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Abstract——Moving away from fossil fuels towards renewable 
sources requires system operators to determine the capacity of 
distribution systems to safely accommodate green and distribut‐
ed generation (DG). However, the DG capacity of a distribution 
system is often underestimated due to either overly conservative 
electrical demand and DG output uncertainty modelling or ne‐
glecting the recourse capability of the available components. To 
improve the accuracy of DG capacity assessment, this paper 
proposes a distributionally adjustable robust chance-con‐
strained approach that utilises uncertainty information to re‐
duce the conservativeness of conventional robust approaches. 
The proposed approach also enables fast-acting devices such as 
inverters to adjust to the real-time realisation of uncertainty us‐
ing the adjustable robust counterpart methodology. To achieve 
a tractable formulation, we first define uncertain chance con‐
straints through distributionally robust conditional value-at-risk 
(CVaR), which is then reformulated into convex quadratic con‐
straints. We subsequently solve the resulting large-scale, yet con‐
vex, model in a distributed fashion using the alternating direc‐
tion method of multipliers (ADMM). Through numerical simula‐
tions, we demonstrate that the proposed approach outperforms 
the adjustable robust and conventional distributionally robust 
approaches by up to 15% and 40%, respectively, in terms of to‐
tal installed DG capacity.

Index Terms——Distributed generation (DG) capacity assess‐
ment, distributionally robust optimisation, chance-constrained 
optimisation, distribution system.
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B. Sets 

Φ

Ξ

E
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T
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Vg

Economic viability coefficient

Forecasted value of solar efficiency coefficient 
at node j, phase φ, and time t

Power factor angle at node i, phase φ, and 
time t

Length of each time interval

Lower and upper bounds on photovoltaic (PV) 
fluctuation from its forecasted value at time t

Lower and upper bounds on load fluctuation 
from its forecasted value at node j, phase φ, 
and time t

Dual variables calculated at iteration m of sub‐
problem and master problem of ADMM algo‐
rithms at time t

Nominal probability distribution

Forecasted value of real power demand at 
node j, phase φ, and time t

Squared voltage sensitivity to real power

Primal and dual residuals at iteration m of AD‐
MM algorithms

Lower and upper squared voltage limits

Squared voltage magnitude of slack node

Constants of uncertainty set

Squared voltage sensitivity to reactive power

Set of all phases

Set of all random variables

Set of all edges

Wasserstein ball with radius ϵ centred at nomi‐
nal probability distribution

Set of real numbers

Set of all time intervals

Demand and PV generation uncertainty sets

Set of all nodes

Set of all nodes and phases with power con‐
sumption and/or injection
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C. Variables 
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Slopes of real and reactive power adjustments 
to demand fluctuation at node j, phase φ, and 
time t

Slopes of real and reactive power adjustments 
to PV generation fluctuation at node j, phase 
φ, and time t

Vector of all random variables

Load and PV efficiency coefficient fluctua‐
tions from their forecasted values

Objective function reformulation related dual 
variables

Constraint reformulation related dual variables

Dirac distribution concentrating unit mass at 
sample ξ̂ i.

Lower and upper bounds on PV installation 
size at node j and phase φ

PV installation capacity at node j and phase φ

y-intercepts of real and reactive power adjust‐
ment functions at node j, phase φ, and time t

Real power curtailment at node j, phase φ, 
and time t

Real and reactive power demands at node j, 
phase φ, and time t

Real and reactive power generations at node j, 
phase φ, and time t

Net real and reactive power consumptions at 
node j, phase φ, and time t

Objective function reformulation auxiliary 
variable

Constraint reformulation auxiliary variable

Squared voltage magnitude at node i and 
phase ϕ

Complex voltage at node j, phase φ, and time t

Vectors of adjustable and unadjustable deci‐
sion variables

Vector of all decision variables

I. INTRODUCTION

THE ever-increasing penetration of distributed generation 
(DG), particularly solar photovoltaics (PV), can cause 

technical issues such as reverse power flow and over-voltage 
in distribution systems [1]. These issues, in turn, limit the 
amount of DGs that can be installed. Therefore, a DG capac‐
ity assessment, which accounts for the time-varying nature 
of power demand and DG outputs, needs to be performed by 
the system operators in advance. However, the combination 
of data uncertainty and the large size of the problem makes 
DG capacity assessment excessively challenging.

