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Novel Optimal Load Control for Power System 
Frequency and Voltage Regulation

Yaxin Wang, Donglian Qi, Jianliang Zhang, and Jingcheng Mei

Abstract——The sudden generation-consumption imbalance is 
becoming more frequent in modern power systems, causing volt‐
age and frequency stability issues. One potential solution is load 
participation in primary control. We formulate a novel optimal 
load control (NOLC) problem that aims to minimize the disutili‐
ty of controllable loads in providing primary regulation. In this 
paper, we show that the network dynamics, coupled with well-
defined load control (obtained via optimality condition), can be 
seen as an optimization algorithm to solve the dual problem of 
NOLC. Unlike most existing load control frameworks that only 
consider frequency response, our load-side primary control fo‐
cuses on frequency, voltage, and aggregate cost. Simulation re‐
sults imply that the NOLC approach can ensure better frequen‐
cy and voltage regulations. Moreover, the coordination between 
NOLC and other devices enabled in the system, the NOLC per‐
formance against the total size of controllable loads, and the 
NOLC effectiveness in a multi-machine power system are also 
verified in MATLAB/Simulink.

Index Terms——Novel optimal load control (NOLC), primary 
regulation, frequency response, voltage stability, smart load.

I. INTRODUCTION 

RECENTLY, large amounts of renewable energy genera‐
tion and smart loads have been integrated into modern 

grids [1]. However, power imbalances are more likely due to 
intermittent renewable energy production and unpredictable 
electricity demand [2].

When the power supply or demand changes, the frequency 
and voltage deviate from the nominal values [3]. The control 
mechanisms are generally implemented on the generation 
side [4], [5] to maintain the frequency and voltage within ac‐
ceptable ranges, which are referred to as primary, secondary, 
and tertiary controls, distinguished by their functions and 
timescales of operation [6].

Primary control is usually realized using traditional genera‐
tors (TGs), which are completely decentralized and operate 

on a timescale of tens of seconds. It can rebalance the power 
and stabilize the frequency and voltage to new steady val‐
ues. However, there are mechanical constraints on generator 
governors; thus, their regulating speeds are relatively slow. 
As the sudden generation-consumption imbalance becomes 
more frequent in modern power systems, conventional mea‐
sures are incapable. Moreover, it is economically inefficient 
and environmentally unfriendly [7], [8].

Any action performed on the generation side (to guarantee 
a power balance between supply and demand) can also be 
implemented on the demand side [9]. Compared with tradi‐
tional generators, smart switches on the user side offer con‐
trollable load opportunities to respond quickly [10]. There‐
fore, to relieve the pressure on generators, new technologies 
for power consumption control on the demand side are high‐
ly anticipated [11].

In the late 1970s, researchers introduced the concept of 
load participation in the primary control. Reference [12] 
studied the deployment of demand-side contribution as a pro‐
vision or substitution of turbine-governed systems and spin‐
ning reserves. This point has been strengthened in the last 
decades with a large number of smart loads joining in the 
power systems [13]. The capability of a heat pump heater 
(HP) and battery to provide primary control was investigated 
in [14] without considering the customer comfort. Reference 
[15] utilized the potential of thermostatically controlled 
loads (TCLs) for frequency and voltage regulation through 
optimal management. Reference [16] showed that electric ve‐
hicles (EVs) are typical smart loads that can provide ade‐
quate reactive power on the residential side to compensate 
for power imbalances.

The aggregate disutility of consumers has not been consid‐
ered in the literature mentioned above. Centralized optimiza‐
tion algorithms are more convenient for such a global optimi‐
zation objective. However, they require complete communi‐
cation and long computation time, especially in large-scale 
systems [17], [18]. Therefore, distributed algorithms have 
been developed [19].

Based on the perspective of network dynamics as distribut‐
ed optimization algorithms, a “ubiquitous continuous fast-act‐
ing distributed primary frequency load control” called opti‐
mal load control (OLC) was first introduced in [20], which 
aims to minimize the aggregate disutility to utilities and con‐
sumers during the frequency regulation. They sought a sys‐
tematic method to design the load-side primary frequency 
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control for a pre-defined optimization problem. Moreover, 
the power consumption of each load can be controlled using 
local frequency measurements [21]. Subsequently, the appli‐
cation of OLC was investigated in [22], and the effects of 
choosing different disutility functions with respect to the fre‐
quency nadir and steady-state error were compared. The 
OLC theorem was further developed in [23], which consid‐
ered the most suitable parameters for local load controllers 
via a multi-objective optimization procedure instead of using 
identical parameter settings. Similarly, considering the foun‐
dation of network dynamics as an optimization algorithm, 
[24] and [25] proposed a local volt/var control (LVC) for 
voltage regulation through the approach of reverse and for‐
ward engineering.

