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Optimal Operation Strategy Analysis with 
Scenario Generation Method Based on Principal 

Component Analysis, Density Canopy, and 
K-medoids for Integrated Energy Systems

Bingtuan Gao, Yunyu Zhu, and Yuanmei Li

Abstract——The operation of integrated energy systems (IESs) 
is confronted with great challenges for increasing penetration 
rate of renewable energy and growing complexity of energy 
forms. Scenario generation is one of ordinary methods to allevi‐
ate the system uncertainties by extracting several typical scenar‐
ios to represent the original high-dimensional data. This paper 
proposes a novel representative scenario generation method 
based on the feature extraction of panel data. The original high-
dimensional data are represented by an aggregated indicator 
matrix using principal component analysis to preserve temporal 
variation. Then, the aggregated indicator matrix is clustered by 
an algorithm combining density canopy and K-medoids. Togeth‐
er with the proposed scenario generation method, an optimal 
operation model of IES is established, where the objective is to 
minimize the annual operation costs considering carbon trading 
cost. Finally, case studies based on the data of Aachen, Germa‐
ny in 2019 are performed. The results indicate that the adjust‐
ed rand index (ARI) and silhouette coefficient (SC) of the pro‐
posed method are 0.6153 and 0.6770, respectively, both higher 
than the traditional methods, namely K-medoids, K-means++ , 
and density-based spatial clustering of applications with noise 
(DBSCAN), which means the proposed method has better accu‐
racy. The error between optimal operation results of the IES ob‐
tained by the proposed method and all-year time series bench‐
mark value is 0.1%, while the calculation time is reduced from 
11029 s to 188 s, which verifies that the proposed method can 
be used to optimize operation strategy of IES with high efficien‐
cy without loss of accuracy.

Index Terms——Scenario generation, principal component analy‐
sis (PCA), density canopy, K-medoids, integrated energy system.

I. INTRODUCTION 

WITH the increasing shortage of fossil energy and envi‐
ronmental pollution problems, the development of re‐

newable energy has become an important means to solve the 
energy crisis. But the volatility and intermittency of renew‐
able energy bring great challenges to the safe and stable op‐
eration of power systems, which also limit its large-scale 
consumption [1], [2]. Therefore, the integrated energy sys‐
tem (IES), which can promote the consumption of renewable 
energy and improve the energy efficiency, has been vigorous‐
ly promoted and applied [3].

IES is a multi-energy system integrating unified planning 
and dispatch of electricity, gas, cooling, and heating [4]. 
Within the IES, there are distributed renewable energy sourc‐
es such as photovoltaic (PV) and wind power, whose power 
output fluctuates randomly, and the load demand for cities 
and towns varies greatly from place to place and from time 
to time. Therefore, extracting features from historical power 
output and load data and generating typical scenarios can 
well reflect the complex operational characteristics of the 
IES [5]. And scenarios generated also have important practi‐
cal application value in the scheduling, planning, and opera‐
tion optimization of the IES [6], [7].

An IES historical operation dataset is a large collection of 
scenarios with various uncertainty factors, which needs to be 
streamlined into a small and representative set of scenarios. 
Using the typical scenarios for IES scheduling and optimal 
operation analysis can reduce the computational scale of the 
optimization model without affecting the accuracy. Typical 
scenario generation is mainly summarized as the following 
three methods [8], [9].

1) Typical day method, which selects a typical day as the 
scenario based on experience and operation object, and usu‐
ally chooses the day with the largest peak-to-valley load dif‐
ference as the typical day [10], [11].

2) Time series production method, which aims to simulate 
the time series of renewable energy output and load charac‐
teristics, and thus presents the actual grid operation scenari‐
os [12], [13].

3) Clustering method, which can be divided into two 
steps: first, the scenario generation step is adopted to obtain 
a large number of scenarios and their corresponding probabil‐
ities, and then the scenario reduction step is used to obtain 
typical scenarios. In [14], a stochastic optimal operation 
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model based on multi-scenario simulation for IES was pro‐
posed, where the scenario generation method is based on a 
Latin hypercube sampling operation, and the scenario reduc‐
tion method is based on the K-means clustering. In [15], 
Copula function was used to build a joint output model of 
time series from multiple wind farms. A large initial scenario 
set was generated by probabilistically sampling and splicing 
from the Copula model, and the K-means clustering algo‐
rithm was used to reduce the scenarios to generate typical 
joint output scenarios.

The clustering method described above is commonly used 
for reasons of computational efficiency and accuracy. If suffi‐
cient historical data are available, the first step of the meth‐
od can be omitted. The second step is adopted to aggregate 
similar scenarios based on specific metrics such as probabili‐
ty, hourly magnitude, or cost for each scenario [16]. The typ‐
ical scenarios can be used in the planning and optimal opera‐
tion of IESs. Therefore, making typical scenarios contain the 
maximum amount of historical data information is the key is‐
sue in study of the scenario generation method. Reference 
[17] introduced the concept of correlation loss. A correlation 
loss weight of the proposed scenario reduction framework 
was used to balance the minimal correlation loss and the 
maximal similarity between the original scenario set and the 
reduced scenario set. Reference [18] aimed at minimizing 
the partial correlation loss and maximizing the probabilistic 
similarity degree before and after reduction. Reference [19] 
proposed a weighted clustering method to extract the ex‐
treme scenarios in a system, with the temporal variations 
and correlations between wind power and load considered. 
Clustering is a normal way to realize scenario reduction, 
which is mainly classified as hierarchy-based, division-
based, grid-based, density-based, and model-based meth‐
ods [20].

