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Abstract——Due to the uncertain fluctuations of renewable en‐
ergy and load power, the state variables such as bus voltages 
and pipeline mass flows in the combined cooling, heating, and 
power campus microgrid (CCHP-CMG) may exceed the secure 
operation limits. In this paper, an optimal energy flow (OEF) 
model for a CCHP-CMG using parameterized probability box‐
es (p-boxes) is proposed to describe the higher-order uncertain‐
ty of renewables and loads. In the model, chance constraints 
are used to describe the secure operation limits of the state vari‐
able p-boxes, and variance constraints are introduced to reduce 
their random fluctuation ranges. To solve this model, the 
chance and variance constraints are transformed into the con‐
straints of interval cumulants (ICs) of state variables based on 
the p-efficient point theory and interval Cornish-Fisher expan‐
sion. With the relationship between the ICs of state variables 
and node power, and using the affine interval arithmetic meth‐
od, the original optimization model is finally transformed into a 
deterministic nonlinear programming model. It can be solved 
by the CONOPT solver in GAMS software to obtain the opti‐
mal operation point of a CCHP-CMG that satisfies the secure 
operation requirements considering the higher-order uncertain‐
ty of renewables and loads. Case study on a CCHP-CMG dem‐
onstrates the correctness and effectiveness of the proposed OEF 
model.

Index Terms——Combined cooling, heating, and power campus 
microgrid (CCHP-CMG), chance-constrained programming, 
higher-order uncertainty, optimal energy flow, parameterized 
probability box.
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Gamma function

Inverse cumulative distribution function 
(CDF) of standard normal distribution

Efficiency coefficients of heat exchange 
unit and absorption chiller

Efficiency coefficients of heat pumps and 
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Power factor angle of PV station
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Lower and upper limits of heating/cooling 
power output of combined cooling, heat‐
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Loop incidence matrix of heating/cooling 
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and jth column element of node admit‐
tance matrix

Resistance coefficient of pipeline
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Lower and upper limits of active power 
output of CCHP unit at bus i

Mark of heating/cooling network (1 or -1 
represents heating or cooling network, re‐
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Set of CCHP unit access nodes
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supply temperature of CCHP unit at node i

Lower limit of heating supply temperature 
and upper limit of cooling supply tempera‐
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Lower and upper limits of the voltage am‐
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The maximum solar irradiance
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Waste heat output of CCHP unit

Heating and cooling power outputs of 
CCHP unit

Vector of heating/cooling power con‐
sumed at nodes

Power outputs of heat pump and electric 
chiller

Waste heat power of CCHP units for heat‐
ing and cooling

Heating and cooling load power

Power output of PT station

Operation cost of CCHP unit

Cost of power purchased by distribution 
network

Inverse CDF functions of Ui, mhi, mci, 
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The kth-order normalized IC of X

The ith-order normalized cumulant of X

Vector of mass flows within pipes of heat‐
ing/cooling network

Mass flows within a pipe leaving and 
coming from node

Vector of mass flows at heating/cooling 
nodes

Central value of an interval

Shape parameters of beta distribution

Active power injected by distribution net‐
work

Active and reactive power outputs of 
CCHP unit

Electricity power consumed by heat pump 
and electric chiller at bus i

Load power at bus i

Active and reactive power outputs of PV 
station at bus i

Upper bound of an interval

Sensitivity matrix of state variables with 
respect to node power

Vectors of supply and return temperatures
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C. Subscripts

(×)c 

(×)G 

(×)h 

Temperatures at start and end nodes of a 
pipe

Temperatures at inflow and outflow nodes

Affine form of u

Central value of u

The ith partial derivative of u

Voltage magnitude at bus i

Load power and solar irradiance

Deterministic variables

Parameterized p-box

Random variables

Variables of cooling network

Variables of CCHP unit

Variables of heating network

I. INTRODUCTION

IN a combined cooling, heating and power campus mi‐
crogrid (CCHP-CMG), except for supplying electrical 

loads, the waste heat from the CCHP unit is used for supply‐
ing cooling/heating loads, which can improve the efficiency 
of energy utilization. In addition, the accommodation capaci‐
ty of renewable energy can be improved by the complemen‐
tary operation of multiple energies of cooling, heating, and 
electricity in the microgrid. Thus, CCHP-CMGs have been 
widely applied in the energy supply of emerging industrial 
campuses in recent years [1], [2]. In order to further im‐
prove the secure and economic operation of the system, the 
optimal energy flow (OEF) calculation model is usually es‐
tablished to search the optimal operation point of the sys‐
tem. However, there are uncertain fluctuations in the renew‐
able energy output and load power in the CCHP-CMG, 
which have harmful effects on its secure operation. There‐
fore, it is of vital importance to take into account the uncer‐
tainty in the OEF calculation, which has been widely dis‐
cussed in the existing literature.

Currently, the most commonly used methods in the OEF 
calculation considering the uncertainty include the stochastic 
programming method, robust optimization (RO) method, in‐
terval optimization method, and information gap decision 
theory (IGDT). In [3] and [4], the uncertain variables were 
described by uncertainty and ambiguity sets, and the OEF 
problems in gas-power systems were solved by robust opti‐
mization and distributionally robust optimization (DRO) 
methods. References [5] and [6] adopted interval optimiza‐
tion method to solve the OEF models considering the uncer‐
tainty, where the uncertain variables were described as inter‐
vals. Similar to the interval optimization method, IGDT is 
another non-probabilistic decision-making method. It in‐
cludes risk-averse and risk-seeking strategies [7]. Reference 
[7] adopted both risk-averse and risk-seeking IGDT methods 
to the optimal bidding problem of electric vehicles. Refer‐
ence [8] developed a multi-objective chance-constrained IG‐

DT model to ensure the secure operation of distribution net‐
work. However, these three methods have their shortcom‐
ings. The RO method tends to focus on the most extreme 
scenario, and the optimization results are usually conserva‐
tive, and the economics of the system operation is poor. For 
the interval optimization method, the uncertain variables are 
only modeled by their upper and lower bounds, ignoring the 
probabilistic distribution information inside the intervals, and 
the statistical information in the historical data of uncertain 
variables cannot be fully utilized. The IGDT framework is 
very conservative and may lead to over-estimated actions 
[9]. It is more suitable for the uncertainty where the statisti‐
cal information in the historical data is limited [10]. In the 
stochastic programming method, the uncertain variables are 
described as random variables that obey the given probabili‐
ty distributions. In [11] and [12], the scenario method, a 
type of stochastic programming method, was used to deal 
with uncertainties of load power and renewable energy sourc‐
es in the OEF models of multi-energy systems, where a 
large number of scenarios were generated and the scenario 
reduction methods were applied. However, it is time consum‐
ing to solve the large-scale multiple scenario optimization 
model. The chance-constrained programming (CCP) method 
is another type of stochastic programming method, which 
makes decisions by setting acceptable confidence levels of 
chance constraints (CCs). Reference [13] developed the opti‐
mal scheduling model for community-integrated energy sys‐
tems, where spinning reserves were constructed in the form 
of CCs, considering the uncertainty of multiple renewable 
energy sources. Reference [14] used CCs to address the un‐
certainty problem caused by variable wind and solar power 
generation as well as load forecast errors, and developed a 
decentralized operation optimization model for an integrated 
power-gas system. Obviously, by adjusting the given confi‐
dence levels of CCs, the CCP method can achieve a trade-
off between system reliability and economy and obtain a 
more flexible decision.

