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Abstract——Electric power grids are evolving into complex cy‐
ber-physical power systems (CPPSs) that integrate advanced in‐
formation and communication technologies (ICTs) but face in‐
creasing cyberspace threats and attacks. This study considers 
CPPS cyberspace security under distributed denial of service 
(DDoS) attacks and proposes a nonzero-sum game-theoretical 
model with incomplete information for appropriate allocation 
of defense resources based on the availability of limited resourc‐
es. Task time delay is applied to quantify the expected utility as 
CPPSs have high time requirements and incur massive damage 
DDoS attacks. Different resource allocation strategies are adopt‐
ed by attackers and defenders under the three cases of attack-
free, failed attack, and successful attack, which lead to a corre‐
sponding consumption of resources. A multidimensional node 
value analysis is designed to introduce physical and cybersecuri‐
ty indices. Simulation experiments and numerical results dem‐
onstrate the effectiveness of the proposed model for the appro‐
priate allocation of defense resources in CPPSs under limited re‐
source availability.

Index Terms——Game theory, complex cyber-physical power 
system (CPPS), multidimensional evaluation, distributed denial 
of service (DDoS) attack.

I. INTRODUCTION 

THE modern power grid is evolving toward complex cy‐
ber-physical power systems (CPPSs) consisting of the 

production, transmission, and distribution of power energy, 
which is expected to achieve operational reliability, flexibili‐
ty, and economy [1]. However, due to the massive integra‐
tion of advanced information and communication technolo‐

gies (ICTs) such as wide-area measurement systems 
(WAMSs), supervisory control and data acquisition (SCA‐
DA) systems, and advanced metering infrastructures (AMIs), 
CPPSs are increasingly vulnerable to emerging threats posed 
not only by the physical environment but also by cyberspace 
components [2]. In the case of the Ukraine power grid hack, 
the attackers used cyberattacks to hinder severely the system 
recovery procedure [3], indicating the vulnerability and im‐
portance of CPPSs.

It is agreed that cyberspace attacks such as distributed de‐
nial of service (DDoS) [4], authentication [5], and injection 
[6] attacks may significantly affect the reliable and safe oper‐
ational process of physical systems or even lead to fatal fail‐
ures [7]. The DDoS attack is currently one of the most prev‐
alent threats to industry because of its low cost [8]. This con‐
firms the consensus that security does not imply that an at‐
tack is impossible but that the price of an attack is greater 
than its expected reward. In addition, conventional defense 
strategies and tools such as firewalls, encryption algorithms, 
and physical isolation cannot ensure the security of power 
systems under cyberattacks [9].

To address these technical challenges, considerable re‐
search efforts have been made to exploit CPPS vulnerabili‐
ties from different aspects, including impact quantification of 
cyberattacks on the power grid [10], [11], attack models 
[12], and cyber-physical interdependence analysis based on 
co-simulation testbeds [13], [14]. However, these studies 
have mainly been conducted only from the attacker’s per‐
spective, and the effects of cyber attacks on CPPSs have 
been analyzed and quantified on the premise that the attacks 
are successful. To analyze the strategy choice problems 
among multiple parties, game theory is considered an effi‐
cient paradigm for the analysis of cyber-physical system 
(CPS) defense [15]-[20]. Although both the attacker and de‐
fender are considered, these studies mainly focus on commu‐
nication systems, which means only the cyber layer is con‐
sidered. However, physical and cyber components are deeply 
intertwined in a CPPS, which means that attackers and de‐
fenders must consider the physical components in the game 
process. Our previous study [21] proposed a dynamic cyber-
physical security defensive strategy based on game theory. 
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Physical safety targets and cybersecurity indices were intro‐
duced, and the asset value was analyzed multidimensionally. 
However, the study did not fully consider the specific mani‐
festations of the attacks and their adverse effects on CPSs.

Therefore, the motivation of this study is to analyze the 
node value from multidimensional factors based on the cy‐
ber-physical coupling characteristics of CPPSs while fully 
considering the interactions between the attacker and defend‐
er based on a game-theory framework.

Accordingly, this study proposes a game-theoretical model 
for dynamic defense resource allocation in CPPSs under 
DDoS attacks. The operations of CPPSs are time sensitive, 
and thus a physical system node such as a programmable 
logic controller (PLC) or an interchanger is considered de‐
pleted when its task time delay exceeds a certain threshold, 
which can be quantified as the impact of an attack. A nonze‐
ro-sum game model with incomplete information is estab‐
lished to calculate the expected utility of each player under 
rationality from the two perspectives of resource consump‐
tion and value of the physical system node. Different strate‐
gies are adopted by the players (i.e., attacker and defender) 
under various conditions of attack-free, failed attack, and 
successful attack, resulting in corresponding resource con‐
sumption. In the attack-free case, the system node operates 
in a normal state, and the defender consumes only mainte‐
nance resources  while the attacker consumes no resources. 
In a failed attack, the system node continues to operate nor‐
mally despite the resources used by the attacker, whereas the 
defender consumes additional resources for defense. In the 
case of a successful attack, the system node cannot operate 
normally, whereas the attacker and defender both consume 
resources based on their respective strategies.