Currently, few researchers have focused on generating typ‐
ical IES scenarios incorporating renewable energy and load 
uncertainty. In addition, statistical methods are commonly 
used to deal with high-dimensional historical data during sce‐
nario generation, which means that temporal changes are of‐
ten ignored. This paper proposes a combined scenario gener‐
ation method that aims at preserving temporal variation of 
the original scenario, which consists of five indicators, name‐
ly PV power, wind power, electric load, heat load, and gas 
load. The adjusted rand index (ARI) and silhouette coeffi‐
cient (SC) are introduced to verify the effectiveness of the 
proposed method in this paper and the typical scenarios are 
applied in the optimization operation of the IES to demon‐
strate their practical application value. The main contribu‐
tions of this paper can be briefly summarized as follows.

1) A novel typical scenario generation method based on 
the principal component analysis (PCA), density canopy, and 
K-medoids is proposed. PCA is first adopted to extract the 
feature of the high-dimensional data, then the density canopy 
is used to obtain the cluster number and cluster center, and 
finally the typical scenarios are implemented by K-medoids 
with the optimized cluster number and cluster center.

2) Together with typical scenarios considering the tempo‐

ral variation obtained by the proposed method, an optimal 
operation model of an IES is established to minimize the an‐
nual operational cost including the purchase cost of electrici‐
ty and gas, the operation and maintenance costs, the depreci‐
ation cost, and the cost of carbon trade.

3) Extensive case studies are conducted on the proposed 
method and the optimal operation strategy analysis of an 
IES based on the data of Aachen, Germany in 2019. Two 
cluster validity indexes are introduced to demonstrate the ef‐
fectiveness of the proposed method. And overall simulation 
results verify the effectiveness and advantages of the pro‐
posed method.

The rest of the paper is organized as follows. Section II 
presents the proposed typical scenario generation method. 
Section III illustrates the mathematical model of the opera‐
tion for IESs. Section IV presents the results of the studied 
cases. Finally, conclusions are described in Section V.

II. PROPOSED TYPICAL SCENARIO GENERATION METHOD 

A. Construction of Typical Scenarios

Panel data are a kind of multi-dimensional data that com‐
bines cross-sectional data and time-series data, which form a 
plane whenever arranged in the cross-sectional or time-series 
dimension, which looks like a panel as a whole [21]. Histori‐
cal power output and load data of an IES over a year corre‐
spond to the feature of panel data since the data can be di‐
vided into two dimensions. From the cross-sectional dimen‐
sion, the whole data are divided by the index value which in‐
cludes wind power, PV power, electric demand, heat de‐
mand, and gas demand. From the time-series dimension, the 
sampling time is 1 hour. The historical daily data of an IES 
include 24 hourly data, while the hourly data are composed 
of index value corresponding to power output and energy de‐
mand.

Traditional clustering methods are difficult to implement 
for clustering this type of data. To facilitate clustering analy‐
sis, the dimensionality reduction of the original data is re‐
quired. When constructing typical scenarios of an IES, a cer‐
tain statistic of an index (e.g., electric demand, heat demand, 
gas demand) is commonly adopted to represent the all-day 
time-series values, which reduces the dimensionality from 
the perspective of time sequence and then clusters the statis‐
tic of all-day data using common clustering methods. In this 
section, in order to preserve the time-series characteristics of 
the historical data, dimensionality reduction is realized from 
the perspective of indexes rather than time series. PCA is ad‐
opted to construct an aggregated indicator for the scenario di‐
vision to reduce the dimensionality of the original indexes. 
After the above processing, aggregated indicators of the all-
year time series could be obtained and then the typical sce‐
narios could be constructed using clustering methods.

B. Feature Extraction of Historical Data

PCA, also known as K-L transformation, is adopted for 
the feature extraction. First, the data are pre-processed to 
form the multi-indicator panel data of the IES, which in‐
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clude all-year data of wind power and PV output as well as 
electric, gas, and heat demands. Suppose that the original da‐
ta are xis(tn) (i = 12k; s = 12m; tn = t1t2tp), 
where i is the sequence number of the day (ranging from 1 
to 365); s is the specific index (i.e., wind power output, PV 
output, electric demand, gas demand, and heat demand); and 
tn is the time sequence (ranging from 1 to 24). Then, the 
original data set is formed as:
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The mean matrix of the original data set corresponding to 
the dimension of the index can be formed as:
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x̄×s (tn )=
1
m∑s = 1

m

xis (tn ) (3)

Then, the correlation matrix R(tn) corresponding to the 
time sequence is calculated as:
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x*
is (tn )=

xis (tn )- x̄×s (tn )

var×s (tn )
(6)

where var×s (tn ) is the variance of x×s.
The eigenvalues and eigenvectors of the correlation matrix 

R(tn) as well as the contribution rate of each eigenvalue are 
calculated, and then the cumulative contribution rate is ob‐
tained by summing up each contribution rate. Thus, the lin‐
ear expression of the principal components can be achieved, 
and the appropriate number of principal components are se‐
lected according to their cumulative contribution rates. The 
linear expressions of the selected l principal components are:

yi (tn )= x T
i (tn )ξi (tn )    i = 12l; n = 12p (7)

where x i is the original data of the ith principal component; 
and ξ i is the eigenvector of the ith principal component.

An aggregated indicator of the specific time sequence can 

be obtained through the above process, and the aggregated 
indicator matrix of original scenarios is established. Suppose 
that Fi(tn) is the aggregated indicator of the t th

n  hour in the ith 
day, which is expressed as:

Fi (tn )= α1 (tn )y1 (tn )+ α2 (tn )y2 (tn )+ + αl (tn )yl (tn ) (8)

αj (tn )=
λj (tn )

∑
j = 1

l

λj (tn )
    j = 12l; n = 12p

(9)

where αj (tn ) is the contributed rate; and λj (tn ) is the eigen‐
value.