The literature on the topic often simplifies the problem by 
either ignoring the uncertainty (e. g., [2] - [4]) or opting for 
over-conservative hosting capacities based on its worst-case 
realisation (e.g., [5], [6]). Neglecting uncertainty leads to an 
inaccurate assessment of the distribution system capacity, 
while the worst-case-oriented approaches have two main 
shortcomings: ① they judge the hosting capacity based on 
the worst possible realisation of uncertainty which might 
rarely happen; ② they neglect DG inverters’  capability to 
provide flexibility. This flexibility is known as active net‐
work management (ANM), which can be utilised to open up 
the distribution system capacity to accommodate more 
DGs [7].

Recently, with the advances in technology and the Internet 
of Things, more and more data are being stored [8]. Such 
historical data can provide valuable information on possible 
distributions of uncertain parameters, which can be used to 
make more accurate models. Neglecting such valuable extra 
information, as with [5], [6], is an inefficient way to handle 
this problem. The use of information drawn from available 
data and the ability of smart inverters to provide ANM ser‐
vices are the main gaps in the literature that motivated us to 
conduct the current study.

In this paper, a more accurate DG hosting capacity study 
is conducted that not only takes uncertainties into account, 
but also equips DG inverters with controllers to provide 
ANM services. To ensure that the study of the hosting capac‐
ity is not overly conservative, we use a distributionally ro‐
bust technique that employs the Wasserstein metric. The pro‐
posed approach utilises the available data to build an ambi‐
guity set that includes possible distributions for uncertain pa‐
rameters; this is because, depending on the amount and qual‐
ity of the available data, the “true” uncertainty distribution 
can still be unknown.

In addition, we distinguish between hard and soft con‐
straints in our optimisation modelling, depending on how 
critical a constraint is. Examples of hard and soft constraints 
are the physical limits of an inverter and voltage limit con‐
straints, respectively. We then ensure that the hard con‐
straints are satisfied for any realisation within an uncertainty 
set while allowing the soft constraints to be violated in rare 
circumstances. The system operator sets the maximum proba‐
bility of soft constraint violation within the proposed ap‐
proach. Finally, to ensure that the study of the hosting capac‐
ity is scalable to realistically large power systems, we use 
the alternating direction method of multipliers (ADMM) to 
break the whole problem into smaller pieces and solve it in 
a distributed fashion. In the following text, we compare the 
proposed approach with related work in literature.

II. RELATED WORK

With the increasing global determination to shift towards 
renewable energy resources, researchers have conducted vari‐
ous DG capacity assessment studies in the literature. Refer‐
ences [2], [3], [9], [10] develop deterministic optimisation 
models, assuming that the electrical demand and PV genera‐
tion are precisely known ahead of time. This assumption sig‐
nificantly oversimplifies the problem and results in inaccu‐
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rate DG capacity values.
To incorporate uncertainties into the assessment models, 

stochastic optimisation (SO) [11] and robust optimisation 
(RO) [12] have been commonly used in the literature. How‐
ever, SO often leads to poor out-of-sample performance, 
while RO leads to overly conservative solutions. To over‐
come these issues, the third group of approaches, i.e., distri‐
butionally robust optimisation (DRO), has recently been in‐
troduced [13]. Rather than purely working with the worst-
case scenarios as with RO, DRO features an ambiguity set 
that includes possible distributions for the uncertain parame‐
ters. It also improves the out-of-sample performance of SO 
by immunising the solutions against the worst-case distribu‐
tion in the ambiguity set, rather than for a single pre-speci‐
fied one. Furthermore, DRO approaches possess certain ad‐
vantages over other data-driven approaches such as the ran‐
domisation optimisation approach [14], [15]. DRO approach‐
es do not heavily rely on having a vast number of samples 
[16], which are often unavailable in power system studies. 
As demonstrated in this paper and other relevant works [17]-
[19], DRO approaches are scalable and applicable to large-
scale power system planning problems. This scalability 
makes them a practical choice for addressing uncertainties in 
power system analysis and planning.