The value of a node is calculated by integrating the physi‐
cal and cybersecurity indices derived from multiple dimen‐
sions. The significance of the node itself and the influence 
of superiors and subordinates are among the node weights. 
The attack complexity is mainly influenced by the attack 
strategy (i.e., path complexity, concealment, and attack poten‐
tial), which is described in the common vulnerability scoring 
system (CVSS) [22] as well as the series level, which is de‐
termined by the connected node devices. Security is mea‐
sured by the three indicators of confidentiality, integrity, and 
reliability, which are represented by service unavailability, 
privacy violation, information manipulation, authority hijack‐
ing, and aberrant device performance. When a node func‐
tions appropriately, the resource allocation has the most sig‐
nificant effect on the intensity of the defense.

Simulation experiments are conducted to evaluate the pro‐
posed game-theoretical model for dynamic defense resource 
allocation, and numerical results confirm its effectiveness in 
identifying appropriate strategies. The main technical contri‐
butions of this study are as follows.

1) This study develops a game-theoretical model to sup‐
port the decision-making of defense resource allocation in 
CPPSs under DDoS attacks, and the time delay reflected by 
the node state is applied to quantify the efficiency of the 
strategy.

2) The proposed solution fully considers defense resource 

consumption as a metric under three conditions (attack-free, 
failed attack, and successful attack) and multidimensional 
factors (node weight, attack complexity, security property, 
and defensive intensity).

3) The appropriate resource allocation is obtained dynami‐
cally by achieving the attacker-defender Nash equilibrium 
under limited defense resources.

The remainder of this paper is organized as follows. Sec‐
tion II presents related work in terms of CPS security. A de‐
tailed description of the proposed game-theoretical model is 
provided in Section III. The simulation experiments and the 
numerical results are presented in Section IV. Finally, con‐
cluding remarks are presented in Section V.

II. RELATED WORK IN TERMS OF CPS SECURITY 

In previous studies, considerable efforts have been made 
toward CPSs that integrate mutually interacting physical and 
cyber systems [23]. Cyberspace systems that rely on underly‐
ing information and communication systems support the 
comprehensive perception and timely management of physi‐
cal systems and face growing cyberspace threats [24].

In [10], the effects of cyberattacks were exploited on pow‐
er grid voltage management performance, proving the huge 
impact of cyberattacks on various areas from the cyber do‐
main to the physical world and particularly in CPPSs. To ex‐
ploit the correlation between the switching vulnerability and 
structure of the power grid, flexible co-simulation frame‐
works were provided to simulate cyber-physical switching 
problems [12], [13]. Reference [25] indicated that DDoS at‐
tacks can inexpensively flood a system. Several attack strate‐
gies emphasizing the increasing number and method diversi‐
ty of DDoS attacks were proposed in [26], [27]. In [28], a 
representative system was developed to analyze security 
risks based on software-defined networking, and the cyber‐
space risks of denial of service (DoS) attacks on intelligent 
electronic devices and communication networks were calcu‐
lated. In [29], a comprehensive study was presented to evalu‐
ate power grid resilience against DDoS attacks, thus provid‐
ing a theoretical basis for quantifying the effects of DDoS at‐
tacks on CPPSs.

Game theory offers a quantifiable and understandable 
foundation for implementing active defensive strategies un‐
der uncertainty in several fields such as optimal energy de‐
mand analysis and Internet of Things networks [30]-[32]. In 
addition, game-theoretical research toward CPS security has 
been conducted. To acquire up-to-date attack response strate‐
gies and timely risk evaluation, [33] devised a finite-horizon 
semi-Markov game between the engineer and aggressor. In 
[16], a dynamic game paradigm was proposed to describe in‐
teractions in CPSs. In [20], a Bayesian game approach was 
formulated to schedule the energy consumption of residential 
communities in response to peak-load shifts. Reference [15] 
described a risk decision-making approach based on a sto‐
chastic game model to define the relationship between play‐
ers in industrial cyber-physical systems (ICPSs). In [34], a 
defense technique based on a dynamic Bayesian game model 
was proposed to investigate false data injection attacks on 
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power systems. In [19], the operational risks and vulnerabili‐
ties of CPPSs in two possible cyberattack scenarios were dis‐
cussed.

Although extensive research efforts have been made in de‐
fense strategies for communication systems (i.e., in the insur‐
ance of cyberspace security), researchers generally agree that 
security of industrial power systems cannot be assured be‐
cause of the operational couplings of CPSs. In addition, 
most existing studies have mainly focused on analyzing at‐
tacker behavior or defender strategies without fully consider‐
ing their sophisticated interactions. The resource using of at‐
tackers and defenders as well as information gained from 
counterparties that significantly affects attack and defensive 
performances require further research.