Although these primary response frameworks for smart 
loads involve only frequency control or voltage control, they 
present a new idea-network dynamics as optimization algo‐
rithms for the distributed control and optimization of modern 
power systems.

The intermittent power sources and time-varying load de‐
mands induce sudden power changes, resulting in frequency 
and voltage issues [26]. However, most existing methods fo‐
cus on one or the other; for example, the traditional OLC 
[21] provided a primary frequency response while ignoring 
the potential of load participation in voltage regulation, or 
[25] and [27] proposed the distributed voltage control to 
cope with rapid voltage fluctuations introduced by renewable 
energy generation.

In this study, the novel optimal load control (NOLC) takes 
a step forward in the idea of network dynamics as optimiza‐
tion algorithms for power system frequency and voltage reg‐
ulations. The NOLC approach has a universal applicability 
and fast response while accounting for aggregate disutility 
during load participation by inheriting the good properties of 
the traditional OLC. Distinguishing itself from the OLC, ex‐
cept for the generator dynamics, the variations in bus volt‐
age and reactive power flow are also considered in the net‐
work dynamics. To support the primary regulation of both 
frequency and voltage, our contributions are focused on the 
following areas.

1) Complete network dynamics, which form the theoreti‐
cal basis of load participation in primary frequency and volt‐
age control simultaneously, are described.

2) An NOLC problem is formulated to minimize the ag‐
gregate disutility of rebalancing power by controllable loads.

3) We prove that the network dynamics can solve the dual 
NOLC problem obtained under the optimality condition. 
Thus, such optimality conditions develop a fundamental 
method for guiding the design of load control for the partici‐
pation in primary regulation.

The rest of this paper is organized as follows. The model 
of network dynamics of the power system is described in 
Section II. The coupling of the network dynamics with the 
proposed NOLC is explained as a distributed optimization al‐
gorithm to address the dual problem of disutility minimiza‐
tion in Section III. The effect of NOLC on the system small-
signal stability is investigated in Section IV. The simulation 

results are presented in Section V. The main conclusions and 
current limitations are discussed in Section VI.

II. MODEL OF NETWORK DYNAMICS

The power transmission network can be abstracted into a 
graph with (Nε), where the vertex set N represents the buses 
in the power system; and edge set ε (εÍN ´N) represents 
the transmission lines in the power system. We assume that 
the graph is directed; therefore, if e = (ij)Î ε, then ( ji)Ï ε. 
Other assumptions are listed as follows.

1) The lines (ij)Î ε are lossless and characterized by their 
reactance xij.

2) The voltage magnitudes of the generators are constant 
due to the strong excitation. However, the voltage magnitude 
variations on the other buses are considered.

3) The nominal phase angle difference is not ignored 
across each transmission line.

Under these assumptions, the subsequent network model 
distinguishes itself from the original model built in [20]-[23] 
by considering the variations in the bus voltage and reactive 
power flow. However, due to the ignorance of line resis‐
tance, both our analytical model and the models previously 
mentioned are more applicable to power systems with long-
distance transmission.

A. Network Model

The complete network dynamics are described as prelimi‐
naries for the subsequent work. There are two types of bus‐
es: generator buses (G) and load buses (L) such that 
G L =N. Among these, bus jÎG has a generator that can 
convert the mechanical energy to electrical energy for the 
power supply, but bus jÎ L only has loads for power con‐
sumption. For further discussion, we divide the active loads 
into three types: frequency-sensitive, insensitive but control‐
lable, and uncontrollable. Similarly, reactive loads can be 
classified as voltage-sensitive, insensitive but controllable, 
and uncontrollable ones.
1)　Generator Buses

The swing equation of generator bus jÎG can be written 
as:

HjDω̇j =P m′
j -P e

j -D′jDωj (1)

where Hj is the inertia constant of the generator; Dωj is the 
frequency deviation on bus j; P m′

j  is the mechanical power of 
the generator; P e

j  is the electrical power; and D′j is the damp‐
ing coefficient.

Here, P e
j  includes not only the total active loads on bus j 

but also the net sum of branch active power flowing out and 
into bus j.