Based on their ambiguity sets, DRO approaches are cate‐
gorised into moment-based [20] and metric-based [21] ap‐
proaches. Moment-based approaches only use first- and sec‐
ond-order moments (mean and variance) [22], [23]. An ex‐
ample of a moment-based approach in power system applica‐
tions is the data-driven DG capacity assessment model devel‐
oped in [24]. Moment-based approaches forgo other avail‐
able information besides the first- and second-order mo‐
ments. In contrast, metric-based DRO approaches such as 
the Wasserstein metric [13], [25] can leverage additional in‐
formation present in the available data. Unlike moment-
based approaches, metric-based DRO approaches can exploit 
the full range of data characteristics to enhance accuracy. 
Thus, to achieve a more precise assessment of the hosting 
capacity in distribution systems, we choose to employ the 
Wasserstein metric.

Wasserstein-based DRO has been suggested for power sys‐
tem applications such as unit commitment [26] and optimal 
power flow [27]-[29]. However, [28] uses Wasserstein-metric 
in a multi-stage DRO approach. The real-world application 
of such approaches is limited as they need to solve a large-
scale optimisation problem centrally in real time and commu‐
nicate the corrective actions to fast-acting devices (like in‐
verters) using live communication. To overcome this issue, 
we propose a new DRO that uses adjustable robust counter‐
part (ARC) approach [30] to obtain all control actions prior 
to real time and in the planning stage. Thus, the proposed ap‐
proach neither counts on live communication nor needs to 
solve a central large-scale optimisation problem in real time. 
In addition, unlike [26], [27], and [29] that neglect the im‐
pact of ANM schemes, our approach allows fast-acting de‐
vices such as inverters to take recourse actions, i.e., to pro‐
vide reactive power compensation and real power curtail‐
ment, in response to uncertainty realisation. Using numerical 

experiments in Section VII, we show that this increases the 
net annual PV generation by 50%.

Furthermore, the literature often reduces the horizon of 
the study of the hosting capacity in favour of the problem 
size. For instance, [5], [24], and [31] assess the DG capacity 
of distribution systems for a day, while a study of the DG 
capacity assessment needs to be carried out for at least a 
year. Unlike [5], [24], and [31], we assess the hosting capaci‐
ty using a yearly study. To deal with the resulting large-scale 
problem, we employ the ADMM [32] and decompose our 
optimisation problem into smaller subproblems and solve it 
in a distributed fashion.

To summarise, in this paper, we propose a distributionally 
robust chance-constrained DG capacity assessment consider‐
ing ANM. We first model demand and DG output uncertain‐
ties within a Wasserstein ambiguity set. Next, we develop an 
optimisation model that maximises the expected overall DG 
corresponding to the worst-case distribution in the Wasser‐
stein ambiguity set. We use the constraint-wise robust con‐
struction [30] and distributionally robust joint chance-con‐
strained programs to treat hard and soft constraints properly. 
The constraint-wise robust technique ensures that hard con‐
straints are satisfied for all possible uncertainty realisations, 
while joint chance-constrained programs allow soft con‐
straints to violate within a pre-determined risk level. We 
then reformulate the resulting problem into a convex quadrat‐
ically constrained program, which is decomposed into a mas‐
ter problem and several subproblems to be solved via AD‐
MM. Finally, to further improve the scalability of our pro‐
posed approach, we approximate the master problem of AD‐
MM into a separable form that can be solved in parallel. 
Simulation results show that this approximation reduces the 
solving time by 94% at the cost of introducing less than 
0.2% error.