III. DETAILED DESCRIPTION OF PROPOSED 
GAME-THEORETICAL MODEL 

In this study, a three-layer CPPS structure and node char‐
acteristics are adopted, as suggested in [16] and [35]. The 
construction of the game-theoretical model and an update to 
the belief index are then presented. The overall architecture 
of the proposed game-theoretical model against DDoS at‐
tacks in terms of CPPSs is shown in Fig. 1.

A. DDoS Attack Model

Unlike traditional information and communication net‐
works, complex CPPSs generally contain extensive physical 
devices with limited computing capacity, low memory, and 
insufficient storage capacity. Decisions related to specific 
tasks such as perception, measurement, and execution are 
generally made in the human layer and delivered through the 
cyber layer. The strict requirements for time delay and the 
presence of relay protection in the power system allow at‐
tackers to interrupt or otherwise affect information transmis‐
sion through attacks such as DDoS, which may lead to con‐
tingencies in CPPS operations. Impact of DDoS attacks gen‐
erally falls into the two categories of excessive delay and re‐
source depletion [27]. Excessive delay occurs when exten‐
sive interference packets are injected to congest the network 
bandwidth such that legitimate commands cannot be deliv‐
ered between nodes. Resource depletion occurs when the 
central processing unit (CPU) receives illegal commands, 
which exhausts the memory of nodes or causes the cores to 
be occupied and thus unable to provide corresponding servic‐
es. Attackers can generate large-scale system disruptions 
with a minor cost when targeting the communication chan‐
nel of a specific node, delaying the execution of tasks by the 
device, or obfuscating the device state. During an attack, a 
significant communication delay is added to all packets. The 
sensing equipment continues to use the previous data such 
that the bad input allows the application to give an incorrect 
response. Finally, the wrong control action is returned to the 
power system, leading to a severe accident such as the 2011 
San Diego blackout.

The attack process can be considered a multistage process 
[36]. In the first step, the attacker performs reconnaissance 
of the system to obtain prior knowledge, including informa‐
tion about vulnerable devices, which is incomplete because 
of the protective measures of the defender. Some reconnais‐
sance strategies such as hit list scanning, topological meth‐
ods, permutation scanning, and local subnet scanning are 
popular or have the potential to deploy DDoS attacks [37]. 
The appropriate attack target is then selected through analy‐
sis based on this knowledge, and DDoS attack methods are 
used. Examples include the synchronize sequence number 
(SYN) flooding attack [38] and internet control message pro‐
tocol (ICMP) attack [39]. References [40] and [41] described 
wired and wireless DDoS attack methods and demonstrated 
the feasibility of remote DDoS attacks that can be conducted 
at low rates even when the attacker cannot get close to the 
power grid or directly access a wired network. Finally, the 
attacker evaluates the utility after the initial malicious attack 
and begins the next round of reconnaissance.

The decision-making layer may isolate or directly cut off 
the faulty part due to relay protection when a signal is re‐
ceived from a node under attack. Researchers have investi‐
gated many efficient detection methods against DDoS at‐
tacks [8], [25], [42] and demonstrated that the essential issue 
of DDoS attacks and defense is resource competition be‐
tween attackers and defenders.
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DDoS attacks in terms of CPPSs.
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B. Game-theoretical Model

Considering the uncertainty in attacker behavior and the 
complexity of CPPSs, a game-theoretical model based on in‐
complete information is established. A dynamic game for de‐
fense strategy (DGDS) G contains five elements of players, 
strategy profiles, tasks, expected utilities, and belief indices, 
which are denoted as M, Φ, K, U, and B, respectively.

G = MΦKUB (1)

Player a is the attacker and player d is the defender (i.e., 
control center). The finite sets Φa and Φd are used to encom‐
pass the selected strategies of the players, which can be 
mapped to resource consumption. K is the set of tasks k. 
The reward is adjusted, and the expected cumulative utility 
(U n

ak ; U n
dk ) is established for each task k. For example, φ3

ak 
refers to the strategy of the attacker in node 3 at task k 
based on the available information (bakÎBakbdkÎBdk ), 
which means that the attacker denotes the corresponding re‐
source consumption r 3

ak. Bak and Bdk are the available infor‐
mation of attacker and defender, respectively. The specific 
strategies of attackers may include changing the DDoS at‐
tack methods (e. g., SYN flooding and ICMP attacks), in‐
creasing the attack intensity and attack surface [43]. As this 
study is based on the defender’s perspective, the computing 
resources of the attacker are mapped to the attack traffic rate 
[18] because no universal standard exists for quantifying dif‐
ferent attack methods. The specific strategies of defenders in‐
clude bandwidth inflation, static blocking, and rate limiting 
[17], [27]. Accordingly, the computing resources of the de‐
fender are quantified as the resource budgets of the CPU, 
memory, and bandwidth of the user.