In the above-mentioned publications on the stochastic pro‐
gramming method, probabilistic models are used to describe 
the uncertainty of random variables, and the accuracy of 
probabilistic models will directly affect the effectiveness of 
the decision. However, the distribution parameters of proba‐
bilistic models are usually derived from historical data, 
hence it is difficult to obtain the accurate distribution param‐
eters due to data loss, measurement errors, etc. The uncer‐
tainty of the distribution parameters of probabilistic models 
is called the higher-order uncertainty, which is a valuable is‐
sue in the optimal power flow (OPF) and OEF studies [15], 
[16]. Reference [17] proposed a robust chance-constrained 
OPF model where wind power prediction errors were as‐
sumed to obey a normal distribution and ambiguity sets 
were constructed to describe the uncertainty of moments 
such as mean and variance. Moreover, the uncertainty of the 
type of probability distribution and the distribution parame‐
ters were considered in the ambiguity set in [18], [19], and 
the OPF model based on the DRO method was proposed. 
Most of the existing literature on the OPF problem consider‐
ing the higher-order uncertainties uses the DRO method, 
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where the ambiguity set is constructed. However, the DRO 
method with moment-based ambiguity set has a complex 
computational process, which requires simplification of the 
optimization model and usually uses the linear models such 
as the DC power flow model adopted in [17], [18], and [20]. 
And it is difficult to deal with the complex nonlinear energy 
flow equations such as the hydraulic and thermal models of 
the heating/cooling network in the integrated energy system 
[21]. Currently, the higher-order uncertainties in the OEF of 
gas-electric integrated system were analyzed in [20], where 
the gas network model can be easily transformed into a lin‐
ear model. But no publications have focused on the OEF 
considering higher-order uncertainty of a CCHP-CMG in‐
cluding the complex nonlinear heating/cooling network mod‐
el. Therefore, in this paper, the CCs of probability boxes (p-
boxes) of state variables are used to describe the secure oper‐
ation limits, and the variance constraints (VCs) of p-boxes 
of state variables are introduced to reduce their random fluc‐
tuations, and an OEF calculation method for a CCHP-CMG 
is proposed.

This paper makes three contributions. ① The parameter‐
ized p-boxes are used to describe the higher-order uncertain‐
ty of renewables and loads, and an OEF model for a CCHP-
CMG including the CCs and VCs of the p-boxes of state 
variables is proposed. The CCs of the state variable p-boxes 
are used to describe the secure operation limits, and the VCs 
are introduced to reduce the random fluctuations of the state 
variable p-boxes. ② The CCs and VCs of the p-boxes are 
transformed into the constraints of the interval cumulants 
(ICs) of state variables by the p-efficient point theory and 
the interval Cornish-Fisher expansion. With the relationship 
between the ICs of state variables and node power, and by 
the affine interval arithmetic, the original optimization model 
is transformed into a deterministic nonlinear programming 

model, which can be solved by the CONOPT solver. ③ In 
the case study of a CCHP-CMG, comparative results of de‐
terministic OEF, traditional CCP-based OEF, and the pro‐
posed OEF considering the higher-order uncertainty demon‐
strate that the optimal operation point obtained by the pro‐
posed OEF can ensure that the p-boxes of state variables sat‐
isfy the secure operation requirement with reduced random 
fluctuations when considering the higher-order uncertainty of 
renewables and loads.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the structure of a CCHP-CMG and the tra‐
ditional CCP-based OEF model. Section III develops the 
OEF model of the CCHP-CMG including the CCs and VCs 
of p-boxes considering the higher-order uncertainty of renew‐
ables and loads. Section IV presents the solution method for 
the proposed OEF model. Section V shows the case study 
and result analysis. Section VI concludes this paper.

II. TRADITIONAL OEF MODEL FOR A CCHP-CMG BASED 
ON CHANCE-CONSTRAINED PROGRAMMING

A. Structure of a CCHP-CMG

The structure and multiple energy supply process of a 
CCHP-CMG is shown in Fig. 1, including the CCHP units 
(gas generators, absorption chillers, heat exchange units), 
heat pumps, electric chillers, photovoltaic (PV), and photo‐
thermic (PT) stations, and other components. Among them, 
CCHP units supply the electricity, heating, and cooling load 
demands of users in the CCHP-CMG, and the insufficient 
electricity, heating, and cooling load demands are supple‐
mented by external distribution network, heat pumps, and 
electric chillers, respectively. Additionally, the PV/PT sta‐
tions provide clean energy for electricity and heating loads 
in the CCHP-CMG [21], [22].

B. Traditional CCP-based OEF Model

1) Objective Function
The objective of the traditional CCP-based OEF model is 

to minimize the total operation cost of the CCHP-CMG, as:

min (CCCHP +CDN ) (1)

According to [23], the operation cost of the CCHP unit is 
given by:

CCCHP =∑
iÎ SG

(a5i PGiΦGi + a4i P
2
Gi + a3i PGi + a2iΦ

2
Gi + a1iΦGi + a0i )

(2)

The power purchase cost from the external distribution 
network can be calculated by:

CDN = cDN PDN (3)

2) Operation Constraints
The electricity network operation constraints include the 

Heating network;Cooling network; Electricity network

Energy station

User jUser 2

G Absorption

chiller

Electric chiller

1 2 j

1 2 j

Heat exchange

unit

Heat pump

1 2 j

Distribution

network

Gas

generator

User 1
PT

station

PV

Fig. 1.　Structure and multiple energy supply process of a CCHP-CMG.
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power balance equation (4) and the active power output and 
terminal voltage limits of generators shown in (5).

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

PGi -PHPi -PECi -PLi +PPVi =Ui∑
j = 1

n

Uj (Gij cos δij +Bij sin δij )

QGi -QLi +QPVi =Ui∑
j = 1

n

Uj (Gij sin δij -Bij cos δij )

 (4)

{PGimin £PGi £PGimax

UGimin £UGi £UGimax

(5)

The operation characteristics of heating/cooling network 
include the hydraulic model and the thermal model. The hy‐
draulic model includes the mass flow continuity equation (6) 
and loop pressure equation (7) [21].

Ah/cmh/c =mqh/c (6)

Bh/c Kmh/c| mh/c | = 0 (7)

The thermal model includes the power balance equation 
of nodes (8), the temperature drop equation of pipelines (9), 
and the temperature mixing equation of nodes (10) [21]. In 
(8), for the heating network, Φh=ΦL,h− (ΦG,h+ΦHP+ΦPT); for 
the cooling network, Φc=ΦL,c−(ΦG,c+ΦEC).

Φh/c = cwmqh/c s(Tsh/c -Trh/c ) (8)

Tend = (Tstart - Ta )e
-

L
mcw R + Ta

(9)

∑minT in = ( )∑mout Tout (10)

In addition, to ensure the secure operation, the heating/
cooling power output limits and the supply temperature lim‐
its of the CCHP units are also required, as shown in (11) 
and (12), respectively.

ΦGih/cmin £ΦGih/c £ΦGih/cmax (11)

TGsih/cmin £ TGsih/c £ TGsih/cmax (12)

The relationship between waste heat and electric power 
output of the CCHP unit is shown as follows [21]:

CG =ΦG/PG (13)

The waste heat is transformed into heating and cooling en‐
ergies by heat exchange units and absorption chillers, respec‐
tively, and the energy conversion relationships are shown as:

ì

í

î

ïïïï

ïïïï

ΦG =ΦH +ΦC

ΦGh = ηHEΦH

ΦGc = ηACΦC

(14)

Similarly, the energy conversion relationships of other en‐
ergy coupling elements such as heat pumps or electric chill‐
ers are as follows:

ì
í
î

ΦHP = ηHP PHP

ΦEC = ηEC PEC
(15)

3) Chance Constraints of State Variables
When considering the uncertainty of load power and PV/

PT power output, the state variables in the CCHP-CMG also 
have uncertainty. In the CCP-based OEF model, the CCs are 
used to describe the secure limits of uncertain state vari‐

ables. The CCs of bus voltages are shown in (16), the CCs 
of pipeline mass flows are as (17), and the CCs of heating 
and cooling load node supply temperatures are as in (18) 
and (19), respectively.