P e
j = p̂0

j +D″jDωj + pj + pl
j +∑

eÎ ε
Cje Pe (2)

where p̂0
j  is the nominal value of the frequency-sensitive ac‐

tive load on bus j; D″jDωj is the active power variation due 
to frequency deviation; pj is the frequency-insensitive but 
controllable active load; pl

j is the uncontrollable active load; 
Cje is the portion of the incidence matrix of the power trans‐
mission network [23]; and Pe is the branch power flow on 
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the transmission line e = ij or e = ji, where i denotes the set 
of buses connected with j.

Cje =
ì

í

î

ïïïï

ïïïï

1  e = jiÎ ε
-1  e = ijÎ ε
0  otherwise

(3)

We set P m
j  as an integrated active power injection equal to 

P m'
j - p̂0

j - pl
j representing any active power injection from 

both the generation and load sides and Dj =D′j +D″j  for read‐
ability. The swing equation on the generator bus j can be re‐
written as:

HjDω̇j =P m
j - pj -∑

eÎ ε
Cje Pe -DjDωj (4)

Under the nominal operation, P m0
j - p0

j -∑
eÎ ε

Cje P 0
e = 0. 

Hence, the deviation variables in (4) satisfy the following 
formula:

HjDω̇j =DP m
j -Dpj -∑

eÎ ε
Cje DPe -DjDωj (5)

In this study, the variations in the terminal voltage magni‐
tude on the generator buses jÎG are ignored. Therefore, 

|Vj |
jÎG

 is assumed to be constant.

2)　Load Buses
From (5), a load bus j with a small inertia can be ex‐

pressed by an algebraic equation:

0 =DP m
j -Dpj -∑

eÎ ε
Cje DPe -D″jLDωj (6)

where DP m
j  denotes the change in the integrated uncontrolla‐

ble active loads. In addition, a load bus with high inertia can 
be treated as a generator bus [28].

The dynamics of voltage magnitude on bus jÎ L can be 
written as [29]:

KjDV̇j =-Qe
j (7)

where Kj is the coefficient related to voltage; DVj is the volt‐
age deviation on bus j; and Qe

j  is the reactive power imbal‐
ance on bus j.

Qe
j = q̂0

j +DjLDVj + ql
j + qj +∑

eÎ ε
CjeQe (8)

where q̂0
j  is the nominal value of the voltage-sensitive reac‐

tive load on bus j; DjLDVj is the reactive power variation 
due to voltage deviation; qj is the voltage-insensitive but con‐
trollable reactive load; and ql

j is the uncontrollable reactive 
load.

We set Qm
j =-q̂0

j - ql
j as an aggregated uncontrollable reac‐

tive load. Hence, we have:

KjDV̇j =Qm
j -DjLDVj - qj -∑

eÎ ε
CjeQe (9)

The deviation variables satisfy:

KjDV̇j =DQm
j -DjLDVj -Dqj -∑

eÎ ε
CjeDQe (10)

3)　Power Flows
According to the power flow algebraic equation, the devia‐

tion of the active power branch flow (linearized) from bus i 
to bus j is:

DPij =B′ijDVi +B″ijDVj +B‴ij (Dθi -Dθj ) (11)

where B′ij = V 0
j sin(θ 0

i - θ
0
j ) xij, B″ij = V 0

i sin(θ 0
i - θ

0
j ) xij, and 

B‴ij = V 0
i V 0

j cos(θ 0
i - θ

0
j ) xij are the constants determined from 

the nominal voltage magnitudes V 0
i  and V 0

j , phase angles θ 0
i  

and θ 0
j , and line reactance, respectively.

Similarly, the deviation of the reactive power branch flow 
from bus i to bus j is represented as:

DQij = T ′ijDVi + T″ijDVj + T‴ij  (Dθi -Dθj ) (12)

where T ′ij = 2V 0
i xij - V 0

j cos(θ 0
i - θ

0
j ) xij; T″ij = -V 0

i cos(θ 0
i -

θ 0
j ) xij; T‴ij  = V 0

i V 0
j sin(θ 0

i - θ
0
j ) xij. The detailed derivation 

process is shown in Appendix A.
4)　Network Model

For notational simplicity, the symbol D is omitted from 
the deviation variables. Therefore, a complete dynamic net‐
work model of the power system can be written as:

θ̇j =ωj (13)

Hjω̇j =P m
j - pj -∑

eÎ ε
Cje Pe -Djωj    "jÎG (14)

KjV̇j =Qm
j -DjLVj - qj -∑

eÎ ε
CjeQe    "jÎ L (15)

0 =P m
j - pj -∑

eÎ ε
Cje Pe -D″jLωj    "jÎ L (16)

Pij =B′ijVi +B″ijVj +B‴ij (θ i - θj )    "(ij)Î ε (17)

Qij = T ′ijVi + T″ij Vj + T‴ij  (θ i - θj )    "(ij)Î ε (18)

Note that all variables represent their deviations from the 
nominal values in the remainder of this paper.