Players acquire greater knowledge as the game proceeds 
by assessing each other’s strategies and rewards from previ‐
ous tasks. Belief indices are formed to quantify the probabili‐
ty of other player’s strategies. An initial distribution 
(bn

a® d0; bn
d® a0 ) with a random variable is created as the oth‐

er player’s strategy at the beginning of the task and is updat‐
ed at each task.

The resource consumption (r n
ak ; r n

dk ) is normally assumed 
to be proportional to the strategies (φn

ak ; φ
n
dk ). However, bet‐

ter results can be achieved with more appropriate strategies 
when sufficient prior knowledge (bn

a® dk ; bn
d® ak ) is obtained.

C. Dynamic Game-based Solution

Because the CPPS is time-sensitive, a node is considered 
depleted when its task time delay exceeds a certain thresh‐
old. The attacker (i.e., the malicious device that attempts to 
disrupt the normal operational node) compromises as many 
nodes as possible at a favorable cost. By contrast, the de‐
fender (i.e., the control center) expects the system to operate 
normally to reduce system losses. A system is considered to 
have an exponential distribution of the service duration λdk, 
and the duration of a task tk depends on the service efficien‐
cy ςe and resource consumption budget νr [17].

Two types of operational modes are used in a network 
node: normal and risk. A node is considered to operate nor‐
mally when its task time delay is below the time threshold 
tth. The probability of the normal mode is calculated as:

Pdk =P(tk £ tth )= ∫
0

tth

λdke
-λdktkdtk (2)

A node is considered attacked when its task time delay ex‐
ceeds the time threshold tth. The probability of the risk mode 
is calculated as:

Pak =P(tth < tk )= 1 - ∫
0

tth

λdke
-λdktkdtk (3)

Two states of attacks can occur under the normal mode: 
failed attack and attack-free. The probabilities of failed at‐
tack Pafk and attack-free Pnfk are calculated as:

Pafk =P(tk £ δ)= ∫
0

δ

λafke
-λafktkdtk (4)

Pnfk =P(δ < tk £ tth )= ∫
δ

tth

λnfke
-λnfktkdtk (5)

where δ is the balancing factor used to express these two 
states of attacks, which is similar to that used in [44]; λafk is 
the service duration rate when the device is under attack but 
the attack fails; and λnfk is the service duration rate when the 
device is not under attack.

In the case of a high task time delay, the node changes its 
defensive strategy and resource consumption budget r'd, and 
the corresponding task duration t'k changes accordingly. The 
resource consumption budgets corresponding to the normal 
and risk modes are as follows:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

rdk = ∫
0

tdk

rddtk + ∫
0

tak

r'ddt'k

tdk = ∑
tiÎ{tk|tk < tth }

ti

tak = ∑
tiÎ{tk|tk ³ tth }

ti

(6)

where rdk is the resource consumption budget for a node at 
task k; rd is the resource consumption budget for a node; tak 
is the period of the attacker acting; and tdk is the period of 
the defender acting.

The attack resource consumption budget is r0 for the peri‐
od of the attack-free case. In addition, ra and r'a denote the 
attack resources when a trial attack is sent but fails and 
when the attack succeeds, respectively. The total consumed 
resource is calculated as:

ì

í

î

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

rak = ∫
0

tnfk

r0dtk + ∫
0

tafk

radtk + ∫
0

tak

r′adt′k

tnfk = ∑
tiÎ{tk|tk < δ}

ti

tafk = ∑
tiÎ{tk|δ £ tk < tth }

ti

tak = ∑
tiÎ{tk|tk ³ tth }

ti

(7)

where tnfk is the period of attack-free; and tafk is the period 
when a trial attack is sent but fails.

D. Update of Belief Index and Cumulative Utility

Traditional defensive strategies require historical data to 
establish blocklists [45]. In this study, a belief index is intro‐
duced to assume the information obtained from a counterpar‐
ty and to simulate the behavior under an active defense. A 

44



YAN et al.: GAME-THEORETICAL MODEL FOR DYNAMIC DEFENSE RESOURCE ALLOCATION IN CYBER-PHYSICAL POWER SYSTEMS...

higher belief index indicates that the attacker or the defender 
has obtained sufficient prior knowledge, and a better strategy 
is adopted with an excellent effect and low resource con‐
sumption.

Players establish the belief (bn
a® dk ; bn

d® ak ) at task k, which 
can be retrieved from the supplied knowledge at task k - 1. 
Insufficient previous knowledge exists for obtaining a belief 
index in the initial task k = 0, and therefore the belief distri‐
bution (bn

a® d0; bn
d® a0 ) is based on historical experiences or a 

stochastic strategy. The Bayesian rule is used to update the 
belief in each task.