ì
í
î

Pr{Ui £Uimax }³ αUmax

Pr{Uimin £Ui }³ αUmin

(16)

ì
í
î

Pr{mh/ci £mh/cimax }³ αmh/cmax

Pr{mh/cimin £mh/ci }³ αmh/cmin

(17)

Pr{Tshimin £ Tshi }³ αTshmin (18)

Pr{Tsci £ Tscimax }³ αTscmax (19)

where Pr{·} is the probability function.
The traditional CCP-based OEF model is shown in (20). 

In this model, the decision variables include the electricity/
heating/cooling power output, generator voltage, and supply 
temperature of CCHP units. The state variables include the 
bus voltages, pipeline mass flow rates, and node supply/re‐
turn temperatures. The input random variables include the 
electricity/heating/cooling load power and the PV/PT power 
output. By solving the above model, the optimal operation 
point, which minimizes the total operation cost considering 
the uncertain node power, can be obtained.

ì
í
î

min (CCCHP +CDN )

s.t.  (4)-(19)
(20)

In the traditional CCP-based OEF model, the cumulative 
distribution functions (CDFs) or probability density func‐
tions (PDFs) are used to describe the random variables of un‐
certain node power. The distribution parameters in the CDFs 
or PDFs are definite values. However, when the CDFs or 
PDFs of random variables are obtained by the statistical anal‐
ysis of historical data, due to the absence of some historical 
data and the errors of measurement instruments, there may 
be uncertainties in the distribution parameters of uncertain 
node power. The uncertainties of the distribution parameters 
in the CDFs or PDFs are called higher-order uncertainties 
[15], [16]. Thus, when considering the higher-order uncer‐
tainties of the random variables, the optimal operation point 
obtained by the traditional CCP-based OEF model may still 
have the risks that the state variables exceed the secure oper‐
ation limits.

III. OEF MODEL OF CCHP-CMG CONSIDERING 
HIGHER-ORDER UNCERTAINTY OF RENEWABLES AND 

LOADS

The parameterized p-box model is used to describe the 
higher-order uncertainty of renewables and loads, and the 
OEF model of a CCHP-CMG considering the higher-order 
uncertainty of renewables and loads is proposed.

A. p-box Model for Uncertain Renewables and Loads

The p-box model combines the probability model and the 
interval model to describe the uncertain fluctuation character‐
istics of a random variable by the upper and lower bounds 
of its CDF curve [24], as shown in Fig. 2. If the type of 
probabilistic distribution function of an uncertain variable is 
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determined and the interval numbers are used to describe its 
distribution parameters, this type of p-box is called a parame‐
terized p-box, which can be described as:

X P ={FX (x[θ])|[θ]=[-θ θ̄]} (21)

In the CCHP-CMG, the electricity/cooling/heating load 
power is assumed to obey the normal distribution, and its 
PDF fWL(wL) is shown as (22). Then, the p-box of the load 
power is expressed in the form as (23).

fWL (wL )=
1

2π σL

exp ( )-
(wL - μL )2

2σ 2
L

(22)

W P
L ={FWL (wL[μL ][σ 2

L ])|[μL ]=[
-
μ

L
μ̄L ][σ 2

L ]=[-σ
2
Lσ̄

2
L ]}   (23)

Assuming that the solar irradiance obeys the Beta distribu‐
tion, its PDF fWR(wR) is shown as (24) [25], [26].

fWR (wR )=
Γ(pα + pβ )

Γ(pα )Γ(pβ )
(wR /wRmax )pα - 1 (1 -wR /wRmax )pβ - 1

  

(24)

The p-box model of wR is expressed as follows:

W P
R ={FWR (wR[pα ][pβ ])|[pα ]=[

-
p
α
p̄α ][pβ ]=[ p̄β-p β

]}   (25)

The PV and PT station outputs are calculated by wR:

ì

í

î

ïïïï

ïïïï

PPV =wR APVηPV

QPV =PPV tan θPV

ΦPT =wR APTηPT

(26)

B. Chance Constraints of State Variable p-boxes

When considering the higher-order uncertainty of the node 
power, the obtained state variables will also have higher-or‐
der uncertainty and can be described as p-boxes. Thus, the 
CCs of bus voltage p-box are described as (27). The proba‐
bility Pr{Ui £Ui,max } is an interval instead of a definite value 
due to the p-box of bus voltage. To ensure the secure opera‐
tion, the lower bound of the interval should be greater than 
the confidence level αU,max. As shown in Fig. 3, the probabili‐
ty corresponding to point A requires to be greater than αU,max. 
Similarly, the probability Pr{Ui,min £Ui } is also an interval, 
and the CC of the p-box requires the lower bound of this in‐
terval to be greater than the confidence level αU,min.

ì
í
î

inf(Pr{Ui £Uimax })³ αUmax

inf(Pr{Uimin £Ui })³ αUmin

(27)

where inf(·) indicates obtaining the lower bound of an inter‐
val.

The CCs of the p-boxes of pipeline mass flows and node 
supply temperatures can also be described as (28)-(30).

ì
í
î

inf(Pr{mh/ci £mh/cimax })³ αmh/cmax

inf(Pr{mh/cimin £mh/ci })³ αmh/cmin

(28)

inf(Pr{Tshimin £ Tshi })³ αTshmin (29)

inf(Pr{Tsci £ Tscimax })³ αTscmax (30)

C. Variance Constraints of State Variable p-boxes

The variance of a random variable reflects its random fluc‐
tuation range. For the p-box of a state variable, each CDF 
curve corresponds to a variance value, and the variance of 
the p-box is an interval instead of a definite value. Thus, the 
random fluctuation range of the p-box is reflected by its vari‐
ance interval. In the operation of CCHP-CMG, the state vari‐
able p-boxes are not only required to satisfy the secure CCs, 
but also required to reduce the random fluctuation ranges of 
state variables. The VCs of the voltage, mass flow, and sup‐
ply temperature are as follows:

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ï
ïï
ï

ï

ï

0 £mid([σ 2
Ui ])£ σ

2
Umax

0 £mid([σ 2
mhi ])£ σ

2
mhmax

0 £mid([σ 2
mci ])£ σ

2
mcmax

0 £mid([σ 2
Tshi ])£ σ

2
Tshmax

0 £mid([σ 2
Tsci ])£ σ

2
Tscmax

(31)

Therefore, the proposed OEF model of a CCHP-CMG 
considering higher-order uncertainty is shown as:

ì
í
î

min (CCCHP +CDN )

s.t.  (4)-(15) (27)-(31)
(32)

IV. SOLUTION METHOD FOR PROPOSED MODEL

For solving the optimization model (32), it is a critical 
and difficult task to transform the CCs and VCs of the state 
variable p-boxes to deterministic constraints. In this paper, 
the CCs and VCs of the p-boxes are transformed into con‐
straints of various order cumulant intervals based on the p-ef‐
ficient point theory and interval Cornish-Fisher expansion 
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method. And then, the IC method in [22] and affine algo‐
rithm are introduced to transform the CCs and the VCs of p-
boxes into deterministic constraints.

A. Transformation of CCs and VCs of p-boxes

The p-efficient point theory can be used to transform the 
CCs in the stochastic programming model into deterministic 
constraints [27]. A stochastic programming model with CCs 
is given as follows.