Then, the aggregated indicator matrix for the typical sce‐
nario generation of the IES is expressed as:
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C. Clustering of Feature Data

An improved K-medoids algorithm coupled with density 
canopy is proposed to realize the clustering. The process of 
classic clustering methods like K-means and K-medoids is 
rather slow and the results are easily affected by the initial 
value. With the combination of canopy, which is an unsuper‐
vised and fast approximate “coarse” clustering algorithm pro‐
posed by Mccallum [22], the effect of the initial value selec‐
tion on the clustering results is alleviated [23]. However, in 
classic canopy, two artificially set distance thresholds will af‐
fect the clustering results. If the distance threshold is set to‐
be too large, samples that belong to different clusters will be 
incorrectly classified into the same class, and if the distance 
threshold is set to be too small, samples that belong to the 
same cluster will be classified into different clusters. Howev‐
er, when the density canopy algorithm is adopted, setting the 
values of predefined distance threshold is unnecessary.

Several principals need to be defined beforehand. First, 
the Euclidean distance between sample Fi and sample Fj is 
expressed as:

d(FiFj )= ∑
n = 1

p

(Fi (tn )-Fj (tn ))2 (11)

Then, the average distance of all the samples in the data 
set is expressed as:

dmean =
2

n(n - 1)∑i = 1

n ∑
j = i + 1

n

d(FiFj ) (12)

The density of sample Fi refers to the number of all sam‐
ples, whose distance away from Fi is smaller than dmean, 
which is expressed as:

ρ(Fi )=∑
j = 1

n

f (d(Fi -Fj )- dmean ) (13)

f (x)= {1    x < 0
0    x ³ 0

(14)

The improved K-medoids algorithm based on density cano‐
py can be conducted based on the above definitions. The spe‐
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cific steps of density canopy are as follows.
Step 1: calculate the density of all the samples in the sce‐

nario set F, and select the sample with the largest density 
value to be the first cluster center, which is expressed as c1. 
Then, c1 is added to the set of cluster centers, C ={c1 }. All 
the samples in set F whose distance away from c1 is smaller 
than dmean will be removed.

The average distance of all the samples, whose center is 
c1, is:

¶(Fi )=
2

ρ(Fi )(ρ(Fi )- 1)∑i = 1

ρ(Fi )∑
j = i + 1

ρ(Fi )

d(FiFj ) (15)

where a smaller value of ¶(Fi ) means that the samples with‐
in the cluster are closer and more similar.

Intraclass distance s(Fi) is the distance between samples Fi 
and Fj with a higher local density, which is expressed as:

s(Fi )=
ì
í
î

ïïmin{d(FiFj )}     $Fjρ(Fj )> ρ(Fi )

max{d(FiFj )}    "Fjρ(Fj )< ρ(Fi )
(16)

Then, with the above definitions, the density weight of a 
sample Fi can be defined as:

ω(Fi )=
ρ(Fi )s(Fi )
¶(Fi )

(17)

Step 2: the selection of the next cluster center is based on 
the product weight, and the second cluster center c2 is the re‐
maining sample that has the biggest product weight. Add c2 
into set C, thus C ={c1c2 }. Remove the samples whose dis‐
tance away from c2 is smaller than dmean afterward.

Step 3: after the above processing, calculate ρ(Fi ), ¶(Fi ), 
and s(Fi ) of all the remaining samples in data set F. Then, 
the product weights could be calculated, which are ω(Fic1 ) 

and ω(Fic2 ). The third cluster center c3 will be the sample 
that has the biggest value of ω(Fic1 )ω(Fic2 ). Add c3 into 
set C, thus C ={c1c2c3 }. Similarly, remove the samples 
whose distance away from c3 is smaller than dmean afterward.

Step 4: among the remaining samples, if there exists a sam‐
ple Fj satisfying max{ω(Fjc1 )ω(Fjc2 )··ω(Fjck - 1)}, then 
Fj will be set as the kth cluster center ck. Add ck into set C, 
thus C ={c1c2ck }. Meanwhile, remove the samples 
whose distance away from ck is smaller than dmean.

Step 5: repeat the above steps to find all the remaining 
cluster centers that satisfy the conditions in Step 4, and add 
them one by one to the centroid set C. Then, remove the re‐
maining samples from the data set F that have a distance 
less than dmean between the corresponding cluster centers. Re‐
peat the process until the data set is empty.

With the above steps, the pre-clustering is completed. And 
the optimal value k and the initial cluster center could be ob‐
tained. Then, the K-medoids [24] is carried out to obtain the 
final clusters, whose specific steps are as follows.

Step 1: the K-medoids clustering is based on the number 
of cluster centers and clusters obtained from the density can‐
opy algorithm. Calculate Euclidean distance between sample 
Fi and each cluster center, then the sample will be assigned 
to the cluster.

Step 2: for an obtained cluster i, calculate the sum of the 
Euclidean distances between each sample and the other sam‐
ples separately. And the sample with the smallest sum of dis‐
tances is selected as the new centroid.

Step 3: repeat Steps 1 and 2 until the cluster centers no 
longer change.

The flow chart of the above process is shown in Fig. 1.
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Fig. 1.　Flow chart of scenario generation method.
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III. MATHEMATICAL MODEL OF OPERATION FOR IES 

To illustrate the proposed scenario generation method and 
the optimal operation strategy, an IES of a single energy hub 
is adopted, whose structure is shown in Fig. 2. The original 
scenarios and typical scenarios are input separately to per‐
form the optimal operation of the energy hub [25], with the 
time scale being one year. And the optimal operation model 
of the energy hub is presented in this section.