The belief index update can be regarded as a Markov re‐
newal process in which the belief at task k is dictated by the 
information at task k - 1:

bn
a® dk =

ì
í
î

ïï
ïï

(1 - α)bn
a® dk - 1 + αφ

n
dk - 1    ∆ > 0

bn
a® dk - 1                                 ∆ £ 0

(8)

bn
d® ak =

ì
í
î

ïï
ïï

(1 - β)bn
d® ak - 1 + βφ

n
ak - 1    ∆ > 0

bn
d® ak - 1                                 ∆ £ 0

(9)

∆ =P n
afk +P n

ak (10)

where P n
afk is the probability of the failed attack at task k of 

node n; P n
ak is the probability of the risk mode at task k of 

node n; and the constants α and β represent the capabilities 
of the attacker and the defender, respectively. Higher α and 
β indicate that the players are more skilled and can be con‐
sidered to have acquired more prior knowledge and offered 
a more efficient strategy [16].

The attacker wants to compromise as many nodes as possi‐
ble with positive utilities, whereas the defender wants the 
system to operate normally, at least within a certain thresh‐
old, to reduce system losses under limited resources. For the 
attacker, the revenue Rn

aK is the aggregate of the values of 
node n that do not work properly:

Rn
aK =∑

k = 0

K

V n P n
ak (11)

where V n is the value of node n, and its specific calculation 
is examined in Section III-E.

For the defender, the revenue Rn
dK is the aggregate of the 

values of node n working normally:

Rn
dK =∑

k = 0

K

V n P n
dk (12)

where P n
dk is the probability of the normal mode at task k of 

node n. For each node n, the expected utilities of the defend‐
er and attacker U N

aK and U N
dK are the revenue minus resource 

consumption, which can be expressed as:

U N
aK =∑

n = 1

N

(Rn
aK - r n

aK ) (13)

U N
dK =Rn

dK - r n
dK (14)

The bimatrix game is thought to encompass nonzero-sum 
game circumstances in which the conclusion of a decision 
process does not always indicate the amount one player 
earns and the other loses [46].

For any φn
dk, a fixed strategy φ͂n

ak exists such that U͂ N
aK is 

the maximum value, and for any φn
ak, a fixed strategy φ͂n

dk ex‐
ists such that U͂ N

dK is the maximum value:

U͂ N
aK >U N

aK    $φ͂n
ak"φ

n
dkÎΦ

n
dk (15)

U͂ N
dK >U N

dK    $φ͂n
dk"φ

n
akÎΦ

n
ak (16)

where Φn
ak is the total set of possible attack strategies; and 

Φn
dk is the total set of possible defensive strategies.
Here, the pair (φ͂n

akφ͂
n
dk ) is classified as an equilibrium out‐

come of the bimatrix game in mixed strategies adopted 
when the pure strategy Nash equilibrium does not exist; that 
is, a probability is assigned to each pure strategy, as suggest‐
ed in [47]. In [46], every bimatrix game is proven to have at 
least one Nash equilibrium solution for mixed strategies.

E. Multidimensional Evaluation

Considering the specific effects of DDoS attacks, we pro‐
pose a multidimensional evaluation based on our previous 
study [21] from four perspectives: node weight, attack com‐
plexity, security property, and defensive intensity, as shown 
in Table I.

Here, the node weight is calculated by considering the val‐
ue of the node (physical and cyber values) quantified by the 
criticality level (CL) [48] and the effects of superiors and 
subordinates reflected by the node centrality degree. The 
more significant the expected direct and indirect effects of 
the risk mode of the node, the higher the CL. Attack com‐
plexity comprises a series level defined by the degree of net‐
work cohesiveness and the difficulty of the attack (i. e., at‐
tack path complexity, attack concealment, and attack poten‐
tial). The attack difficulty is calculated by translating the ex‐
ploitability metrics (e. g., attack vector, attack complexity, 
privileges required, and user interaction) in the CVSS. Sever‐
al typical vulnerabilities in DDoS attacks are selected as ex‐
amples and listed in Table II, where PC stands for personal 
computer; and DSC stands for digital signal controller. Secu‐
rity properties include the three indicators of confidentiality, 
integrity, and availability, which are considered the core un‐

TABLE I
MULTIDIMENSIONAL EVALUATION

Perspective

Node weight

Attack 
complexity

Security 
property

Defensive 
intensity

Description

Value of node itself

Effects of superiors and 
subordinates

Series level

Path complexity

Concealment

Attack potential

Confidentiality

Integrity

Reliability

Software defense

Hardware defense

Example

Physical value

Cyber value

Firewall

Block lists

Quick break protection

Differential protection
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derpinnings of information security [49]. Confidentiality can 
be defined as the access levels of information internally and 
externally. Integrity means that data or information in the 
system is maintained (e. g., the system uses Hash verifica‐
tions or employs backups) so that the data or information is 
not modified or deleted by unauthorized parties. Availability 
requires the system to be available to authorized users 
through countermeasures such as providing hardware redun‐
dancy or data storage. With respect to the CVSS, the CIA is 
also used as a base metric. Defensive intensity is primarily 
influenced by defenses built into the device hardware such 
as quick-break protection and differential protection as well 
as the software defense strategy related to resource alloca‐
tion.

