (sa ; w ). During the training 

process, the parameters w are updated every step, while the 
parameters ŵ of target network are updated every C steps.
2)　Experience Replay

At time step t, recent N transitions (s iairis i + 1 ) can be 

stored in a replay buffer N to prevent the waste of experi‐
ence. At each step of training, M transitions are chosen from 
replay buffer N to form a mini-batch D. The parameters w 
are updated by gradient descent based on D to minimize the 
loss function [45]:

L (w ) = 1
M ∑

(siairisi + 1 )ÎD
( ŷi -Q (s iai ; w ) ) 2

(15)

w¬w - LR × Ñw L (w ) (16)

where L (w ) is the loss function; and LR is the learning rate. 
Randomly chosen D for updating parameters can cut off the 
correlation between experiences and ensure better perfor‐
mance.
3)　Decayed-ε-greedy

The greedy method tends to make the exploration problem 
fall into a local optimal solution. The parameter ε is used to 
balance the exploitation and exploration. In the training pro‐
cess of this paper, ε gradually decays as the number of itera‐
tions increases. At the early stage of the iteration, we encour‐
age the exploration and focus on greedy at the later stage to 
ensure stable convergence of the algorithm.

ε =max (1 - nepo

Nepo

εmin ) (17)

where εmin is the minimum exploration rate; nepo =Epo ×

( )t - tori  is the number of current experiences, and Epo is the 

number of current iterations; and Nepo =Epomax × ( )tend - tori  is 

the number of total experiences, Epomax is the number of to‐
tal iterations, tori is the initial time step, and tend is the end 
time step.

The performance of dueling DQN will be greatly im‐
proved by the above techniques. The policy update process 
of dueling DQN is shown in Algorithm 1, and the specific 
implementation process of optimal HVAC scheduling using 
dueling DQN is shown in Fig. 2.

Algorithm 1: policy update process of dueling DQN

Initialize network Q (sa ; w ) with random parameters w
Initialize target network Q̂ (sa ; ŵ ) with random parameters ŵ¬w
for Epo=1:Epomax do

Obtain the initial state stori

for t = tori:tend do
Update ε according to (17)
Select action at based on decayed-ε-greedy search
Execute at, observe reward rt, update environment, and observe new 

state st + 1

Store transition (statrtst + 1 ) in replay buffer 
Randomly choose M transitions from N to form a mini-batch D
Calculate target value ŷt according to (14)
Calculate loss function L (w ) according to (15)
Update parameters w according to (16)
Reset ŵ¬w every C steps to update target network

end for
end for
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Fig. 2.　Implementation process of optimal scheduling for HVAC using dueling DQN.
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IV. CASE STUDIES 

In this section, the proposed method is tested on the resi‐
dential HVAC operations for a single residence. Simulations 
are performed on a laptop with AMD Ryzen 7 4800H 2.90 
GHz CPU, and 16 GB RAM. The coding work is carried 
out in Python 3.6 with PyTorch 1.10.1 and MATLAB 2018b.

A. Experiment Setup

The performance of the proposed method is evaluated in 
the following scenario. We collect hourly electricity prices 
from Australia Energy Market Operator (AEMO). The hour‐
ly ambient temperature and indoor temperature are acquired 
from TRNSYS 18.0. The electricity prices and ambient tem‐
perature in seven days are shown in Fig. 3. For the state 
transition model of indoor temperature, we set Prated=5.6 kW, 
η = 0.9, and then R and C can be evaluated according to (5). 
Moreover, for the thermal comfort constraint of the occu‐
pants, we set the temperature range as T up

i = 26 ℃ and T low
i =

22 ℃ . We collect the data of July and August in 2015 and 
2016 as the train data and the data of July and August in 
2017 as the test data to evaluate the improvement by the pro‐
posed method. The simulation cycle is set to be 09: 00 to 
21:00.

As shown in Fig. 2, the dueling DQN is proposed to for‐
mulate the optimal scheduling strategy of residential HVAC. 
The network structure of dueling DQN can be divided into 
two stages: feature extraction and mapping. The feature ex‐
traction stage of dueling network includes an input layer 
with 50 neurons and 3 hidden layers with 256, 128, and 64 
neurons, respectively. At the mapping stage, the features can 
be mapped to 2 neurons (advantage value) and 1 neuron 
(state value), respectively, and then the output layer with 2 
neurons (Q value) can be calculated. And we use the recti‐
fied linear unit (ReLU) as the activation function to each lay‐
er. The other hyperparameters during training are as follows: 
the capacity of replay buffer N  is 1 ´ 104, the batch size of 
the sampled transition M for training is 32, and the update 
frequency of target network is 1000. The Adam optimizer is 
used for learning the neural network with the learning rate 
LR = 1 ´ 10-5, the discount factor γ = 0.99, the minimum ex‐
ploration rate εmin = 0.01, and the maximum number of itera‐
tions is 2000.