A. Objectives

The operation objectives of this multiple-energy system in‐
clude the cost of purchased electricity, the cost of purchased 
gas, the operation and maintenance costs of wind turbines, 
PV panels, power-to-grid (P2G) equipment, gas storage (GS) 
tanks, gas boilers (GBs), heat pumps (HPs), combined heat 
and power (CHP) equipment, and unit depreciation costs, 
which is expressed as:

min Csys =∑
i = 1

a é

ë

ê
êê
ê ù

û

ú
úú
ú

C net
e (t)+C net

g (t)+∑
j = 1

n

(C j
op (t)+C j

de (t))+CT (t)

(18)

where Csys is the total operation cost of this system over a 
given operation cycle; a is the operation cycle; Cnet

e  and Cnet
g  

are the costs of purchased electricity and purchased gas at 
moment t, respectively; Cj

op and Cj
de are the operation costs 

and depreciation of installed costs for equipment j, respec‐
tively; and CT is the carbon trading cost.

C net
e =P net

e SeDT (19)

C net
g =P net

g SgDT/QLHV (20)

C j
op =C j

o PjDT    jÎNe (21)

C j
de =

C j
insλj PjDT

P j
NTyear

(22)

λj =
dj (1 + d Lj

j )

(1 + dj )
Lj - 1

(23)

where P net
e  and P net

g  are the purchased electric and gas power, 
respectively; Se and Sg are the cubic meter prices of electric 

and gas power, respectively; DT is the time period; QLHV is 
the calorific value; C j

o is the operation and maintenance cost 
of equipment j; Ne is the amount of equipment; Pj is the 
power of equipment j; C j

ins is the cost of per unit capacity 
for equipment j; λj is the capital recovery factor of equip‐
ment j; P j

N is the capacity factor of equipment j; Tyear is 
8760; and dj and Lj are the annual interest rate and deprecia‐
ble life of equipment j, respectively.

Carbon trading is a way to encourage enterprises with 
high carbon reduction capacity and low costs to increase 
their reduction efforts and sell the remaining carbon emis‐
sion allowances to those with higher carbon reduction costs, 
thereby achieving the targeted total carbon emissions [26]. 
In IES, the carbon trading for different devices is considered 
in the costs and the carbon trading market is set for all car‐
bon-emitting equipment, and the total amount of carbon 
emissions is minimized through the market regulation mecha‐
nism. The equipment involved in the carbon trading market 
in this paper are gas-fired units and P2G equipment, and 
their carbon emissions are modeled as follows. 

Gas-fired units are the source of carbon emissions in the 
carbon trading market, which would be fined for exceeding 
the carbon credits. The carbon trading cost of gas-fired units 
at moment t is expressed as:

C G
tcd = ccd

G (eG - em )P G
t (24)

where P G
t  is the amount of power generated by the gas-fired 

units; ccd
G  is the carbon emission price factor of gas-fired 

units; eG is the carbon intensity of gas-fired units; and em is 
the carbon credit of the gas-fired units when involved in car‐
bon trading.

Utilizing P2G, hydrogen and methane are yielded by elec‐
trolysis of water according to different market demands [26]. 
The specific reaction process is:

ì
í
î

2H2O® 2H2 +O2

CO2 + 4H2®CH4 + 2H2O
(25)

The amount of methane being produced by P2G when 
consuming per unit electric power is calculated as:

V P2G
tCH4

=
3.6ηP2G P P2G

t

LCH4

(26)

where P P2G
t  is the electric power consumed by P2G; ηP2G is 

the conversion efficiency of P2G; and LCH4
 is the calorific 

value of combusting per unit volume of natural gas, which 
is 36 MJ/m3.

CO2 is involved in the operation process of P2G, which 
needs to be purchased. That’s why P2G is a participant in 
the carbon trading market. The cost of purchasing CO2 at 
moment t is:

C CO2

tbuy = sbuy
CO2

Mt (27)

where sbuy
CO2

 is the price coefficient of consuming per unit 

CO2; and Mt is the mass of CO2 required to participate in 
the reaction. Furthermore, the carbon credit of P2G is set to 
be zero since P2G belongs to carbon reduction devices. 
Therefore, the carbon trading cost of P2G is normally nega‐
tive, which means obtaining profits.
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Fig. 2.　Framework of an IES.
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B. Constraints

The constraints of the network consist of electric power 
balance, gas flow balance, and heat power balance.

P net
e +P used

w +P used
p +P e

CHP -P e
P2G -P e

hp = Le (28)

P net
g +P g

P2G +P release
g -P store

g -P g
CHP -P g

gb = Lg (29)

P h
CHP +P h

gb +P h
hp = Lh (30)

where Le, Lg, and Lh are the electric, gas, and heat demands, 
respectively; Pused

w , Pused
p , and Pe

CHP are the power generated 
by wind turbines, PV, and CHP, respectively; Pe

P2G and Pe
hp 

are the power consumed by P2G and HPs, respectively; Pg
P2G 

is the gas power generated by P2G; Prelease
g  and Pstore

g  are the 
gas power released and stored by GS tanks, respectively; 
Pg

CHP and Pg
gb are the gas power consumed by the CHP and 

GB, respectively; and Ph
CHP, Ph

gb, and Ph
hp are the heat power 

generated by the CHP, GB, and HP, respectively.
The mathematical models of CHP, GB, HP, and P2G are 

expressed as:

cf =
QCHP

PCHP
(31)

cv =
QCHP

ηCHP Fin -PCHP
(32)

P e
gbt = ηgb P g

gbt (33)

P e
hpt = ηhp P h

hpt (34)

P P2G
tgas = ηP2G P P2G

t (35)

where cf, QCHP, and PCHP are the thermoelectric ratio, heat 
output, and electric output of CHP at a constant thermoelec‐
tric ratio, respectively; cv is the thermoelectric ratio of the 
CHP when the thermoelectric ratio is variable; ηCHP is the 
conversion efficiency of the CHP; Fin is the gas flow input 
of the CHP; Pg

gbt is the amount of natural gas consumed by 
GBs; P e

gbt is the heat power output of GBs; ηgb is the effi‐
ciency of electric heating for GBs; Pe

hpt is the electric power 
input into an HP; Ph

hpt is the heat power output of an HP; 
ηhp is the efficiency of electric heating for an HP; and PP2G

tgas 
is the gas power output of P2G.