The main contributions of this paper are described as fol‐
lows.

1) A Wasserstein-metric-based distributionally adjustable 
robust joint chance-constrained (WDAR-JCC) optimisation 
model is proposed to evaluate the DG capacity of distribu‐
tion systems. Unlike [13], [26], and [33], we utilise the 
chance-constrained programming to make constraints robust 
to uncertain parameters’  distribution mismatches. Unlike 
[27], [28], and [34], our modelling enables the decision vari‐
ables to take recourse actions in response to uncertainties. 
And unlike the two-stage robust/distributionally robust tech‐
niques in [31], [35], our approach makes all decisions in one 
go prior to real time and thus does not rely on the availabili‐
ty of real-time communication.

2) A reformulation of the WDAR-JCC optimisation model 
is proposed to allow decomposition using the ADMM algo‐
rithm. We show that our reformulation effectively breaks the 
large centralised problem, which cannot be solved using a 
common computer, into multiple subproblems that can be 
solved efficiently using available solvers like CPLEX.

Figure 1 visualises the high-level structure for the rest of 
this paper. Section III presents the mathematical formulation 
of the deterministic DG capacity assessment model in three-
phase distribution systems. Section IV describes the uncer‐
tainty modelling in DG capacity assessment. Section V first 
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constructs an ambiguity set of possible probability distribu‐
tions and then introduces the proposed WDAR-JCC optimisa‐
tion model and its convex reformulation. Section VI pro‐
vides the solution methodology for the problem. Finally, Sec‐
tions VII and VIII report numerical simulation results and 
the main conclusions, respectively.

III. MATHEMATICAL FORMULATION

A. Notation 

A three-phase distribution system is represented using 
graph G = (VE), where V ={01...N}, and EÍV ´V. Node 0 
is considered as the slack node, and it is connected to the up‐
stream network. The set of all phases is denoted by Φ =
{abc}.

Let pjφt = pd
jφt - pg

jφt and qjφt = qd
jφt - qg

jφt. Superscripts d and g 
are used to represent demand and generation, respectively. 
Without loss of generality, we consider installed PV panels 
as the only source of generation and model the real power 
output of the PV inverter using pg

jφt = ηjφtGjφ - pcur
jφt , where pa‐

rameter η is the efficiency coefficient, i.e., the ratio of actual 
generated power to the installed PV capacity. Let us assume 
constant power factor for the loads, qd

jφt = pd
jφt tan θjφ, where 

the power factor angle is constant and given.
In this paper, we use the linear power flow model intro‐

duced in [36], as given by:

U = 1U0 + R͂p + X͂q (1)

where R͂ and X͂ are the sensitivity matrices under no-load 
condition, as given as:

ì
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ï
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B. Deterministic PV Capacity Assessment Model 

In this subsection, we develop a deterministic optimisation 
model to obtain the PV hosting capacity of the network, 
which is defined as the total amount of PV that can be in‐
stalled in a distribution system without the need for expen‐
sive reinforcement or hardware upgrade. This model is given 
as:

max ∑
( jφ)ÎVg

∑
tÎ T

(η̂jφtGjφ - pcur
jφt ) (3)

s.t.

-U £U0 + ∑
( jφ)ÎVg

(R͂iϕ
jφ pjφt + X͂ iϕ

jφ qjφt ) £
-
U (4)

pjφt = p̂d
jφt - pg

jφt (5)

qjφt = qd
jφt - qg

jφt (6)

qd
jφt = p̂d

jφt tan θjφt (7)

pg
jφt = η̂jφtGjφ - pcur

jφt (8)

0 £ pcur
jφt £ η̂jφtGjφ (9)

(cos ϑ - sin ϑ)pg
jφt + (cos ϑ + sin ϑ)qg

jφt £ 2 Gjφ (10)

∑
tÎ T

pcur
jφt Dt £ γ∑

tÎ T
η̂jφt GjφDt (11)

-G jφ £Gjφ £
-
G jφ (12)