F. Algorithmic Design

We consider a nonzero-sum game to explore the solution 
of the Nash equilibrium during resource consumption. In 
most cases, incomplete information places the sum of utili‐
ties in non-equilibrium. The corresponding choices of strate‐
gy pairs are listed in Table III.

In addition, the attacker abandons the node when the ex‐
pected utility becomes negative.

The knowledge that attackers and defenders have of each 
other is limited to tk - 1. Therefore, they can only use their 
own and others’ current and historical information when cal‐
culating their strategies in tk. Thus, the Q-learning algorithm 
has the reward values of

ϒ n
ak =Rn

ak - 1 - r n
ak +V n × Pr(bn

a® dk ³ φ
n
ak ) (17)

ϒ n
dk =Rn

dk - 1 - r n
dk +V n × Pr(bn

d® ak > φ
n
dk ) (18)

where ϒ n
ak and ϒ n

dk are the final reward values of the attack‐

er and the defender, respectively; and Pr(×) denotes the play‐
ers’ predicted probability of obtaining revenue through the 
historical belief index.
ϒ n

ak and ϒ n
dk are not equal to U n

ak and U n
dk, respectively, 

and therefore some errors will occur due to the incomplete 
information model. This results in the inability of both par‐
ties to make optimal judgments.

Algorithm 1 provides a computational approach based on 
Q-learning algorithm to achieve the Nash equilibrium using 
the following procedure. The defender utilizes the strategy 
transformation function to set a resource allocation value r n

d0 
to node n in the initial task k0. The resource adapter con‐
ducts a defensive strategy φn

dk after performing and configur‐
ing the resource allocation r n

dk. The strategy reward ϒ n
dk and 

belief index bn
a® dk are updated. After the corresponding ex‐

pected utility for the interaction of strategy selection is calcu‐
lated under this initial condition, the procedure is repeated 
for each node k until the initial strategy pair (φn

a0φ
n
d0 ) with 

the optimal expected utility is obtained.

IV. SIMULATION EXPERIMENTS AND NUMERICAL RESULTS 

A. Experimental Setup

In this study, experiments are conducted on a testbed at 
Zhejiang University, China. A CPPS with topological connec‐
tions and different devices is implemented as illustrated in 
Fig. 2.

Nodes 1-3 are PCs (Core i7, 8086K) equipped with Linux 
systems. Node 4 is an industrial switch that uses the Mod‐
bus/TCP protocol. Node 5 is a PLC manufactured by SIE‐
MENS. Node 6 is a distributed control system (DCS) manu‐
factured by SIEMENS. Node 7 is a remote terminal unit 
(RTU) manufactured by Schneider Electric. Finally, Nodes 7 

TABLE II
TYPICAL VULNERABILITIES IN DDOS ATTACKS

Vulnerability

CVE-2021-
0259

CVE-2019-
19922

CVE-2013-
5211

CVE-2007-
0086

Equipment

Interchanger

PC

PC, PLC, 
DSC

PC, PLC, 
DSC

Description

Due to a vulnerability in DDoS protection, 
instability may occur in the underlay net‐
work as a consequence of exceeding the 
default DDoS-protection aggregate thresh‐
old

In the Linux kernel, a DoS against non-
CPU-bound applications is caused when a 
CPU is used

The monlist feature in a network time proto‐
col (NTP) allows remote attackers to gen‐
erate a DoS (traffic amplification)

A DoS (network bandwidth consumption) is 
caused by remote attackers when ac‐
cessed through a transmission control pro‐
tocol (TCP) connection

TABLE III
CORRESPONDING CHOICES OF STRATEGY PAIRS

Mode

Successful attack

Failed attack

Attack-free

Attack intensity

Constant

Up or down to 0

Up or constant

Defend intensity

Up or down to 0

Down to normal level or constant

Constant

Algorithm 1: computational approach based on Q-learning algorithm to 
achieve Nash equilibrium

Input: parameters in DGDS, task K, node N

Output: φn
akφ

n
dkU

N
aKU

N
dK

1. Initialization: U N
a0U

N
d0

2. Initialization: kn

3. for each node nÎN do

4.   for each (φn
a0φ

n
d0 )Î(Φn

a0Φ
n
d0 ) do

5.     while k <K do

6.        if φn
ak > 0 then

7.          Update bn
a® dkb

n
d® ak

8.        end if

9.        Update Q-function using (17) and (18)

10.      Select strategy pairs (φn
akφ

n
dk )Î(Φn

akΦ
n
dk ) using ε-greedy algo‐

rithm

11.       Update U n
akU

n
dk

12.       k = k + 1

13.     end while

14.     Select initial strategy pair (φn
a0φ

n
d0 ) using mixed strategy

15.     Update U n
aKU

n
dK

16.   end for

17. end for
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and 8 are connected to traditional electrical devices.