The constraints of CHP, GB, HP, and P2G are expressed 
as:

0 £P g
CHP £P gmax

CHP (36)

0 £P g
gb £P gmax

gb (37)

0 £P e
hp £P emax

hp (38)

0 £P e
P2G £P emax

P2G (39)

where P gmax
CHP  is the upper limit of gas power input into CHP; 

P gmax
gb  is the upper limit of gas power input into the GB; 

P emax
hp  is the upper limit of electric power input into HP; and 

P emax
P2G  is the upper limit of electric power input into P2G.
The GS tank is adopted here as the storage device for 

CH4. The state of the tank and the charged/discharged gas 
power at moment t are related to the state of the moment be‐
fore. The upper and lower bounds of the GS tank should al‐
so be satisfied. The constraints are expressed as:

St = St - 1 +
P t

gasstoreηchDt

βk

-
P t

gasreleaseDt

βkηdch

(40)

Smin £ St £ Smax (41)

where ηch and ηdch are the charging and discharging rates of 
the GS tank, respectively; P t

gasstore is the gas power stored by 
the GS tank; P t

gasrelease is the gas power released from the GS 
tank; Dt is the time scale of operation; Smin and Smax are the 
minimum and maximum values of the GS state St, respec‐
tively; and βk is the nominal capacity of the GS tank.

Given that the GS tank could not realize charging and dis‐
charging at the same time, the following constraint should 
be introduced:

P t
gasstore P t

gasrelease = 0 (42)

Suppose that the amount of released gas and stored gas 
could reach a balance, meaning that the amount of released 
gas and stored gas are the same, which is expressed as:

∑
t = 1

T

P t
gasstore =∑

t = 1

T

P t
gasrelease (43)

where T is the operation time.
To ensure the safe and stable operation of the upper grid 

and to reduce the pressure on its regulation, only energy pur‐
chases are considered here:

0 £P e
net £P emax

net (44)

0 £P g
net £P gmax

net (45)

where P emax
net  and P gmax

net  are the maximum power purchased 
from the upper electric and gas grids, respectively.

The constraints of the grid include nodal power con‐
straints, DC power flow constraints, and node pressure con‐
straints. ∑

j|(ijÎE)

Pji - ∑
j|(ijÎE)

Pij -Pi = 0 (46)

F e
l (t)=

θ i
l (t)- θ j

l (t)
xl

(47)

Umini £Ui £Umaxi (48)

where E is the set of nodes; Pij is the node power; F e
l  is the 

active power flow of line l; θ i
l and θ j

l are the phase angles of 
node i and node j, respectively; xl is the reactance of line l; 
Ui is the pressure of node i; and Umin,i and Umax,i are the low‐
er and upper pressure bounds of node i, respectively.

The transmission constraints are:

-Plmax £Pij £Plmax (49)

where Pl,max is the bound of the power transmitted through 
line l.

The nodal flow constraints of the gas network are [27]:

F i
S -F i

hub - ∑
jÎEj ¹ i

F ij
l = 0    iÎNG (50)

where NG is the set of gas nodes; F i
S is the gas flow transmit‐

ted from the gas source to node i; F i
hub is the gas flow ex‐

changed between node i and the energy hub; and F ij
l  is the 

gas flow transmitted from gas source to nodes i and j.
The gas flow transmitted through the pipeline is influ‐

enced by the air pressure of the nodes located at both sides 
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and the transmission coefficient of the pipeline itself. Then, 
the steady-state equations are expressed as:

F ij
l = S(ij)Kij || p2

i - p2
j (51)

S(ij)=
ì
í
î

ïï1       pi ³ pj

-1    pi < pj

(52)

pmin £ pi £ pmax (53)

where Kij is the transmission coefficient of the pipeline be‐
tween node i and node j, which is affected by the tempera‐
ture, diameter, and length of the pipeline, as well as the fric‐
tion coefficient; pi and pj are the gas pressures of node i and 
node j, respectively; and pmin and pmax are the lower and up‐
per bounds of node pressure, respectively, which are both 
positive. When S(ij)< 0, the pressure of node i is lower than 
that of node j, which means the gas flows from node j to 
node i.

Substituting Kij into (51), it can be obtained that:

F ij
l = S(ij)C

Tb

Pb

|| p2
i - p2

j D5

GTf LZf
(54)

where C is a constant, which is 1.1494 × 10-3; Tb is the base 
temperature; Pb is the base pressure; G is the gravity of per 
unit gas; Tf is the average temperature of the gas; L is the 
length of the pipeline; Z is the compression coefficient of 
the gas at the corresponding temperature; D is the diameter 
of the pipeline; and f is the fraction coefficient.

The conversion between the natural gas flow and power is 
through the calorific value, the relationship is as follows:

P ij
l =HGV F ij

l (55)

where Pij
l  is the power through pipeline l; and HGV is the 

high calorific value of the natural gas.