ì

í

î

ïïïï

ïïïï

min
x

f (x)

s.t.  Pr{g(x)³Z}³ p

        xÎX

(33)

The CDF of a random variable Z is given as FZ (z)= Pr{Z £
z}. Then, the p-level set is defined as Zp ={zÎRm: FZ (z)³ p}, 
and thus, the stochastic programming model (33) can be re‐
written as:

ì

í

î

ïïïï

ïïïï

min
x

f (x)

s.t.  g(x)Î Zp

       xÎX

(34)

Let pÎ(01), if FZ (zp )³ p and there is no point, z £ zp, 
z ¹ zp such that FZ (z)³ p, then zp is called the p-efficient 
point of the CDF FZ(z). It is stated in [27] that if the random 
variable Z is a scalar random variable, i.e., m = 1, the p-effi‐
cient point zp =F -1

Z (p). If the p-efficient point zp of Z is 
known, then from (34), the stochastic programming model 
(33) can be transformed into the following form.

ì

í

î

ïïïï

ïïïï

min
x

f (x)

s.t.  g(x)³ zp

       xÎX

(35)

Then, the CCs in (33) are transformed into deterministic 
constraints in (35). Thus, based on the p-efficient point theo‐
ry, the CCs of the p-boxes of (27)-(30) can be transformed 
into the forms as follows:

ì
í
î

ïï
ïï

sup(F -1
Ui (αUmax ))£Uimax

inf(F -1
Ui (1 - αUmin ))³Uimin

(36)

ì
í
î

ïï
ïï

sup(F -1
mh/ci (αmh/cmax ))£mh/cimax

inf(F -1
mh/ci (1 - αmh/cmin ))³mh/cimin

(37)

inf(F -1
Tshi (1 - αTshmin ))³Tshimin (38)

sup(F -1
Tshi (αTscmax ))£Tscimax (39)

The difficulty in the calculation of (36) - (39) is the solu‐
tion of the inverse CDF functions, since the probability dis‐
tribution models of PV/PT power outputs are all non-Gauss‐
ian. Thus, there is no deterministic probability distribution 
type for state variables, and the exact analytical expressions 
of the CDFs and the corresponding inverse functions for 
state variables cannot be obtained.

The calculation of the Cornish-Fisher expansion method 
can be found in [28]. Assume that the quantile of an output 
random variable X is α (0 < α < 1), then, its corresponding 
value x of the random variable can be expressed as:

x = c(α)= γ(1)
X + (γ(2)

X )
1
2{ζ (α)+

ζ 2 (α)- 1
6

g3 +
ζ 3 (α)- 3ζ (α)

24
g4 -

}2ζ 3 (α)- 5ζ (α)
36

g 2
3 +

ζ 4 (α)- 6ζ 2 (α)+ 3
120

g5 + (40)

gk can be obtained by:

gk = γ
(k)
X /σ k

X = γ
(k)
X /(γ(2)

X )
k
2 (41)

As observed from the above equation, the Cornish-Fisher 
expansion can be used to obtain the corresponding value of 
the random variable at a given quantile. Thus, the inverse 
CDF function F -1

Ui (×), F -1
mhi (×), F -1

mci (×), F -1
Tshi (×) and F -1

Tcsi (×) in 
(36)-(39) can be calculated by the Cornish-Fisher expansion. 
Since the output random variables are p-boxes, the results of 
the inverse CDF functions of the output random variables 
with respect to a quantile are intervals; thus, the Cornish-
Fisher expansion needs to be extended to the following inter‐
val Cornish-Fisher expansion for the transformation of the 
CCs of p-boxes:

[x]=[c(α)]=[γ(1)
X ]+ ([γ(2)

X ])
1
2{ζ (α)+

ζ 2 (α)- 1
6

[g3 ]+

ζ 3 (α)- 3ζ (α)
24

[g4 ]-
2ζ 3 (α)- 5ζ (α)

36
[g 2

3 ]+

ζ 4 (α)- 6ζ 2 (α)+ 3
120

[g5 ]+} (42)

[gk ] can be obtained as:

[gk ]=[γ(k)
X ]/([σX ])k =[γ(k)

X ]/([γ(2)
X ])

k
2 (43)

The CCs of p-boxes as (36)-(39) can be transformed into 
the following forms by the interval Cornish-Fisher expansion.

ì
í
î

sup([c(αUmax )])£Uimax

inf ([c(1 - αUmin )])³Uimin

(44)

ì
í
î

sup([c(αmh/cmax )])£mh/cimax

inf ([c(1 - αmh/cmin )])³mh/cimin

(45)

inf(c(1 - αTshmin ))³Tshimin (46)

sup(c(αTscmax ))£Tscimax (47)

Further, in the above optimization model, the 2nd-order 
ICs of random variables is their variance intervals, and thus, 
the VCs in (31) can be transformed into constraints on the 
central value of the 2nd-order ICs, as shown in (48).

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ï
ïï
ï

ï

ï

0 £mid([γ(2)
Ui ])£ σ

2
Umax

0 £mid([γ(2)
mhi ])£ σ

2
mhmax

0 £mid([γ(2)
mci ])£ σ

2
mcmax

0 £mid([γ(2)
Tshi ])£ σ

2
Tshmax

0 £mid([γ(2)
Tsci ])£ σ

2
Tscmax

(48)

B. Representation of Relationship Between ICs of State Vari‐
ables and Node Power

The IC method proposed in [22] is introduced to obtain the 
relationship between the ICs of state variables and node pow‐
ers. Given that the kth-order IC of the node power fluctuations 
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is [γ(k)
DW ], the kth-order IC of the state variable fluctuations can 

be obtained from the following equation.

[γ(k)
DX ]= S k [γ(k)

DW ]    kÎN+ (49)

where [γ(k)
DX ]= [[γ(k)

DU ];[γ(k)
Dmh ];[γ(k)

Dmc ];[γ(k)
DTsh ];[γ(k)

DTsc ]]; [γ(k)
DW ]= [[γ(k)

DPe ]; 
[γ(k)

DQe ];[γ(k)
DΦh ];[γ(k)

DΦc ]]; and S k  is the matrix composed of the 
kth power of each element in the sensitivity matrix S. [γ(k)

DW ] 
can be calculated from the probabilistic model and distribu‐
tion parameters of the renewables and loads by the method 
in [22]. [γ(k)

DU ], [γ(k)
Dmh ], [γ(k)

Dmc ], [γ(k)
DTsh ], [γ(k)

DTsc ] are the kth-order IC 
vectors of the fluctuations of bus voltage, heating/cooling 
pipeline mass flow, and heating/cooling node supply temper‐
ature, respectively. The sensitivity matrix S can be obtained 
from the inverse of the Jacobi matrix. And the Jacobi matrix 
is calculated from the partial derivatives of the energy flow 
equation of the CCHP-CMG with respect to the state vari‐
ables by substituting the values of the state variables in the 
optimal operation point. Hence, the components in the ma‐
trix S are associated with the decision variables.

Combined with the state variables X0 (X0 =[U0; mh0; mc0 ; 
Tsh0 ; Tsc0 ]) in the steady operation point corresponding to the 
expected values of random variables, the kth-order ICs of 
state variables can be obtained as:

ì
í
î

ïï[γ(1)
X ]=[γ(1)

DX ]+X0

[γ(k)
X ]=[γ(k)

DX ]    k ³ 2
(50)

where [γ(k)
X ]=[[γ(k)

U ];[γ(k)
mh ];[γ(k)

mc ];[γ(k)
Tsh ];[γ(k)

Tsc ]] is the kth-order IC 
vector of state variables.