Node 4 mainly transmits data; therefore, the CL of the cy‐
ber value is high, but it does not have a high value itself, 
and the CL of the physical value is low. As a key node, it is 
connected to many other nodes, and the effects of the upper 
and lower levels are very high. This node is in the second 
stage (communication layer); therefore, its series level is 
low. The attack difficulty is obtained as low by mapping AV:
N/AC: L/PR: N/UI: N/S: U in vulnerability CVE-2019-16920. 
The security property is obtained by mapping C:H/I:H/A:H 
to be very high. The defensive intensity is medium. Addition‐
al details of the CVSS can be found in [22].

Similar to SCADA, the human layer is connected to the 
cyber layer via Ethernet. A local area network connects the 
computing and communication devices in the cyber layer in‐
ternally and intelligent devices in the physical layer. In the 
physical layer, PLCs and controllers (e. g., circuit breakers) 
are expected to operate in real time, and communication can 
guarantee their time-sensitive performance [50].

B. Performance Evaluation

The attacker’s goal is a successful attack, which is evalu‐
ated based on [51], when more nodes are prevented from op‐
erating normally with positive expected utility. The goal of 
the defender is to protect more nodes with limited resources. 
The intensities of the attacker and defender are discretized 
into s degrees: Φa =Φb = (01s - 1). The greater the value 
of s, the more complex is the game.

First, each task that is issued to a target node in a sam‐
pling interval is assumed to consume the same time and re‐

sources. However, task consumption may differ with differ‐
ent nodes because of the corresponding devices connected to 
the node. Thus, only a single attacker is considered in this 
study; that is, no cooperative attack occurs. In addition, a pri‐
or belief distribution based on past experiences with another 
player is assumed.
1) Values of Nodes

For nodes with different values, the strategies of the at‐
tacker and the defender change. Three typical nodes a, b, 
and c are selected as samples, as shown in Fig. 3. The solid 
and dashed lines denote the strategy change processes of the 
attacker and the defender, respectively. Initial strategy pairs 
of players s2 are employed. Here, s = 8 with initial strategy 
pairs (φa0φd0 )Î{(00) (40) (44) (47) (77)} are demon‐
strated to show the game processes from 64 strategy pairs.

N1 N2 N3

N4

Cyber layer

N5 N6 N7

N8 N9

Physical layer

Human layer

Node in control layer; Node in physical layer

Circuit

breaker

Intelligent

electronic device

Operator
station

Monitoring
station

Interchanger

Database
server

PLC

Attacker

Defender

Firewalls

Node in communication layerNode in network layer;

DCS RTU

Firewalls

Fig. 2.　CPPS structure in simulations. 0 10 20 30 40 50
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Fig. 3.　Sets of optimal strategy pairs under different initial strategy pairs 
for typical nodes. (a) Node a. (b) Node b. (c) Node c.
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The results of nodes a, b, and c show that the higher the 
value of a node, the longer the game process continues. Fi‐
nally, the optimal strategy pairs are found.

When the defender chooses a very low degree as the ini‐
tial strategy (when only basic defensive measures based on 
local protection devices are available), for example, 
(φa0φd0 )Î{(00) (40)}, the following are possible:

1) For a low-value node, regardless of the initial strategy 
the attacker chooses, the attack strategy will fall back into 
the low-degree strategy after certain duration of the game 
process.

2) For a medium-value node, the initial strategy adopted 
by the attacker (i.e., heuristic attack) is important. When the 
attacker gradually increases the attack degree from zero, the 
defender quickly gives up. However, the attacker fails to ob‐
tain sufficient prior knowledge, and therefore the result is 
not as good as that under the situation starting from the me‐
dium degree.

3) For a high-value node, the attacker has obtained suffi‐
cient prior knowledge in the long game process, and the up‐
date of the belief index determines the initial defense degree. 
Therefore, the higher the initial defense degree, the higher 
the attack degree.

When the defender chooses a high degree as the initial 
strategy (e. g., (φa0φd0 )Î{(47) (77)}), regardless of the 
value of the node, the attacker will directly abandon the 
node. By contrast, when the attacker initially adopts a medi‐
um degree to conduct a heuristic attack (e. g., (φa0φd0 )Î 
{(40) (44) (47)}), the following are possible:

1) For a low-value node, the defender can choose a strate‐
gy above a medium degree to protect the node and force the 
attacker to give up.

2) For a medium-value node, the defender must select a 
high degree as the initial strategy to successfully defend 
against the attacker. Otherwise, the defender will give up af‐
ter certain duration of the game process because of resource 
consumption.