C. Linearization Method

The constraints of the gas network considered in this pa‐
per are steady-state gas network constraints, which are diffi‐
cult to solve directly using commercial software due to the 
presence of non-convex constraints [28]. Hence, the model 
needs to be linearized. In the steady-state equations of the 
natural gas network, the node pressure pi appears in the form 
of p2

i , and Gi is adopted to represent p2
i , then:

Gi = p2
i (56)

Gij = p2
i - p2

j (57)

Square both sides of (51) and combine (56) and (57):

(F ij
l )2 =K 2

ij |Gij | (58)

Introduce auxiliary variables φij into (51), then:

φij = S(ij)F 2
ij (59)

φij =K 2
ij Gij (60)

The range of node pressure is expressed in (53), and then 
the range of Gij is expressed as:

0 £ |Gij | £ p2
max - p2

min (61)

Substitute (61) into (60), then:
-K 2

ij (p2
max - p2

min )£φij £K 2
ij (p2

max - p2
min ) (62)

However, after the above equivalence, some non-linear 
terms still exist. Assume that X is the matrix of all the vari‐
ables involved in the optimization, which includes continu‐
ous variables. Then, the optimization model can be ex‐
pressed in compact form as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

min CX
s.t.  A1 X - b1 £ 0

       A2 X - b2 = 0

      Hnon - linear (XCT )= 0

      X T
CTÎΘ

(63)

where C, A1, and A2 are the coefficient matrices; b1 and b2 
are the constant vectors; Θ is the possible domains of X; 
and Hnon - linear (XCT )= 0 is used to represent the non-linear 
constraints. The linear model above includes both inequality 
and equality constraints, which are represented by A1 X - b1 £
0 and A2 X - b2 = 0, respectively.

The above optimization model is processed using an im‐
proved step-by-step linearization method. Based on the step-
by-step linearization method, the step is corrected at each it‐
eration, thus achieving accelerated convergence of the itera‐
tions. The non-linear constraints is transformed based on the 
Taylor formula. For the non-linear constraint Hnon - linear (XCT )=
0, suppose that the run point at the kth iteration is X (k)

CT, and a 
first-order Taylor expansion is performed at X (k)

CT, (63) can be 
transformed into:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

min CX
s.t. A1 X - b1 £ 0

      A2 X - b2 = 0

      ÑxCT Hnon - linear (XCT -X (k)
CT )= 0

      X T
CTÎΘ

(64)

where ÑxCT is the Newton’s basic step.
During the iterative process, if the newly obtained solu‐

tion XCT is directly used as the run point of the next itera‐
tion, oscillations will occur, leading to a slower convergence 
rate. To shorten the convergence time, the step length of the 
kth iteration is defined as DX (k)

CT, which is calculated by XCT -
X (k)

CT, and a step length correction factor λ is introduced, so 
that the running point of the next iteration is corrected to 
X (k)

CT + λDX (k)
CT. The factor λ is determined by the following lin‐

ear model:

ì
í
î

ïï
ïï

min Hnon - linear (X (k)
CT + λDX (k)

CT )
2

s.t. λÎ[01]
(65)

In iterative algorithms, the selection of the initial value is 
very important, and if it is not chosen well, the system can 
be unsolvable or fall into a local optimum. In this paper, the 
initial point of the iteration is the optimal solution of the op‐
timization model without non-linear constraints, and the spe‐
cific steps are as follows.

Step 1: after removing the non-linear constraints in (63), 
this linear programming model is solved using the commer‐
cial solver Cplex, and XCT is used as initial run point X (k)

CT.
Step 2: solve (64), and achieve the solution XCT of this it‐

eration and the basic step DX (k)
CT. The first-order Taylor expan‐

sion is performed for the non-linear constraints in this opti‐
mization model, and the specific expression is:
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(F (k)
l )2 × sgn(F (k)

l )-K 2
ij (G(k)

i -G(k)
j )+ 2F (k)

l × sgn(F (k)
l )×

(Fl -F (k)
l )-K 2

ij (Gi -G(k)
i )+K 2

ij (Gj -G(k)
j )= 0 (66)

where F (k)
l  is the natural gas flow; and G(k)

i  and G(k)
j  are the 

node pressures.
Step 3: based on X (k)

CT and DX (k)
CT, λ is obtained by iterating 

through (65), then k = k + 1.
Step 4: using the updated run point X (k)

CT as the new run 
point, repeat Steps 2 and 3 until the convergence residuals 
satisfy the convergence accuracy ε:

 Hnon - linear (X (k)
CT )

2
£ ε (67)

IV. CASE STUDIES 

A. Results and Discussion

The proposed scenario generation method is applied to an 
IES including wind and PV power outputs as well as elec‐
tric, heat, and gas demands in this subsection. The case is 
set in Aachen, Germany, with the time scale starting from 
January 1, 2019 to December 31, 2019 [29]. The data of re‐
newable power are obtained from [30], which are presented 
in Fig. 3 and Fig. 4. And the load data are presented in 
Fig. 5.

Aachen is rainy all year round. The duration of simulation 
can be divided into a heating season and a non-heating sea‐
son, with the heating season extending from September 10 
to April 10. Due to the regular heat demands from the resi‐
dents during the heating season, the situation of these two 
periods is discussed separately. There are 8760 sequences all 
through the year, in which 5088 sequences are of the heating 
season and 3672 sequences are of the non-heating season. In 
this subsection, the proposed scenario generation method is 
applied to the historical scenarios of wind/PV power output 
and electric/gas/heat demand, respectively. Typical scenarios 
corresponding to the heating and non-heating seasons are ob‐
tained, respectively, which are presented in Fig. 6.