C. Affine Interval Arithmetic Method

There are lots of interval operations in the calculation of 
the CIs of state variables and the interval Cornish-Fisher ex‐
pansion, and the above transformed optimization model is an 
interval optimization model. To deal with the interval exten‐
sion problem that exists in interval arithmetic, the intervals 
are expressed as affine forms in the solution of the optimiza‐
tion model.

Assume that an uncertain variable uÎ[-u ū] is subject to n 
independent noise symbols, and then, u can be expressed in 
the following affine form [29], [30]:

û = u0 + u1ε1 + + unεn =∑
i = 1

n

uiεi (51)

The affine form and interval of an uncertain variable are 
interconvertible. The interval form corresponding to (51) is:

ì

í

î

ïïïï

ïïïï

[-u ū]=[u0 - ξu0 + ξ]

ξ =∑
i = 1

n

|ui|
(52)

Given an interval form [u], let u0 = (-u + ū)/2 and u1 = (ū -

-u )/2; then, the corresponding affine form is:

[u]=[-u ū]Þ û = u0 + u1ε1    ε1Î[-11] (53)

When the affine arithmetic is used to deal with linear op‐
erations, if the affine numbers û = u0 + u1ε1, v̂ = v0 + v1ε1, and 
the constant C are given, the following equation is obtained 
according to the rules of affine arithmetic.

ì

í

î

ïïïï

ïïïï

Cû =Cu0 +Cu1ε1

û ±C = (u0 ±C)+ u1ε1

û ± v̂ = u0 ± v0 + (u1 ± v1 )ε1

(54)

When the affine arithmetic is used to deal with nonlinear 
operations, new noise element is generated for each affine 
multiplication/division, and the partial derivative of the noise 
element is obtained by Chebyshev approximation or mini‐
mum range approximation [31], which may have approxima‐
tion errors. Moreover, the accumulation of additional noise 
elements may lead to interval extension [32], and the addi‐
tional noise elements also increase the complexity of solving 
the optimization model. Therefore, the nonlinear operations 
for affine forms are executed according to the following rules.

1) If the nonlinear function is monotonic, the central value 
and the 1st-order partial derivative of the output interval are 
calculated according to the monotonicity.

For example, the affine form of standard deviation σ̂X of 
the state variable X is calculated as follows:

σ̂X = σX0 + σX1ε1 = γ̂(2)
X = γ(2)

X0 + γ
(2)
X1ε1 (55)

Since the square root operation is monotonically increas‐
ing, σX,0 and σX,1 can be obtained by:

ì

í

î

ïïïï

ï
ïï
ï

σX,0 = γ(2)
X,0 + γ

(2)
X1 +

1
2

γ(2)
X,0 - γ

(2)
X1

σX1 = γ(2)
X,0 + γ

(2)
X1 -

1
2

γ(2)
X,0 - γ

(2)
X1

(56)

2) If the nonlinear function is non-monotonic, the central 
value and the 1st-order partial derivative of the output interval 
are calculated based on the interval Taylor series expansion.

Given the interval function [y]= f ([u]), the first-order inter‐
val Taylor series expansion of the interval function f ([u]) at 
the central value of the interval [u], i.e., u0, is as (57) [33].

[y]= f ([u])= f (u0 )+
|

|

|
||
|∑

k = 1

m ¶f (u)
¶uk u = u0

([uk ]- u0k ) (57)

where uk (k = 1, 2, ..., m) is the kth element in u; and u0k is the 
kth element in u0.

Thus the 1st-order affine form of the output interval ŷ = y0 +
y1ε1 can be obtained from:

ì

í

î

ï
ïï
ï

ï
ïï
ï

y0 = f (u0 )

y1 =∑
k = 1

m |

|

|

|
||
|

||

|

|

|
||
|

| |

|
|
||
|¶f (u)

¶uk u = u0

uk1
(58)

where uk,1 is the 1st-order partial derivative of the affine form 
of uk.

Thus, in the optimization model, the intervals are trans‐
formed into affine forms according to (53) and calculated ac‐
cording to the rules shown in (54)-(58).

D. Transformed Deterministic Optimization Model

In summary, the OEF model considering the higher-order 
uncertainty in (32) can be transformed into the form as (59). 
In this optimization model, all the intervals are transformed 
into affine forms according to (53)-(58). Therefore, the OEF 
model considering the higher-order uncertainty as (32) is 
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transformed into a deterministic optimization model, which 
can be efficiently solved by the CONOPT solver in the ma‐
ture commercial optimization software GAMS [34].

ì
í
î

min (CCCHP +CDN )

s.t.  (4)-(15) (44)-(50)
(59)

V. CASE STUDY

A. Structure and Parameters of CCHP-CMG

The structure of a CCHP-CMG is shown in Fig. 4, which 
is divided into two energy supply areas (Area I and Area II) 
with three energy stations.

The cooling and heating networks in the CCHP-CMG 
have the same structure, both including 49 nodes and 49 
pipelines. Energy stations I, II, and III are located at nodes 
49, 48, and 47, and energy stations II and III are the balanc‐
ing nodes of heating and cooling network, respectively. The 
electricity network includes 91 buses, energy stations I-III 
are located at the buses 90, 89, and 91, respectively. The bus 
88 connected to the public distribution network is set as the 
swing bus and its voltage is fixed at 1.05 p.u.. The generat‐
ed electric power of the CCHP units in the energy stations I-
III is determined by their heating power output. The PV and 

PT stations are connected to the load buses/nodes of the elec‐
tricity and heating networks, respectively. The central values 
of the shape parameter intervals [pα ] and [pβ ] of the solar ir‐
radiance are given as 0.6798 and 1.7788 [18], respectively, 
and the radii of the intervals are given as 1.5% of the central 
values. The power output of the PV station at each electric 
load bus accounts for 15% of its electrical load power, and 
the power output of the PT station at each heating load node 
accounts for 5% of its heating load power [22]. The central 
values of the mean intervals [μL ] of the electricity/heating/
cooling loads are given by the data in [22], the radius of the 
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Fig. 4.　Structure of CCHP-CMG.
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mean interval is given as 1.5% of the central value, and the 
standard deviation interval [σL ]= 5%·[μL ]. The cost coeffi‐
cients a0i, a1i, a2i, a3i, a4i, a5i can be set as the values in [23], 
i.e., a0i = ¥1250, a1i = 0.6 ¥/kW, a2i = 0.027 ¥/kW2, a3i = 14 ¥/
kW, a4i = 0.0435 ¥/kW2, and a5i = 0.011 ¥/kW2. The unit pow‐
er purchase price cDN is 1.0 ¥/kWh.

In the case study, the voltage regulation range of the 
CCHP unit is [1.05, 1.10]p.u. and the temperature regulation 
ranges are as follows: TGsih,min = 80 ℃ , TGsih,max = 90 ℃ , 
TGsic,min = 4 ℃, TGsic,max = 8 ℃. The secure limits of state vari‐
ables are as follows: Ui,min = 0.95 p.u., Ui,max = 1.05 p.u., mhi,min =
−15 kg/s, mhi,max = 15 kg/s, mci,min =−150 kg/s, mci,max = 150 kg/
s, Tshi,min = 80 ℃ , and Tsci,max = 10 ℃ . In the CCs of p-boxes 
of state variables, the confidence levels for all CCs are given 
as 0.95. The used computer is a PC with an Intel Core i7-
8700 CPU and 32 GB RAM. The optimization model is 
solved by the CONOPT solver in GAMS software, version 
GAMS win 64 23.9.5.

Four different methods are used for comparison, as shown 
in Table I. 

The deterministic OEF model is shown in (60). The IGDT-
based OEF model is shown in (61) [35].