3) For a high-value node, the defender spends significant‐
ly more time collecting the attacker’s information. However, 
the defender will eventually give up because of resource con‐
sumption and aggressive attack strategy unless a high-degree 
defense strategy is initially chosen.
2) Mixed Strategy

For a high-value node c, strategy pairs exist with 64 ini‐
tial degrees and the corresponding expected utilities for the 
Nash equilibrium solution. If no pure strategy pairs exist 
from the 64 expected utilities (i.e., the attacker takes the best 
utility and the defender does not), then a mixed strategy is 
adopted. The probabilities of the attacker and defender for 
the initial degree strategy are listed in Table IV. The corre‐
sponding expected utilities and changes in expected utilities 
are presented in Fig. 4.
3) Comparison of Cases with Complete and Incomplete In‐
formation

As Fig. 5 shows, in the complete information scenario, 
the optimal expected utility of the defender is much greater 
than that in the incomplete information scenario.

For an attacker, a heuristic attack consumes resources 
without any benefit. Note that the attacker’s benefit is not 
affected by the defender’s benefit loss in a nonzero-sum 
game.
4) Belief Index

The belief indices vary depending on the attacker’s and 
defender’s capabilities (e. g., trained players, hackers, and 

TABLE IV
PROBABILITIES OF ATTACKER AND DEFENDER FOR INITIAL DEGREE 

STRATEGY

Initial degree

0

1

2

3

4

5

6

7

Probability

Attack strategy

4.49 ´ 10-1

2.54 ´ 10-2

3.63 ´ 10-1

4.62 ´ 10-7

1.14 ´ 10-1

1.09 ´ 10-7

8.61 ´ 10-9

4.94 ´ 10-2

Defense strategy

4.61 ´ 10-9

4.26 ´ 10-9

5.21 ´ 10-9

4.70 ´ 10-9

4.06 ´ 10-9

4.15 ´ 10-9

4.99 ´ 10-1

5.01 ´ 10-1

100

200

300

400

500

E
x

p
ec

te
d

 u
ti

li
ty

30

20

10

0

-10

-20

C
h

an
g

e 
o

f 
ex

p
ec

te
d

 u
ti

li
ty

0 10 20 30 40 50
Task No.

Ua,k|(φa,k, φd,k); Ud,k|(φa,k, φd,k);ΔUa,k|(φa,k, φd,k); ΔUd,k|(φa,k, φd,k)
~~ ~~ ~~ ~~

Nash equilibrium

interval

Fig. 4.　Results of expected utilities and changes in expected utilities.

E
x

p
ec

te
d

 u
ti

li
ty

o
f 

at
ta

ck
er

E
x

p
ec

te
d

 u
ti

li
ty

o
f 

d
ef

en
d

er

0 5 10 15 20 25 30 35 40 45 50
Task No.

0 10 20 30 40 50
Task No.

(b)

(a)
600

400

200

900

600

300

Complete information; Incomplete information

Fig. 5.　Comparison of expected utilities of defenders and attackers in com‐
plete and incomplete information scenarios. (a) Expected utilities of defend‐
ers. (b) Expected utilities of attackers.

48



YAN et al.: GAME-THEORETICAL MODEL FOR DYNAMIC DEFENSE RESOURCE ALLOCATION IN CYBER-PHYSICAL POWER SYSTEMS...

masters). For the high-value node c, the strategy pairs and 
expected utilities for players with different capabilities are 
examined. The initial strategy pairs are chosen randomly as 
(φa0φd0 )= (05), which is unrelated to the results. Figure 6 
illustrates the strategy pairs and expected utilities when the 
attacker is stronger than the defender. Figure 7 illustrates the 
strategy pairs and expected utilities when the attacker is 
weaker than the defender.

It can be observed that when the attacker is stronger than 
the defender, even if the initial strategy is inferior, the attack 
is likely to succeed. When the defender is stronger than the 
attacker, the attacker has difficulties breaking through the de‐
fense unless the defender gives up. In Fig. 8, if both the at‐
tacker and defender do not obtain information from histori‐
cal data (i.e., they ignore the influence of the belief index), 
they will cyclically adopt the same strategy pairs.
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Fig. 8.　Strategy pairs and expected utilities when no belief index exists.

Our study shows that the proposed solution can provide 
an appropriate allocation of defensive resources under limit‐
ed resources. The initial strategy significantly affects the 

choice of strategy for both the attacker and the defender. For 
complete information scenario, the attacker has difficulties 
obtaining the utility. Experienced defenders can reduce sys‐
tem losses effectively.

V. CONCLUSION 

This study exploited a game-theoretical model for a dy‐
namic defense strategy under DDoS attacks with respect to 
CPPSs and developed a nonzero-sum game model with in‐
complete information. The effectiveness of the proposed so‐
lution was extensively evaluated through simulation experi‐
ments, and the numerical results confirmed its effectiveness 
in dynamically allocating defense resources. In the future 
study, machine-learning models can be incorporated into the 
design of game-theoretical defense strategies. The exploita‐
tion of a complex scenario with multiple game participants 
(i. e., a cooperative attack or cooperative defense) is worthy 
of further research.
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