Formula (4) represents the voltage constraints "(iϕ)ÎV, 
tÎ T and implies that all the squared voltage magnitudes 
should be kept within envelope [-U -U]. Constraint (9) enforc‐
es the curtailed power to be positive while not exceeding the 
PV generated power. Constraints (5) - (9) should be satisfied 
"( jφ)ÎVgtÎ T. Constraint (10) represents the thermal limit 
of the inverter, which is approximated with a set of linear in‐
equalities [4]. This constraint needs to be satisfied 
"( jφ)ÎVg, tÎ T, ϑÎΘ: ={0π/e2π/e (2e - 1)π/e}, where 
ϑ is a parameter used to approximate the inverter’s quadrat‐
ic thermal constraint with a set of lines [4], and e ³ 2 is an 
arbitrary integer number and the accuracy of this approxima‐
tion increases for higher values of e. Constraint (11) limits 
the curtailment of PV power output to prevent unrealistically 
large PV capacities by over-curtailing PV generations and 
therefore avoid the economic non-viability [6]. Finally, con‐
straint (12) enforces the acceptable range of PV installation 
capacities. This constraint is included to avoid unrealistically 
large PV capacities, especially for the nodes in close proxim‐
ity to the substation, and also allows all the nodes to have 
the opportunity to install PV units. Both (11) and (12) 
should be satisfied "( jφ)ÎVg. We should point out that our 
modelling of network safety limits is general and can accom‐
modate various constraints beyond voltage limits. For in‐
stance, we can add line congestion margin constraints that 
specify the maximum real and reactive power that can flow 
through each line, as demonstrated in [37]. Additionally, volt‐
age unbalance constraints can be incorporated into our opti‐
misation model with slight modifications, as demonstrated in 
previous studies [38]. However, to avoid over-complicating 
the model, these constraints are not incorporated into our 
analysis.

The deterministic model (3)-(12) does not consider the un‐
certainties of load and PV generation. In the next section, 
we provide the modelling of these uncertainties.

IV. UNCERTAINTY MODELLING

We characterise the uncertainty of loads and PV efficiency 
coefficients using the following polyhedral uncertainty sets:

Historical
data

Ambiguity set construction

Master problem

Subproblems

WDAR-JCC

Empirical

distribution

For each node

Uncertainty 

modeling For each time

Deterministic DG
capacity assessment

model

Section IV

Section III Section IV

Section VI

Section VI

Section V

Fig. 1.　High-level structure for rest of this paper.
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Ud: = {pd
jφtÎR |  pd

jφt = p̂d
jφt +Dpd

jφt }-
Dp d

jφt
£Dpd

jφt £
------Dp

d

jφt    (13)

Upv: = { }ηtÎR |  0 £ ηt = η̂t +Dηt £ 1
-
Dη

t
£Dηt £

------Dη
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These fluctuations are bounded between given lower and 
upper bounds.

A. Affine Policies for Inverters 

Fast-acting devices such as inverters are able to take re‐
course actions once uncertainties are realised. We employ af‐
fine policies to model control decisions of the inverters. Par‐
ticularly, we model the real power curtailment and reactive 
power compensation of each inverter using the following 
functions:

pcur
jφt (DηtDpd

jφt ): = pcur0
jφt + αg

pjφtDηt - α
d
pjφtDpd

jφt (15)

qg
jφt (DηtDpd

jφt ): = qg0
jφt - α

g
qjφtDηt + α

d
qjφtDpd

jφt (16)

In the above model, the first term shown by (×)0 is the part 
made based on the forecast and cannot be adjusted in real 
time. On the contrary, the rest of the functions, i. e., α(×)

(×)Dηt 
and α(×)