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

min (CCCHP +CDN )

s.t.  (4)-(15)

       Uimin £Ui £Uimax

       mh/cimin £mh/ci £mh/cimax

       Tsh/cimin £ Tsh/ci £ Tsh/cimax

(60)

ì

í

î

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

max α
s.t.  fob £ fob0 (1 + δob )

       fob =CCCHP +CDN

       (2)-(15)

       Uimin £Ui £Uimax

       mh/cimin £mh/ci £mh/cimax

       Tsh/cimin £ Tsh/ci £ Tsh/cimax

       wL = (1 + α)×mid([μL ])

       PPVi = (1 - α)×mid([PPVi ])

       QPVi = (1 - α)×mid([QPVi ])

       ΦPT = (1 - α)×mid([ΦPT ])

(61)

where α is the maximum fluctuation range; fob is the objec‐
tive function; fob,0 is the base level of the objective function 
(obtained by deterministic OEF algorithm); and δob is the ac‐
ceptable level of the objective function.

B. Analysis of Results of Traditional CCP-based OEF

The probability distribution parameters of random vari‐
ables are taken as the central values of their given intervals, 
and the optimal operation point is obtained by solving the 
traditional CCP-based OEF model (20). With this optimal op‐
eration point, the upper and lower bounds of all the state 
variables under the probability models and the p-box models 
of node power random variables are calculated, respectively. 
For the heating/cooling network, the mass flows of the ener‐
gy station output pipelines are significantly larger than those 
of the other pipelines, which are easier to exceed the upper 
limit. Thus, the following analysis focuses on the mass flow 
of the energy station output pipelines, i. e., pipes (47) - (49), 
and their fluctuation intervals are shown in Table II. Since 
the energy station II connected to the heating pipeline (48) 
is the heating network balance node, it bears the unbalanced 
power caused by the uncertain fluctuation of renewables and 
loads; hence, the mass flow of pipeline (48) is a fluctuation 
interval. While the energy stations connected to the heating 
pipelines (47) and (49) are the common source nodes of the 
heating network, their heating power outputs are control vari‐
ables, hence, their mass flows are definite values and main‐
tain constant in the uncertainty analysis. Similarly, for the 
cooling network, the mass flow of the pipeline (47) connect‐
ed to the cooling network balance is a fluctuation interval, 
while the mass flows of the pipelines (48) and (49) connect‐
ed to the common cooling source nodes are definite values. 
As observed in Table II, for the optimal operation point of 
the traditional CCP-based OEF, the mass flows of heating/
cooling output pipes of the energy stations all satisfy the se‐
cure operation constraints. However, if the higher-order un‐
certainty is considered, the upper limit of the mass flow p-
box of the heating pipe (48) is 15.70 kg/s, which exceeds 
the upper limit constraint (15 kg/s); and the upper limit of 
the mass flow p-box of the cooling pipe (47) is 153.80 kg/s, 
which exceeds the upper limit constraint (150 kg/s). Both 
are clearly at risk of exceeding the safe operation limits.

Similarly, the buses 47 and 49 of the electricity network 
have heavy loads, whose voltage amplitudes U47 and U49 
have a higher risk of exceeding the limit. Thus, taking them 
as examples, their fluctuation intervals are shown in Table 
III. It can be observed that the fluctuation intervals of U47 
and U49 obtained from the traditional chance constraint mod‐
el satisfy the safety constraints. However, when the higher-
order uncertainty is considered, the lower bounds of the p-
boxes of U47 and U49 are 0.9481 and 0.9490, respectively, 
with the risk of exceeding the lower limit.

TABLE II
MASS FLOW BOUNDS OF HEATING AND COOLING PIPELINES CONNECTED TO 

ENERGY STATIONS OBTAINED BY PROBABILITY AND P-BOX MODELS

Variable

mh

mc

Random model

Probability

p-box

Probability

p-box

Mass flow bound (kg/s)

(47)

10.52

[142.33, 150.00]

[138.53, 153.80]

(48)

[11.54, 15.00]

[10.83, 15.70]

65.01

(49)

11.48

72.05

TABLE I
MATHEMATICAL MODELS OF FOUR METHODS

No.

I

II

III

IV

Method

Proposed OEF considering the higher-order uncertainty

Deterministic OEF

Traditional CCP-based OEF

IGDT-based OEF

Equation

(32) or (59)

(60)

(20)

(61)
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Obviously, there are limitations in the traditional CCP-
based OEF model because the higher-order uncertainties in 
the probabilistic model of uncertain variables are ignored, 
and thus the state variables may still have the risk of exceed‐
ing the limits when the uncertain distribution parameters of 
the renewables and loads are considered in the obtained opti‐
mal operation point. Therefore, it is necessary to consider 
the higher-order uncertainty of renewables and loads in the 
OEF calculation of the CCHP-CMG.

C. Analysis of OEF Calculation Results Considering Higher-
order Uncertainty

1) OEF Calculation Results
The upper limits of the variance intervals σ 2

Umax of the 
load bus voltages and the heating and cooling pipeline mass 
flows are given as 5.0 ´ 10-5, 1.000, and 3.000, respectively. 
The optimal operation point obtained from the proposed 
OEF method considering higher-order uncertainty is com‐
pared with that obtained from the deterministic OEF method 
to reflect the control effect of the CCs and VCs of the p-box‐
es. Taking the cooling pipeline mass flow mc47 as an exam‐
ple, given the p-boxes of solar irradiance and loads, the p-
boxes of mc47 corresponding to the optimal operation points 
obtained by the two methods are shown in Fig. 5. In the op‐
timal operation point obtained by Method II, when consider‐
ing the higher-order uncertainty of renewables and loads, the 
obtained p-box of mc47 greatly exceeds the upper limit. How‐
ever, the fluctuation range of the p-box of mc47 correspond‐
ing to the optimal operation point obtained by Method I can 
satisfy the secure operation constraint, and the fluctuation 
range of the p-box is obviously reduced, i. e., the random 
fluctuation degree of the p-box is also reduced.

In the optimal operation points obtained by Method I and 
Method II, considering the higher-order uncertainty of renew‐
ables and loads, the p-box bounds of mass flow of heating 
output pipes of the energy stations are shown in Table IV, 
and the central values and radii of their variance intervals 

are shown in Table V. It can be observed that in the results 
obtained from Method II, the upper bounds of the p-box 
fluctuation ranges of mh48 and mc47 are 16.19 kg/s and 156.55 
kg/s, respectively, both exceeding the upper limits of secure 
operation. However, in the results obtained from Method I, 
the p-box fluctuation ranges of all the above variables can 
satisfy the secure operation constraints. Moreover, the cen‐
tral and radius values of the variance intervals of mh48 and 
mc47 by the Method I are significantly reduced, which can ef‐
fectively reduce the fluctuation ranges of the p-boxes of mh48 
and mc47.

Comparison of the p-box fluctuation ranges of the supply 
temperatures of the heating/cooling load nodes obtained by 
Method I and Method II are shown in Fig. 6 and Fig. 7, re‐
spectively. It can be observed that the p-boxes of supply tem‐
perature at some heating load nodes obtained from Method 
II have the risk of exceeding the lower limit, while the fluc‐
tuation ranges of the p-boxes of all supply temperatures ob‐
tained from Method I satisfy the given secure operation con‐
straints. In addition, due to the heating load nodes are con‐
nected to the PT stations, the uncertain fluctuations of renew‐
ables lead to larger fluctuation ranges of supply temperature 
p-boxes at the heating node than those at the cooling nodes.

~ ~
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cooling pipelines

Fig. 5.　p-boxes of mc47 obtained by different methods.