III. NOLC

As a major shortening of load participation in primary 
control, most previous studies did not consider aggregate dis‐
utility from a global perspective in the controller design. We 
show that the network dynamics under optimality conditions 
adaptively solve the dual problem of a pre-defined disutility 
objective function. Therefore, such optimality condition de‐
velops a fundamental way to guide the design of local load 
control for participating in primary regulation, which is gen‐
erally applicable to a class of the minimum disutility objec‐
tives that fits our assumption.

A. NOLC Problem

In this subsection, an NOLC problem is formulated to 
minimize the integrated negative effects on utilities and us‐
ers while rebalancing the power to regulate both the system 
frequency and voltage. The objective function in the general 
form of (19a) indicates a class of optimization problems that 
represent the disutility caused by deviating from the normal 
power usage for the loads to participate in primary control. 
The optimization problem is subject to power balance con‐
straints (19b).

min
-
p

j
£ pj £ p̄jp̂j

-
q

j
£ qj £ q̄jq̂j

∑
jÎN

ì
í
î

ü
ý
þ

cpj (pj )+ cqj (qj )+
p̂2

j

2Dj

+
q̂2

j

2DjL (19a)
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s.t.

ì

í

î

ïïïï

ïïïï

pj + p̂j =P m
j -∑

eÎ ε
Cje Pe

qj + q̂j =Qm
j -∑

eÎ ε
CjeQe

(19b)

where -¥<
-
p

j
£ p̄j <¥; and -¥<

-
q

j
£ q̄j <¥.

The framework of the minimum disutility problem in 
(19a) consists of four parts. The first two parts cpj (pj ) and 
cqj (qj ) are the cost functions related to active or reactive con‐
trollable load power at bus j, respectively. The remaining 
two parts are assumed as the fixed items p̂2

j (2Dj) and 

q̂2
j (2DjL), which refer to the costs to frequency-sensitive 

load p̂j: =Djωj and voltage-sensitive load q̂j: =DjLVj induced 
by frequency deviation and voltage deviation, respectively. 
Moreover, we have the following assumption for cpj (pj ) and 
cqj (qj ).

Assumption 1: the cost functions cpj (pj ) and cqj (qj ) are 
strictly convex and twice continuously differentiable on 
[
-
p

j
p̄j ] and [

-
q

j
q̄j ], respectively.

In practice, cost functions refer to a specific target that 
considers the physical characteristics of household applianc‐
es, scheduling policies of utilities, and user comfort levels. 
Examples of cost functions satisfying our assumption can be 
found in [30] and [31].

B. Network Dynamics as Optimization Algorithm

The objective function of the dual problem of NOLC is 
represented as:

∑
jÎN

Φ j (vjλj ) = min
-
p

j
£ pj £ p̄jp̂j

-
q

j
£ qj £ q̄jq̂j

∑
jÎN(cpj (pj )+ cqj (qj )+

1
2Dj

p̂2
j +

1
2DjL

q̂2
j - vj pj - vj p̂j + vj P

m
j + vj∑

eÎ ε
Cje Pe - λjqj - λj q̂j +

λjQ
m
j + )λj∑

eÎ ε
CjeQe (20)

where the minimization Φ j (vjλj ) can be obtained as (21) 
with the optimality condition (22).

Φ j (vjλj )= cpj (pj (vj ))- vj pj (vj )-
1
2

Djv
2
j + vj P

m
j - vj∑

eÎ ε
Cje Pe +

cqj (qj (vj ))- λjqj (vj )-
1
2

DjLλ
2
j + λjQ

m
j - λj∑

eÎ ε
CjeQe (21)

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

p̂j: =Djvj

q̂j: =DjLλj

pj (vj ): =[(c'pj )
-1vj ]

p̄j

-
p

j

qj (λj ): =[(c'qj )
-1 λj ]

q̄j

-
q

j

(22)

According to the convex optimization theory, the La‐
grange dual function is strictly concave. Therefore, the mini‐
mization of the primal problem can be transformed into the 
maximization of the dual problem.

max
vλ

Φ(vλ): =∑
jÎN

Φj (vjλj ) (23)

Based on the gradient descent algorithm iterating on each 
variable, the dynamics of vj and λj follow the following rules.