(×)Dpd
jφt, are adjusted in real time to fine-tune the values 

of pcur
jφt  and qg

jφt depending on the true realisations of PV out‐
put power and demand. The parameters of these functions 
are (×)0 and αg

pα
d
pα

g
qα

d
qÎR+, which are all obtained during 

the optimisation, and in live operation, only Dηt and Dpd
jφt are 

constantly updated using their local measurements.
It is emphasised that the focus of this paper is a planning 

problem, where we examine the effect of demand-side re‐
sponse to improve the planning decisions. Therefore, this pa‐
per falls into the category of steady-state studies, and its 
hourly timescale neglects modelling the rapid transient be‐
haviors of inverter controllers. This is because these tran‐
sients occur on a much faster timescale (in the order of milli‐
seconds) than the changes in uncertainty due to PV genera‐
tion and electrical demand (in the order of tens of seconds), 
and therefore can be considered separately [39].

B. PV Capacity Assessment Model Under Uncertainty 

To consider load and PV generation uncertainties, we re‐
place the deterministic parameters {η̂jφtp̂

d
jφt } with the uncer‐

tain parameters {ηjφtp
d
jφt } in the model (3)-(12). We also sub‐

stitute the affine policies (15), (16) in the model (3)-(12) to 
account for inverters’  recourse actions.

For ease of exposition, a random vector ξ: =[DηtDpd
jφt ], 

"( jφ)ÎVg, tÎ T is introduced, which collects all PV and 
load uncertain parameters, and is supported by the uncertain‐
ty set Ξ: ={UpvUd }: ={ξÎRk|Wξ £ h}, where WÎRℓ ´ k and 
hÎRℓ are the constants obtained from (13) and (14). Also, 
let vector x: =[Gpcurqg ]ÍRn collect all the decision vari‐
ables. Then divide the decision variables x into two catego‐
ries; adjustable decision variables xa: = x a

0 + αξ (in this paper, 
PV power curtailment and reactive power shown in (15), 
(16)) and unadjustable decision variables xu (PV capacity 
variables in our problem). In other words, we consider x =
[xaxu ]T.

Note that the proposed approach for uncertainty characteri‐
sation is not limited to specific sources of uncertainty. For 
example, it can be applied similarly to model uncertainties 

in wind power generation. We can incorporate these uncer‐
tainties into our model by utilising a polyhedral uncertainty 
set similar to what we employed for electrical demand and 
PV generation. To achieve this, we would extend the defini‐
tion of our random vector ξ to encompass the errors in wind 
speed prediction. Subsequently, we would follow analogous 
modelling and optimisation steps, which will be elaborated 
upon in the following sections.

Afterwards, we write the uncertain PV capacity assess‐
ment model as:

min
xux a

0 α
{d(xux a

0 )+ cT (xuα)ξ} (17)

s.t.

A(xuα)ξ £ b(xux a
0 ) (18)

where A(·), b(·), c(·), and d(·) are all linear vector functions in 
their arguments. Also, the max operator is replaced with min 
as max(a)=min(-a).

The random variable ξ appears in both the objective and 
constraints of the uncertain problem (17), (18). The uncer‐
tain constraints can be categorised as hard or soft con‐
straints, where hard physical constraints need to be satisfied 
for all uncertainty realisations, whereas soft constraints allow 
some network limits to be violated if the benefit of such vio‐
lation for improbable scenarios outweighs the decisions guar‐
anteeing their satisfaction for all the possible realisations. In 
particular, we consider the curtailment constraint (9), invert‐
er’s thermal limit constraint (10), and PV capacity limits 
(12) as hard constraints, and the rest of the constraints (i.e., 
voltage constraint (4) and curtailment limit constraint (11)) 
as soft constraints. To immunise hard constraints against all 
uncertainty realisations in Ξ, we apply the constraint-wise ro‐
bust counterpart construction technique [30]. To deal with 
soft constraints, we formulate them as joint chance con‐
straints where we guarantee their satisfaction with a certain 
probability level specified by the modeller. Therefore, the im‐
munised form of the uncertain PV capacity assessment mod‐
el (17), (18) can be written as:

min
xux a

0 α

ì
í
î
d(xux a

0 )+ sup
ξ
EP [cT (xuα)ξ]

ü
ý
þ

(19)

s.t.

max
ξÎΞ

{E(xuα)ξ}£ f (xux a
0 ) (20)

P[H(xuα)ξ £ g(xux a
0 )]³ 1 - β (21)

where EP [×] shows the expected value of function. [ETH T ]T 
and [ f TgT ]T are all linear vector functions with appropriate 
dimensions. The model (19) - (21) minimises the worst-case 
expected objective while satisfying robust hard constraint 
(20) and also jointly satisfies the chance constraint (21) with 
a probability of at least 1 - β.