TABLE III
VOLTAGE AMPLITUDE BOUNDS OBTAINED BY PROBABILITY AND P-BOX 

MODELS

Random model

Probability

p-box

Voltage amplitude bound (p.u.)

U47

[0.9500, 0.9738]

[0.9481, 0.9756]

U49

[0.9509, 0.9642]

[0.9490, 0.9769]

TABLE V
CENTRAL VALUES AND RADII OF VARIANCE INTERVALS OF P-BOXES OF mh48 

AND mc47

Method

I

II

mh48

Central value

1.000

1.149

Radius

0.019

0.022

mc47

Central value

3.000

5.543

Radius

0.045

0.083
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Fig. 6.　 p-box fluctuation bounds of supply temperature at heating load 
nodes.

TABLE IV
P-BOX BOUNDS OF MASS FLOW OF HEATING OUTPUT PIPES OF ENERGY 

STATIONS

Method

I

II

Variable

mh

mc

mh

mc

Mass flow bound (kg/s)

(47)

10.19

[97.03, 108.50]

11.24

[141.13, 156.55]

(48)

[8.22, 12.87]

41.58

[11.23, 16.19]

64.90

(49)

12.52

69.03

10.88

72.47
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For the electricity network, in the optimal operation point 
obtained by Method I and Method II, the p-box fluctuation 
ranges of the load bus voltages are shown in Fig. 8, and the 
central values and radii of their variance intervals are shown 
in Fig. 9.

It can be observed that the lower bounds of p-box fluctua‐
tion ranges of U47 and U49 (i.e., U P

47inf and U P
49inf) correspond‐

ing to the optimal operation point obtained by Method II ex‐
ceed the secure operation limits. However, for the optimal 
operation point obtained by Method I, the lower bounds of 
all the bus voltage p-boxes can satisfy the secure operation 
requirements (U P

47inf = 0.9638 p.u. and U P
49inf = 0.9646 p.u.); 

and the maximum upper bound of all the bus voltage p-box‐
es is 1.0467, which also satisfies the secure operation re‐
quirement. In addition, the central values and radii of vari‐

ance intervals of bus voltages were reduced. Among them, 
the central values of variance intervals of U47 and U49 de‐
crease from 5.10 ´ 10-5 and 5.27 ´ 10-5 to 4.84 ´ 10-5 and 
5.00 ´ 10-5, respectively; and the radius values of variance in‐
tervals decrease from 7.45 ´ 10-7 and 7.67 ´ 10-7 to 
6.94 ´ 10-7 and 7.17 ´ 10-7, respectively. Thus, the fluctuation 
ranges of the p-boxes of bus voltages are effectively re‐
duced. Therefore, for Method I, which takes into account the 
higher-order uncertainty of renewables and loads, the ob‐
tained optimal operation point can ensure that the state vari‐
able p-boxes satisfy the secure operation requirements and 
their random fluctuation ranges are effectively reduced.

Comparisons of the output power and main control vari‐
ables of the CCHP unit of each energy station are shown in 
the Table VI and Table VII, respectively. 

It can be observed that the optimization of the voltage 
magnitude p-boxes is performed by adjusting the reactive 
power output and the generator voltage. And the optimiza‐
tion of the mass flow p-boxes is achieved by adjusting the 
supply temperature of the CCHP unit. As can be observed 
from (8), by increasing the temperature difference between 
the supply temperature and the ambient temperature, the 
mass flow can be reduced to meet the requirement of its p-
box constraint.
2) Comparative Results with Other Methods

The objective function value and the number of state vari‐
ables exceeding the secure limits obtained by the four meth‐
ods in Table I are shown in Table VIII, in which the accept‐
able level δob is set to be 0.01 for Method IV. It can be ob‐
served that compared with the optimal operation points ob‐
tained by Method II and Method III, although the operation 
cost of the optimal operation point obtained by Method I is 
slightly increased, there is no risk of exceeding the secure 
limit for each state variable when considering the higher-or‐
der uncertainties of the renewables and loads, which can en‐
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TABLE VI
OUTPUT POWER OF CCHP UNITS OF ENERGY STATIONS

Energy 
station

I

II

III

Active power 
(MW)

Meth‐
od I

2.026

1.350

1.900

Meth‐
od II

2.014

1.403

1.812

Reactive 
power (Mvar)

Meth‐
od I

1.089

5.657

2.700

Meth‐
od II

0.893

1.612

1.898

Heating 
power (MW)

Meth‐
od I

2.134

2.117

2.625

Meth‐
od II

2.225

2.334

2.280

Cooling 
power (MW)

Meth‐
od I

3.135

1.395

2.315

Meth‐
od II

3.011

1.314

2.430
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Fig. 7.　 p-box fluctuation bounds of supply temperature at cooling load 
nodes.

TABLE VII
CONTROL VARIABLES FOR CCHP UNITS OF ENERGY STATIONS

Energy 
station

I

II

III

Generator voltage 
(p.u.)

Method 
I

1.089

1.082

1.086

Method 
II

1.058

1.051

1.055

Heating temperature 
(℃)

Method 
I

90.000

87.832

90.000

Method 
II

87.184

80.528

90.000

Cooling temperature 
(℃)

Method 
I

4.723

4.000

4.000

Method 
II

7.18

7.18

4.00
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sure the secure operation of the CCHP-CMG. For Method 
IV, the obtained operation cost is higher than that of Method 
I, and the obtained optimal operation point still cannot en‐
sure the secure operation of the CCHP-CMG because it does 
not consider the higher-order uncertainty. Moreover, when 
considering the higher-order uncertainties of the renewables 
and loads, the random fluctuation ranges of the state vari‐
ables of Method I can be reduced by 2.71%, 2.42%, and 
25.12% compared with those of Methods II, III, and IV, re‐
spectively. Therefore, Method I can effectively obtain the op‐
timal operation point which can ensure the secure operation 
of the CCHP-CMG considering higher-order uncertainty of 
renewables and loads.

D. Impact of Degree of Higher-order Uncertainty

In the cases with different higher-order uncertainty de‐
grees, the computational results of different methods are 
compared to further verify the effectiveness of the proposed 
method. The higher-order uncertainty degree is measured by 
using the interval width ratio km/km = rad([θ])/mid([θ]), where 
θ is the distribution parameter (μL, σL, pα, pβ ) of a random 
variable, and rad(·) represents the radius of the interval. The 
OEF has been calculated by setting km = 0.5%, 1%, 1.5%, 
2%, and 2.5%, and the other calculation process is the same 
as Section V-III. Taking U P

47inf and U P
49inf, and the upper 

bounds of the p-boxes of mass flows of the heating pipeline 
(48) and cooling pipeline (47) (i.e., mP

h48sup and mP
c47sup) as ex‐

amples, their calculation results of the optimal operation 
points obtained by Methods I, II, III considering different 
higher-order uncertainty degrees are shown in Table IX, and 
the corresponding radius values of the variance intervals are 
shown in Table X. It can be observed that the p-box bounds 
of the state variables obtained from Methods II and III ex‐
ceed the secure limit in the cases with different higher-order 
uncertainty degrees. The bigger the higher-order uncertainty 
degree, the bigger the degree of exceeding the secure limit. 
However, the results obtained by Method I with different 
higher-order uncertainty degrees all satisfy the secure limit. 
In addition, the radius values of variance intervals of the 
state variable p-boxes corresponding to the optimal operation 
point obtained by Method I in all the cases are smaller than 
those corresponding to the optimal operation points obtained 
by Methods II and III. Therefore, the obtained optimal opera‐
tion point of Method I in the cases with different higher-or‐
der uncertainty degrees can all satisfy the secure operation 
requirement.