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

v̇j = γj

¶Φ(vjλj )

¶vj

=-γj( )pj (vj )+Djvj -P m
j -∑

eÎ ε
Cje Pe      "jÎG

λ̇j = κ j

¶Φ(vjλj )

¶λj

=-κ j( )qj (λj )+DjLλj -Qm
j -∑

eÎ ε
CjeQe    "jÎ L

(24)

Among that, γj > 0 and κ j > 0 are step sizes, which can be 
defined as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

γj =
1
Hj

κj =
1
Kj

(25)

By replacing vj and λj with ωj and Vj, respectively, where 
ωj and Vj are the design variables of the dual problem, (24) 
would be the same as the network dynamics shown in (14) 
and (15). In other words, the network dynamics can be re‐
garded as distributed algorithms for a dual problem under op‐
timality conditions in (22).

ω̇j =-
1
Hj ( )pj (ωj )+Djωj -P m

j +∑
eÎ ε

Cje Pe     "jÎG (26)

V̇j =-
1
Kj ( )qj (Vj )+DjLVj -Qm

j +∑
eÎ ε

CjeQe     "jÎ L (27)

p̂j: =Djωj    "jÎN (28)

q̂j: =DjLVj    "jÎN (29)

pj (ωj ): =[(c'pj )
-1ωj ]

p̄j

-
p

j

    "jÎN (30)

qj (Vj ): =[(c'qj )
-1Vj ]

q̄j

-
q

j

    "jÎN (31)

The dynamics (26) - (29) are performed automatically by 
the system, whereas the active power consumption control in 
(30) and reactive power consumption control in (31) must be 
applied to each controllable load. Therefore, the analyses de‐
velop a fundamental method to guide the design of the local 
load control, and we refer to this as the NOLC. Under such 
a control, the controllable loads can share the overall power 
imbalance, and the disturbance will not severely affect any 
single bus.

Regardless of the initial conditions, (26) - (31) establish a 
trajectory (p(t)p̂(t)q(t)q̂(t)ω(t)V (t)) that converges to the 
optimal point (p*p̂*q*q̂*ω*V * ) with t®+¥. [p*p̂*q*q̂* ] 
is a unique vector of the optimal load control for the primal 
problem, and [ω*V * ] is a unique vector of the optimal fre‐
quency and voltage deviations for the dual problem. The 
proof is as follows.

Proof: following the Lyapunov stability theory, a Lyapu‐
nov function, as constructed below, is analyzed. Let x: =
[ωV ]T, and we can obtain:

U(x)=
1
2

(x - x* )Té
ë
êêêê

ù
û
úúúú

γ-1 0

0 κ-1
(x - x* ) (32)
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U(ωV )=
1
2

(ωG -ω
*
G )Tγ-1

G (ωG -ω
*
G )+

1
2

(VL -V *
L )Tκ -1

L (VL -V *
L ) (33)

where ωG and VL are the frequency deviations on generator 
buses and voltage deviations on load buses, respectively, and 
ω*

G and V *
L  denote their optimal values.

Distinctly, U(ωV )³ 0 for all x with equality if and only 
if ω =ω*

G and V =V *
L . U̇(ωV ) expresses the derivative of U 

over time along the trajectory (ω(t)V (t)). If U̇(ωV )£ 0, for 
all x, (ω(t)V (t)) will be converged to (ω*V * ) finally with

ω̇G =
é

ë
êêêê

ù

û
úúúúγG

¶Φ(ωGVL )
¶ωG

T

(34)

V̇L =
é

ë
êêêê

ù

û
úúúúκL

¶Φ(ωGVL )
¶VL

T

(35)

The derivative U̇(ωV ) of the Lyapunov function U(x) 
along any trajectory (ω(t)V (t)) can be easily converted from 
① to ② in (36).

U̇(ωV )= (ωG -ω
*
G )Tγ-1

G ω̇G + (VL -V *
L )Tκ -1

L V̇L=
①

¶Φ(ωGVL )
¶ωG

(ωG -ω
*
G )+

¶Φ(ωGVL )
¶VL

(VL -V *
L ) £

②

Φ(ωGVL )-Φ(ω*
GVL )+Φ(ωGVL )-Φ(ωGV

*
L ) £

③
0 (36)

Due to the strong concavity of the objective function in 
dual problem, the inequality ② holds since Lagrange’s 
mean value theorem. Moreover, Φ(ω*

GVL ) is larger than 
Φ(ωGVL ), and Φ(ωGV

*
L ) is larger than Φ(ωGVL ), satisfy‐

ing ③. Therefore, for all x: =[ωV ]T, U̇(ωV )£ 0 is proved.