From the trends of curves in Fig. 6, we can conclude that:
1) Except for the scenarios with no obvious wind power 

output, the daily wind power output shows the characteristic 
of peak and valley, and the fluctuation range is relatively 
large. And the trend of wind power output in a typical sce‐
nario is relative to the trend of electric load, showing certain 
reverse-peak regulation characteristics.

2) The daily PV power output is influenced by solar ener‐
gy resources, which are regular and fluctuating. The daily 
PV power output curve shows an obvious “sine wave” pat‐
tern, i. e., the PV power output is higher at noon, lower in 
the early morning and evening, and zero at night, and the 
output occurs mainly between 09:00 and 17:00. At the same 
time, the PV power output is closely related to the seasons, 
e. g., during the heating season, the shorter daylight hours 
and weaker illumination intensity lead to less PV power out‐
put compared with that during the non-heating season. In a 
typical scenario, during the non-heating season, the PV pow‐
er output lasts from 05:00 to 19:00, and the peak-to-valley 
difference is greater.

3) The seasonal nature of the load is evident, with the to‐
tal value of the load being higher during the heating season 
due to the higher heat demand. The gas load during the non-
heating season is almost zero since the main purpose of natu‐
ral gas is heating. The overall heat demand is higher during 
the heating season than during the non-heating season and 
fluctuates less. In a typical scenario, the heat and gas de‐
mand variation trends are similar throughout the day. For ex‐
ample, in scenario 2 for the heating season, the gas and heat 
demands both appear a simultaneous upward trend before 
07: 00, with a general decrease trend from 07: 00 to 18: 00 
and a slow increase trend after 18:00.

4) In typical scenarios of the non-heating season, the gas 
and heat demands show the same trend, reflecting the energy 
consumption characteristics of consumers. In all typical sce‐
narios, the electric load has more obvious peaks in the morn‐
ing and evening. The clustering effect of typical scenarios 
obtained by the proposed method is significant. The scenario 
generation method replaces the original year-round historical 
data with several typical scenarios.

B. Validation of Proposed Scenario Generation Method

1)　Accuracy Comparison
The quality of the clustering algorithm is closely related 

to the effectiveness of the typical scenario generation method.
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Fig. 3.　Hourly wind power output.
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Fig. 4.　Hourly PV power output.
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Fig. 5.　Hourly demand in a year.
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Therefore, the clustering effectiveness of the proposed 
method will be assessed by comparing the cluster validity in‐

dexes of the proposed method with those of the comparison 
method. Typical cluster validity indexes are external and in‐
ternal cluster validation indexes, where ARI and SC are in‐
troduced to verify the accuracy of the proposed method [30]. 
The ARI and SC of the proposed method and comparative 
methods are presented in Table I, where DBSCAN stands 
for density-based spatial clustering of applications with noise.

From the two indexes above, higher values of the ARI 
and SC are obtained when the proposed method is applied. 
The quality of simple K-medoids clustering method is rela‐
tively worse since it is affected by the initial cluster center. 
While K-means++ is an improved K-means clustering meth‐
od, the clustering results are less dependent on the initial 
cluster center, and the results are slightly better than the K-
medoids clustering method, which is yet inferior to the pro‐
posed method. The internal and external validation indexes 
obtained using the DBSCAN clustering method are better 
than the K-medoids and K-means++ clustering methods, but 
still inferior to the proposed method. The proposed method 
retains the time series of output and load variation over the 
day, which is superior to the method representing the renew‐
able power output and load over the day by statistics.
2)　Effectiveness Analysis in Optimal Operation

To verify the rationality and effectiveness of the proposed 
method, typical scenarios obtained in Section III are applied 
to the optimal operation of the system presented in Fig. 2. 
The problem is performed by the YALMIP optimization tool‐
box in MATLAB and optimized by the Cplex solver. The 
time step is set to be 1 hour, while the optimization scale 
lasts 365 days, i.e., 8760 hours. The energy hub is connected 
to the grid and the natural gas network, with the natural gas 
price set to be 2.5 ¥/m3 and the low calorific value of natu‐
ral gas set to be 9.95 kWh/m3. The unit investment cost and 
operation and maintenance (O&M) costs of instruments in 
the energy hub are shown in Table II. Moreover, the O&M 
cost of the GS tank is 0.01 ¥/m3. The parameters of related 
instruments are shown in Table III. And the cost of pur‐
chased electricity is calculated by the time-of-use tariff.

The all-year time series, typical day selection, K-
means++ , and SOM methods are chosen as comparative 
methods to validate the proposed method. The day with the 
largest peak-to-valley difference is selected as a typical day. 
The optimization result based on all-year historical data is 
set as the criterion to analyze the validation. The optimiza‐
tion results are presented in Table IV.

It can be observed from Table IV that the operation cost 
difference between the proposed method and the all-year 
time series method is the smallest.

TABLE I
RESULTS OF ARI AND SC

Method

Proposed method

K-medoids

K-means++

DBSCAN

ARI

0.6153

0.5816

0.6180

0.6102

SC

0.6770

0.6592

0.6754

0.6703
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Fig. 6.　Load and output curves of typical scenarios. (a) Scenario 1 in heat‐
ing season. (b) Scenario 2 in heating season. (c) Scenario 1 in non-heating 
season. (d) Scenario 2 in non-heating season.
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The proposed method only applies four wind/PV/load his‐
torical scenarios, so the running time is much shorter com‐
pared to the all-year time series method. In contrast, the re‐
sults obtained using the typical day selection method and the 
K-means++ method are less accurate, although both methods 
are of shorter running time compared to the proposed meth‐
od.