E. Application of Proposed Method to Data of Multiple Time 
Periods

To further demonstrate the effectiveness of applying the 
proposed method to the cases of continuous fluctuations of 
renewables and loads, the data of continuous 2 hours in a 
day (8 time periods when one time period is 15 min) has 
been used to solve the proposed OEF model (59) of each 
time period. Assume that for the 8 time periods, the central 
values of [μL] are set to be (1.0, 1.01, 1.02, 0.95, 1.04, 0.97, 
1.06, 0.90) and the values of wRmax are set to be (1.0, 1.01, 
1.02, 0.95, 1.04, 0.97, 1.06, 0.90), and the base value 1.0 of 
the first time period corresponds to the case with the [μL] 
and wRmax values in Section V-I to Section V-F. Other param‐
eters are set the same as the former subsections. The ob‐

TABLE VIII
OBJECTIVE FUNCTION VALUE AND NUMBER OF STATE VARIABLES OUT OF 

LIMITS OBTAINED BY DIFFERENT METHODS

Method

I

II

III

IV

Objective function value 
(¥/hour)

26567.61

26558.20

26560.34

26823.84

Number of state variables 
exceeding secure limits

0

8

4

2

TABLE IX
P-BOX BOUNDS OF SEVERAL STATE VARIABLES IN CASES WITH DIFFERENT 

DEGREES OF HIGHER-ORDER UNCERTAINTY

km (%)

0.5

1.0

1.5

2.0

2.5

Method

I

II

III

I

II

III

I

II

III

I

II

III

I

II

III

U P
47inf

0.9673

0.9472

0.9494

0.9662

0.9460

0.9481

0.9662

0.9460

0.9481

0.9656

0.9454

0.9475

0.9651

0.9448

0.9469

U P
49inf

0.9681

0.9480

0.9502

0.9670

0.9468

0.9490

0.9670

0.9468

0.9490

0.9664

0.9462

0.9483

0.9659

0.9456

0.9477

mP
h48sup

12.41

15.86

15.24

12.87

16.20

15.71

12.87

16.20

15.71

13.10

16.60

15.95

13.33

16.86

16.18

mP
c47sup

106.56

153.97

151.27

108.50

156.55

153.80

108.50

156.55

153.80

109.48

157.97

155.07

110.45

159.12

156.34

TABLE X
RADIUS VALUES OF VARIANCE INTERVALS OF SEVERAL STATE VARIABLES 

IN CASES WITH DIFFERENT DEGREES OF HIGHER-ORDER UNCERTAINTY

km (%)

1

2

3

4

5

Method

I

II

III

I

II

III

I

II

III

I

II

III

I

II

III

rad([σU47])

2.221×10-7

2.341×10-7

2.327×10-7

7.064×10-7

7.447×10-7

7.405×10-7

7.064×10-7

7.447×10-7

7.405×10-7

9.693×10-7

1.022×10-6

1.016×10-6

1.246×10-6

1.314×10-6

1.307×10-6

rad([σU49])

2.292×10-7

2.416×10-7

2.402×10-7

7.293×10-7

7.686×10-7

7.643×10-7

7.293×10-7

7.686×10-7

7.643×10-7

1.001×10-6

1.055×10-6

1.049×10-6

1.287×10-6

1.356×10-6

1.349×10-6

rad([σmh48])

0.0061

0.0070

0.0067

0.0193

0.0220

0.0212

0.0193

0.0220

0.0212

0.0263

0.0303

0.0291

0.0337

0.0389

0.0372

rad([σmc47])

0.0150

0.0277

0.0272

0.0450

0.0831

0.0814

0.0450

0.0831

0.0814

0.0600

0.1298

0.1086

0.0750

0.1386

0.1357
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tained optimal operation points are compared with those ob‐
tained by Method II. Comparison of the p-box bounds of the 
voltage magnitude of bus 47 is shown in Fig. 10, and those 
of the supply temperature of heating load node 33 is shown 
in Fig. 11. It can be observed that although the given fluctua‐
tions of renewables and loads vary with time, the obtained 
optimal operation points of Method I can still satisfy the se‐
cure operation requirement of the CCHP-CMG. However, 
for the optimal operation points obtained from Method II, 
when the higher-order uncertainty is considered, the voltage 
magnitudes of several electric load buses and the supply tem‐
peratures of several heating load nodes may exceed the se‐
cure operation limits. These results can further demonstrate 
the effectiveness of Method II considering the higher-order 
uncertainty of renewables and loads.

F. Comparison of Calculation Time

Comparison of the calculation time of all the cases of dif‐
ferent methods is shown in Table XI. In the solution of the 
proposed OEF model considering the higher-order uncertain‐
ty, the transformed deterministic nonlinear optimization prob‐
lem can be efficiently solved by the commercial CONOPT 
solver, and it only consumes about 16.567 s. Although the 
calculation time of Method I is slightly increased compared 
with that of Methods II, III, and IV, the obtained optimal op‐
eration point can ensure the secure operation of the system 
when considering the higher-order uncertainty of renewables 
and loads, which is more suitable for application to the actu‐
al operation of the CCHP-CMG.

To verify the applicability considering the actual decision 
time frame for this CCHP-CMG application of Method I, we 
choose three different sizes of CCHP-CMGs as the case stud‐
ies. The basic parameters and the consumed CPU time of 
the three cases are shown in Table XII. It can be observed 
that the larger the system size, the longer the consumed 
CPU time. However, Method I can obtain the optimal opera‐
tion point of the system with less than 200 s, which can still 
satisfy the time frame requirements of the actual operation 
decision.

VI. CONCLUSION

In this paper, an OEF model of a CCHP-CMG consider‐
ing the higher order uncertainty of renewables and loads is 
proposed. The CCs are used to describe the secure limits of 
the state variable p-boxes, and the VCs are introduced to re‐
duce the random fluctuation ranges of the state variable p-
boxes. In the solution of this model, the CCs and VCs of p-
boxes are transformed into constraints of CIs of state vari‐
ables based on the p-efficient point theory and interval Cor‐
nish-Fisher expansion. Then, with the relationship between 
the ICs of state variables and node power, and using the af‐
fine interval arithmetic method, the original OEF model is fi‐
nally transformed into a deterministic nonlinear program‐
ming model, which can be solved by the CONOPT solver. 
Case study on a CCHP-CMG demonstrates that although the 
operation cost is only 0.0354% higher than that of the deter‐
ministic OEF, the obtained optimal operation point of the 
proposed OEF method can ensure the secure operation of 
the CCHP-CMG when considering the higher-order uncer‐
tainty of renewables and loads. The random fluctuation rang‐
es of the state variables of the proposed OEF method can be 
reduced by 2.71%, 2.42%, and 25.12% compared with those 
of deterministic OEF, traditional CCP-based OEF, and IGDT-
based OEF methods, respectively.

In the actual operation of a CCHP-CMG, there are correla‐
tion between different random variables of node power, and 
it will affect the OEF calculation results. Therefore, how to 
establish and solve the OEF calculation model considering 
the higher-order uncertainty and the correlation of multiple 
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TABLE XI
COMPARISON OF CALCULATION TIME

Method

I

II

III

IV

Calculation time (s)

16.567

7.486

8.628

6.485

TABLE XII
BASE PARAMETERS AND CPU TIME OF THREE CASES

Case

1

2

3

Number of cooling/heating 
network nodes and pipelines

13 and 12

49 and 49

72 and 73

Number of electricity net‐
work buses and branches

54 and 78

91 and 136

126 and 192

CPU 
time (s)

4.275

16.567

159.659
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random variables such as the correlation between different 
power outputs of renewable energy stations, is a possible di‐
rection of future work.
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