C. Load Controller Designing for Specific Disutility Func‐
tion

Once the cost functions satisfy the assumptions of strict 
convexity and twice continuous differentiability in the feasi‐
ble region, NOLC can be implemented successfully at the 
demand side. Moreover, the power consumption controls for 
smart loads vary depending on the type of cost function. A 
specified control signal can be obtained for a given cost 
function.

If the cost functions are the quadratic forms of cpj (pj )=
p2

j (2α) and cqj (qj )= q2
j (2β) (α and β are both positive num‐

bers), the active control signal of the controllable loads for 
this simple cost function is pj (ωj ): =[(c'pj )

-1ωj ]
p̄j

-
p

j

= αωj, and 

the reactive control signal is qj (Vj ): =[(c'qj )
-1Vj ]

q̄j

-
q

j

= βVj. Under 

this circumstance, Fig. 1 shows the block diagram of NOLC 
under specific disutility function built in Simulink, where f 
is the system frequency; f * is the frequency reference; V is 
the voltage; V * is the voltage reference; and P0 and Q0 are 
the original active and reactive load power, respectively.

IV. SMALL-SIGNAL ANALYSIS 

In this section, the effect of NOLC on the system small-
signal stability is investigated. 

As an illustration, the OLC for the cost function discussed 
in the previous section is applied to the standard IEEE 33-
bus power system. The detailed information regarding the 
test system is presented in [32]. The reference value of the 
nodal voltage is 12.66 kV, and the total load of the system is 
(3715+j2300)kVA.

It consists of 1 generator bus, 32 load buses, and 32 
branches. Node 1 is selected as the generator bus; nodes 3, 
18, 25, and 28 are selected as the disturbance buses (renew‐
able sources or loads can cause power disturbances in a real 
situation); and nodes 4, 7, 15, 21, 23, and 32 are selected as 
controllable buses to accomplish the NOLC. As shown in Ta‐
ble I, the sum of the controllable active loads is set to be 9 
kW (0.24% of the total active loads), and the sum of the 
controllable reactive loads is set to be 5.52 kvar (0.24% of 
the total reactive loads).

According to the network model built in Section II, the 
state variables and operation variables are selected as 
[θωGVL ] and [ωLpqP ijQij ], respectively. Therefore, the 
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Fig. 1.　NOLC under specific disutility function.
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TABLE I
LOAD BOUNDS OF BUSES

Bus
No.

4

7

15

21

23

32

Sum

Norm

P (kW)

120

200

60

90

90

210

770

80

100

10

40

50

100

380

Q (kvar)

Controllable

P (kW)

1.40

2.35

0.70

1.05

1.05

2.45

9.00

Q (kvar)

1.165

1.450

0.145

0.580

0.730

1.450

5.520

Non-controllable

P (kW)

118.60

197.65

59.30

88.95

88.95

207.55

761.00

Q (kvar)

78.835

98.550

9.855

39.420

49.270

98.550

374.480
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state-space equations of the power system are represented as:

é
ë
êêêê ù

û
úúúúdθ

dt
dωG

dt
dVL

dt
0

T

=
é

ë

ê
êê
ê ù

û

ú
úú
úA͂ B͂

C͂ D͂
·

[θ ωG VL ωL p q P ij Qij]
T (37)

where A͂, B͂, C͂, and D͂ are the corresponding coefficient ma‐
trices.

The system state matrix A can be defined as:

A = A͂ - B͂D͂-1C͂ (38)

All the eigenvalues of the system state matrix A with α =
α0 = 50  p.u. and β = β0 = 20  p.u. possess a negative real part; 
therefore, the small-signal stability is verified.

To investigate the influence of the parameter variations on 
the load controllers for system stability, more details regard‐
ing the experimental settings are presented in Table II.

The locus distribution of the dominant eigenvalues (the ab‐
solute values of the real parts of the other eigenvalues are at 
least five times those near the imaginary axis) is shown in 
Fig. 3 under the condition of an increasing trend of α and β 
simultaneously. Moreover, α is from 49 p.u. to 51 p.u., and 
β is from 19.6 p.u. to 20.4 p.u..

According to Fig. 3, No.1 and No.7 poles almost remain 
the same, and the positions of other dominant eigenvalues 
do not change significantly. Therefore, the real parts of ei‐
genvalues are still all negative with ±2% variations of param‐
eters α and β, and the system stays stable. Hence, the inevita‐
ble parameter variation within a reasonable range is accept‐
able to the load controller.