B. Performance Evaluation

To show the effectiveness of the proposed method, the op‐
timal scheduling strategy for residential HVAC based on du‐
eling DQN is compared with several benchmark algorithms.

1) Without considering the fluctuation of electricity prices, 
the residential HVAC can be controlled automatically accord‐
ing to the comfort temperature threshold set by occupants 
(labeled as “Uncontrolled”). In the “Uncontrolled” mode, 
the initial state of HVAC is assumed as off-state. As the am‐
bient temperature rises, the indoor temperature rises accord‐
ingly. When the indoor temperature crosses the temperature 
upper limit, the residential HVAC stays on-state until the in‐
door temperature drops to the temperature lower limit, and 
then it enters the off-state again.

2) The optimal scheduling is formulated based on the pre‐
dicted time-varying electricity prices and ambient tempera‐
ture (labeled as “MPC”). The real electricity prices and am‐
bient temperature data are randomly added to the bias within 
±10% as the result of the model prediction, and the optimal 
scheduling strategy is formulated based on the result.

3) The future time-varying electricity prices and ambient 
temperature are assumed to be known and the optimal sched‐
uling strategy is formulated on the real dataset (labeled as 
“Optimal”). This method is only used for the comparative 
case, which does not exist in the real world.

4) The method proposed in this paper is labeled as “Duel‐
ing DQN”. Moreover, two other DRL methods are chosen 
for comparative case to enhance persuasion.

5) The classical DQN algorithm based on value function 
is labeled as “DQN”.

6) The proximal policy optimization (PPO) based on poli‐
cy function is labeled as “PPO”. The neural network struc‐
ture and parameter settings of DQN and PPO algorithms are 
the same as the proposed method.

The evolution of the accumulative reward during training 
process of dueling DQN, classic DQN, and PPO algorithms 
is shown in Fig. 4. As the number of iterations increases, the 
cumulative reward increases quickly and tends to converge. 
The dueling DQN and classic DQN algorithms converge af‐
ter 400 iterations, and the PPO algorithm converges after  
1000 iterations. The convergence time of the three algo‐
rithms is 96 min, 85 min, and 181 min, respectively. It can 
be observed from Fig. 4 that the PPO algorithm based on 
the AC framework has the slowest convergence speed and re‐
ward, which may have more advantages in coping with con‐
tinuous control problems. The value-based dueling DQN and 
classic DQN algorithms have similar convergence time, 
while the dueling DQN algorithm has higher reward.

We test the performance of the benchmark algorithm by 
comparing the electricity cost on different dates in the test set. 
The data of July and August in 2017 are selected as the test 
set, since the policy proposed in this paper needs to use the 
electricity prices of the previous day in the benchmark algo‐
rithm. The electricity cost from July 2 to August 31 is selected 
as the comparative objects. Figure 5 reflects the daily electrici‐
ty cost in the test set. It can be observed that the daily electrici‐
ty cost is well controlled under the optimal scheduling of the 
proposed method. The accumulative electricity cost of the 61 
test days is shown in Fig. 6. As labeled in this figure, the accu‐

0

1.2

1.0

0.8

0.6

0.4

0.2

12 24 36 48 60 72 84
Time step t

96 108 120 132 144 156

E
le

ct
ri

ci
ty

 p
ri

ce
 (

p
.u

.)

A
m

b
ie

n
t 

te
m

p
er

at
u
re

 (
p
.u

.)

Electricity price;        Ambient temperature

Fig. 3.　Electricity prices and ambient temperature in seven days of normal‐
ized historical data.
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mulative costs of the “Uncontrolled”, “MPC”, “Optimal”, 
“Dueling DQN”, “DQN”, and “PPO” algorithms are 
$1195.91, $991.18, $819.14, $836.10, $865.62, and $914.75, 
respectively. The proposed “Dueling DQN”, “DQN”, 
“PPO”, and MPC algorithms learn the trends of time-vary‐
ing electricity prices and ambient temperature, and then for‐
mulate the scheduling strategy, which saves 30.09%, 
27.61%, 23.51%, and 17.12% of electricity costs, respective‐
ly.