As shown in Table V, the error of the annual operation 

cost using the typical day selection method is relatively 
large. It could be concluded that the typical scenarios select‐
ed by this method cannot comprehensively characterize the 
temporal feature of the annual data, which leads to a large 
error. Meanwhile, the error of the annual operation cost 
adopting the SOM method is rather smaller than the errors 
obtained by the K-means++ and typical day selection meth‐
ods. The error obtained by the proposed method is only 
0.1%, which means better accuracy.

The above analysis shows that the proposed method is 
more comprehensive than the typical day selection and K-
means++ methods in characterizing the annual data of the 
multi-energy system. Hence, the annual operation of this IES 
could be reflected using the typical scenarios obtained by 
the proposed method.

C. Application in IES with Multiple Energy Hubs

To further realize the application of the proposed method 
in the IES, based on the typical scenarios obtained before, a 
sampling interval of 1 hour is taken for the optimal opera‐
tion. The simulation is performed on the IES containing mul‐
tiple energy hubs, which is a modification of the four-node 
energy hub test system in [31]. The four energy hubs are de‐
noted as EH1, EH2, EH3, and EH4, which are connected by 
the grid and natural gas pipeline. NE denotes the gas source 
of the system, and NG denotes the electric power supplied 
to the IES by the external grid. The parameters of the elec‐
tric line and gas pipeline refer to [32]. The operation cost of 
the system in different scenarios is shown in Table VI.

TABLE VI
OPERATION COST IN DIFFERENT SCENARIOS

Scenario

Scenario 1 in heating season

Scenario 2 in heating season

Scenario 1 in non-heating season

Scenario 2 in non-heating season

C net
e  (¥)

10518.486

17235.395

9634.018

9491.841

C net
g  (¥)

16317.041

15114.839

2049.993

2467.858

Cop (¥)

12556.821

14833.174

3027.062

4261.329

CT (¥)

187.604

275.968

102.771

178.937

Csvs (¥)

39204.744

46907.440

14608.302

16042.091

Besides, in typical scenario 1 in the heating season, the 
costs of purchased electricity and purchased gas account for 
about 68.450% of the total operation cost, while the O&M 
cost accounts for about 32.029% of the total operation cost. 
While in typical scenario 2 during the heating season, the 
costs of purchased electricity and purchased gas account for 
about 68.966% of the total operation cost, and the O&M 

cost accounts for about 31.622% of the total operation cost. 
It is essential for the IES to maintain real-time interaction 
with the external grid and gas network during operation, 
which guarantees the stable supply and demand of the sys‐
tem.

On the basis of the above analysis, it can be concluded 
that the energy hub configured in this paper is capable of 

TABLE II
O&M COSTS OF INSTRUMENTS IN ENERGY HUB

Instrument

Wind turbine

PV

HP

GB

P2G

O&M (¥/kWh)

0.296

0.358

0.200

0.230

0.150

TABLE III
PARAMETERS OF RELATED INSTRUMENTS IN ENERGY HUB

Parameter

P gmax
CHP

P emax
P2G

P emax
HP

P emax
gb

Smin

Value

800 kW

600 kW

400 kW

400 kW

0.2

Parameter

Smax

ηP2G

ηCHP

ηgb

ηhp

Value

1

0.6

0.45

0.75

0.8

TABLE IV
OPTIMIZATION RESULTS

Method

All-year time series

Typical day selection

K-means++

SOM

Proposed method

Operation 
cost (¥)

2675112.0

3001475.7

2753644.3

2725939.1

2677817.8

Calculation 
time (s)

11028.8

89.4

187.3

162.4

188.0

Scenario 
number (day)

365

2

4

4

4

TABLE V
ERROR OF ANNUAL OPERATION COST OF DIFFERENT METHODS

Method

All-year time series

Typical day selection

K-means++

SOM

Proposed method

Error (%)

0

12.20

4.29

1.90

0.10
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meeting the demand for various forms of energy. However, 
the cost of purchased gas and electricity exceeds 50% of the 
total operation cost in all typical scenarios, indicating that 
the system is highly dependent on the outside energy sup‐
plies and needs to maintain real-time interaction with the ex‐
ternal grid and external gas network to realize the system sta‐
bility.

V. CONCLUSION 

This paper presents a novel scenario generation method 
for an IES based on panel data feature extraction. PCA is 
first adopted to compress the multi-indicator data at a certain 
moment to form an aggregated indicator matrix for the sce‐
nario generation of an IES. Then, for the aggregated indica‐
tor matrix obtained, the improved canopy clustering method 
considering the density of the samples is used to perform 
coarse clustering, while the K-medoids clustering method is 
performed based on the obtained number of clusters and 
cluster centers to construct typical scenarios. In case studies, 
the proposed method is conducted utilizing the historical da‐
ta from Aachen, Germany, which consist of wind/PV power 
output, electric load, heat load, and gas load. Two cluster va‐
lidity indexes, ARI and SC, are introduced to verify the accu‐
racy of the proposed method and the corresponding calcula‐
tion index value is compared with other three typical cluster‐
ing methods.

By analyzing the characteristics of the renewable energy 
output, multi-energy load curves obtained from the proposed 
method as well as the results of comparing the two cluster 
validity indexes, it is revealed that the proposed method is 
more accurate for practical applications. To validate the ef‐
fectiveness of the proposed method when applying the ob‐
tained typical scenarios to analyze IESs, an optimal opera‐
tion model considering carbon trading cost is established. 
The results show that the system is more dependent on the 
external network during this period than during the heating 
season.

Finally, by comparing the results obtained from the pro‐
posed method with those obtained from the all-year time se‐
ries and other two comparative methods, the proposed meth‐
od is shown to be more effective and efficient.
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