V. SIMULATION RESULTS 

The test system is shown in Fig. 2. The smart loads con‐
sist of controllable and non-controllable parts represented by 
three-phase parallel RLC loads and three-phase three-wire 
dynamic loads in Simulink, respectively. The controllable 
loads are set with identical α = 50  p.u. and β = 20  p.u. in the 
test system. According to a conservative estimate of the rate 
of load control in an existing test bed, the control time of 

the dynamic loads is 250 ms [13].

A. NOLC v.s. Traditional OLC v.s. LVC

To observe the difference in the frequency/voltage dynam‐
ic response over the load participation in the primary control 
among the proposed NOLC, traditional OLC [21], and LVC 
[25], conclusions are drawn based on the simulation results. 
Figure 4(a) and (b) shows the frequency and voltage dynam‐
ics on bus 4 after the load disturbance, respectively.

As shown in Fig. 4, the LVC provides voltage support 
compared to the case without control; however, it negatively 
affects the frequency stability. Unlike the LVC applied on 
the load side, the NOLC and traditional OLC perform better 
in terms of both transient and steady-frequency performanc‐
es.

Although the NOLC has the benefits similar to the tradi‐
tional OLC in primary frequency control, the voltage nadir 
is suppressed by 21.4%, and the steady-state error is im‐
proved by approximately 24.2%. The traditional OLC ig‐
nores the load participation ability in voltage regulation 
through a reasonable reactive control. In summary, the 
NOLC enables the smart loads on the user side to contribute 
to the primary control of both frequency and voltage.

Moreover, the NOLC considers the aggregate disutility of 
load participation in primary regulation. The cost function 
trajectory of the NOLC over time, which is calculated ac‐
cording to (19) using the simulation results, is shown in Fig. 
5. Finally, the cost converges to a minimum value for a spec‐
ified load disturbance.

TABLE II
EXPERIMENTAL SETTINGS

Cost function

p2
j

2α0

+
q2

j

2β0

Control signal

pj (ωj )= αωj,
qj (Vj )= βVj

Parameter variation

αÎ[0.98α01.02α0 ], 
βÎ[0.98β01.02β0 ]
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Fig. 3.　Locus distribution of dominant eigenvalues.
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B. Coordination with Other Devices

In this subsection, we discuss the coordination between 
the NOLC and other devices enabled in the system to cope 
with power disturbances.
1)　Scenario 1: Coordination with TG

The primary control capability of power systems is close‐
ly related to the adjustment coefficients of traditional genera‐
tors (TGs). The smaller the adjustment coefficient σ is, the 
greater load TG carries when the same frequency drops. In 
Fig. 6(a) and (b), with the participation of NOLC under a 
small σ, when the frequency and voltage nadirs increase, the 
settling time becomes shorter. The frequency fluctuations 
and voltage drops are mitigated by controlling the power 
consumption of the controllable loads.

However, the adjustment coefficient cannot be too low for 
the stable operation of the generator governor. Therefore, the 
NOLC is required when the primary control ability of the 
TG is relatively insufficient. In Fig. 6(a) and (b), with the 
participation of the NOLC under a large σ, the transient re‐
sponse and steady state of both the system frequency and 
voltage are improved.

It has been found that applying the NOLC to the system 
leads to a higher frequency/voltage nadir (i. e., a smaller 
overshoot), a higher new steady-state frequency/voltage, and 
a shorter settling time.
2)　Scenario 2: Coordination with PSS

We present the simulation results for a PSS, which is a 
widely-used generation-side stabilizing mechanism.

Compared with the above cases, the fluctuations in both 
frequency and voltage are intuitively suppressed due to the 
function of the PSS. It is clear from Fig. 7(a) and (b) that 
deeper frequency and voltage support are provided when the 
NOLC works with PSS.

From the simulation results in Sections V-A and V-B, 
whether the PSS is enabled or not, applying the proposed 
NOLC on the user side improves the frequency and voltage 
dynamics.

C. NOLC Performance Against Total Size of Controllable 
Loads

In this subsection, the NOLC performance is plotted 
against the total size of the controllable loads. Figure 8 
shows that the lowest and steady-state frequencies increase 
with the increasing load participation in the primary control. 
The labels on the x-axis represent the number of controllable 
loads (among buses 4, 7, 15, 21, 23, 32) put into use.

A similar trend can also be observed for the voltage, as 
shown in Fig. 9. Both the lowest and steady-state voltages 
exhibit a performance improvement as the number of the 
controllable loads increases.
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The rapid growth of smart loads has become a develop‐
mental trend in modern power systems and provides a good 
basis for the NOLC applications.