Figure 7 shows the detailed response of scheduling based 
on the proposed method in the seven days of test set. The 
gray area is not the concerned time period of this paper. Fig‐
ure 7(a) shows the normalized time-varying electricity prices 
and the switching status of residential HVAC. It can be ob‐
served that the proposed method can effectively avoid turn‐
ing on the residential HVAC during the peak time of electric‐

ity prices, which saves more electricity costs for occupants. 
Figure 7(b) shows the response of indoor temperature, which 
is basically controlled within the set point range.

The average electricity cost on the test day is shown in Ta‐

ble I, which can be calculated by Epr =
1
N∑t = 10

21 1
4

ut Prated Pt. Ex‐

cept for the ideal “Optimal” algorithm, the proposed method 
has the lowest average electricity cost. However, the electric‐
ity cost is not the only criterion to measure the occupants’  
satisfaction, the comfort is also an important factor. The 
number of violations is also compared in Table I. It can be 
observed that the number of violations of the proposed “Du‐
eling DQN” algorithm is the least among the benchmark al‐
gorithms. The “Uncontrolled” algorithm is a disadvantaged 
method, whose switch state changes only when the indoor 
temperature crosses the boundary of the upper or the lower 
temperature limit. Specifically, the violation degree is shown 
in Fig. 8.

TABLE I
AVERAGE ELECTRICITY COST AND TOTAL NUMBER OF VIOLATIONS ON 

TEST DAY

Algorithm

Uncontrolled

MPC

Optimal

Dueling DQN

DQN

PPO

Average electricity 
cost ($)

19.61

16.24

13.42

13.71

14.19

15.00

Total number of 
violations

183
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Fig. 4.　Accumulative reward during training process.
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The abscissa in Fig. 8 is the violation degree, which repre‐
sents the degree of indoor temperature crossing the bound‐
ary. It can be observed in Fig. 8 that the “Uncontrolled”,  
“MPC”, and “PPO” algorithms are relatively evenly distrib‐
uted in the four intervals, which still have some distributions 
in the interval, where the violation exceeds 0.6 ℃. The vio‐
lation degree distribution of the proposed method and the 
“DQN” algorithm is similar, while the violations always 
keep within 0.6 ℃ and most violations are distributed in 
[00.2]℃ . Obviously, the proposed method performs better 
than the “DQN” algorithm. In summary, the proposed meth‐
od has advantages in both the number of violations and the 
violation degree. The occupant violation sensitivity of the 
proposed method is detailed as follows.

C. Violation Sensitivity

The violation sensitivity refers to the occupants’  tolerance 
to the indoor temperature crossing the boundary. We believe 
that the occupants’  satisfaction consists of two aspects: econ‐
omy and comfort, but it is often difficult to guarantee both 
at the same time. If the occupants are highly sensitive to the 
comfort, the agent needs to ensure the indoor temperature 
limit firstly and ignore some economic requirements to meet 
the occupants’  comfort requirements. On the contrary, if oc‐
cupants are highly sensitive to the economic, the agent gives 
priority to maintain “off” status at high electricity prices. 
And the comfort requirements will be ignored sometimes. 
The coefficient l in (7) can be used as an adjustable parame‐
ter to balance the proportion of occupants’  demand.

The violations with different coefficients l are analyzed in 
Fig. 9. The accumulative costs and total number of viola‐
tions with different coefficients l are shown in Table II.

TABLE II
PERFORMANCE COMPARISON IN DIFFERENT l

l
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1.00

Accumulative cost ($)

926.06
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Fig. 9.　Violations with different l.

Combined with Fig. 9 and Table II, it can be observed 
that a larger l will result in a larger number and a greater de‐
gree of violations, which means better economy. If occu‐
pants are more interested in economy, a higher coefficient l 
can be set. And if they pay more attention to comfort, a low‐
er coefficient l can be set.

V. CONCLUSION 

In this paper, we introduce an adaptive scheduling strate‐
gy of residential HVAC based on dueling DQN, which can 
make the optimal scheduling strategy of HVAC according to 
the time-varying electricity prices and the uncertain ambient 
temperature. By establishing the reward mechanism accord‐
ing to the real-time prices and the indoor state information, 
the residential HVAC agent can learn the trend of the elec‐
tricity prices and the temperature changes through the histori‐
cal data, then make optimal decisions. In this process, the 
residence thermal parameters obtained by LSPE method pro‐
vide the basis for the temperature state transition matrix. The 
data of July and August in 2017 are taken as the test set to 
analyze the performance of the proposed method on electrici‐
ty cost and tolerance violations. Compared with the “Uncon‐
trolled”, “MPC”, “Optimal”, “DQN” and “PPO” algo‐
rithms, the advantages of the proposed method are verified. 
More advanced artificial intelligence methods can also be ap‐
plied within the same framework in the future.
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