D. NOLC Performance in Multi-machine Networks

In this subsection, we investigate the performance of the 
NOLC in terms of both the transient response and the steady 
states of system frequency and voltage in a multi-machine 
network. A single-line diagram of the New England 39-bus 
power system is shown in Fig. 10. As shown in Fig. 10, 
there are 10 generators and 19 load buses. Nodes 18 and 27 
are selected as disturbance buses. Nodes 4, 7, 15, 21, 23, 
and 28 are selected as controllable buses to accomplish the 
NOLC, and the controllable loads that are available to partic‐
ipate in the primary control account for 20% of their total 
amount.

Figures 11 and 12 show the system frequency and bus 
voltage dynamics using NOLC, respectively. As shown in 
Fig. 11, adding NOLC to the power system provides remark‐
able benefits in the primary frequency control with respect 
to both nadir and steady-state errors.

Moreover, as shown in Fig. 12, the voltage dynamics on 
the load buses are also improved. The voltage nadirs are sup‐
pressed and the steady-state errors are decreased using the 
NOLC.

The simulation results indicate the effectiveness of apply‐
ing the NOLC to a multi-machine power system.

VI. CONCLUSION 

We propose a method to design load control by consider‐
ing network dynamics as optimization algorithms to enable 
smart loads on the demand side to contribute to the primary 
frequency and voltage control. 

Compared with existing methods, the proposed NOLC en‐
sures the aggregate disutility is minimized while rebalancing 
the power and improving the transient performances of both 
frequency and voltage. Since the participation of controllable 
loads is completely distributed, their power consumption can 
be determined individually according to local measurements 
of the frequency/voltage deviation. The NOLC generates a 
faster response and better steady-state performance with the 
coordination of other devices enabled in power systems, 
such as TGs and PSS, and the power imbalance is compen‐
sated on time. Moreover, the effectiveness of the NOLC in a 
multi-machine power system is verified.

Although the simulation results reveal that the total num‐
ber of controllable loads influences the regulation perfor‐
mance of NOLC and that the practical implementation of 
this technology relies on several power meters, these chal‐
lenges can be solved gradually with the rapid development 
of smart grids. Our future scope includes the further develop‐
ment of new idea-network dynamics as optimization algo‐
rithms for the distributed control and optimization of modern 
power systems.
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APPENDIX A 

The branch active power flow Pij from i to j is expressed 
as:

Pij =-ViVj (gij cos θij + bij sin θij )+ gijVi
2 »ViVj Bij sin θij   (A1)

where Bij =-bij =-(-1 xij ) = 1 xij.

In the case of a small disturbance, the deviation values of 
the variables are approximately the same as the normal val‐
ues; so, the equation can be linearized as:　

DPij =
¶DPij

¶DVi

DVi +
¶DPij

¶DVj

DVj +
¶DPij

¶(Dθi -Dθj )
(Dθi -Dθj )»

V 0
j Bij sin(θ 0

i - θ
0
j )DVi +V 0

i Bij sin(θ 0
i - θ

0
j )DVj +

V 0
i V 0

j Bij cos(θ 0
i - θ

0
j )(Dθi -Dθj ) (A2)

Thus, DPij = B′ijDVi + B″ijDVj + B‴ij (Dθi - Dθj ) with B′ij =
V 0

j sin(θ 0
i - θ 0

j ) xij, B″ij = V 0
i sin(θ 0

i - θ 0
j ) xij, and B‴ij =

V 0
i V 0

j cos(θ 0
i - θ

0
j ) xij.

Similarly, the branch reactive power from i to j is:

Qij =-ViVj (gij sin θij - bij cos θij )- bijV
2

i »BijV
2

i -ViVj Bij cos θij

(A3)

Additionally, the linearized function is:　
DQij » 2BijV

0
i DVi -V 0

j Bij cos (θ 0
i - θ

0
j )DVi -

V 0
i Bij cos (θ 0

i - θ
0
j )DVj +V 0

i V 0
j Bij sin(θ 0

i - θ
0
j )(Dθi -Dθj )

(A4)

Hence, DQij = T ′ijDVi + T″ijDVj + T‴ij (Dθi -Dθj ) with T ′ij =
2V 0

i xij - V 0
j cos (θ 0

i - θ
0
j ) xij, T″ij = -V 0

i cos (θ 0
i - θ

0
j ) xij and 

T‴ij = V 0
i V 0

j sin(θ 0
i - θ

0
j ) xij.
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