For the sake of notation simplicity, let us collect all the 
decision variables in vector y: =[xux a

0 α] and update the 
model (19)-(21) into:

min
y

ì
í
î
d(y)+ sup

ξ
EP [cT (y)ξ]

ü
ý
þ

(22)
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s.t.

max
ξÎΞ

{E(y)ξ}£ f (y) (23)

P[H(y)ξ £ g(y)]³ 1 - β (24)

where all the vector functions are overloaded to avoid intro‐
ducing new terms. To solve the problem in (22)-(24), we need 
to know the probability distribution function P exactly. How‐
ever, in most practical situations, the decision maker is not 
aware of the true underlying distribution of random variables. 
In the next section, we develop a distributionally robust PV ca‐
pacity assessment model which immunises the problem in 
(22) - (24) over a set of possible distributions obtained by the 
Wasserstein metric.

V. WDAR-JCC OPTIMISATION MODEL

A. Wasserstein Ambiguity Set

In this sub section, we describe the data-driven distribu‐
tionally robust technique to solve the problem in (22) - (24). 
As mentioned earlier, the decision maker typically does not 
have access to the true distribution of random variables. In‐
stead, a finite set of N observed samples, {ξ̂1ξ̂2ξ̂N }ÍΞ, 
is available at hand. Using these observed samples, we can 
estimate a distribution P̂N, known as nominal distribution. A 
convenient way to construct the nominal distribution is to 
work with the empirical distribution, which is a discrete uni‐
form distribution of the observed samples:

P̂N =
1
N∑

i = 1

N

δ
ξ̂i

(25)

In this paper, we use the Wasserstein metric to construct 
an ambiguity set as a ball around the nominal distribution 
(25). Let us first define the Wasserstein metric, which mea‐
sures the distance between probabilities P and P̂N.

Definition (Wasserstein metric): the type-1 Wasserstein 
metric dw (PP̂N ): Ξ ´Ξ®R is defined as:

dw (PP̂N ): = inf
Π ∫

Ξ 2
 ξ - ξ̂ Π(dξdξ̂) (26)

The Wasserstein metric between P and P̂N can be viewed 
as the cost of an optimal mass transportation plan Π that mi‐

nimises the cost of moving from P to P̂N, where  ξ - ξ̂  is 

the cost of moving a unit mass from ξ to ξ̂. According to the 
definition above, the Wasserstein ball with radius ϵ centred 
at the nominal distribution P̂N is given by:

Bϵ (P̂N ): ={PÎΞ|dw (PP̂N )£ ϵ] (27)

B. Objective Function Reformulation 

To evaluate the uncertain terms in the objective function 
(22), we obtain their worst-case expected value over the 
Wasserstein ball Bϵ (P̂N ). A tractable convex reformulation of 
the worst-case expectation of a generic linear function is pro‐
posed in [13]. According to this Corollary, the worst-case ex‐
pectation of cT (y)ξ has a strong dual reformulation as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

sup
PÎBϵ (P̂N )

EP [cT (y)ξ]= inf
λ ³ 0sμ

λϵ +
1
N∑

i = 1

N

si

s.t.  cT (y)ξ̂i + μ
T
i (h -Wξ̂ i )£ si    "iÎ{12...N}

        W Tμ i - c(y) £ λ    "iÎ{12...N}

(28)

where λÎR+ and μiÎRℓ
+ are associated with the Wasserstein 

ball (27) and the uncertainty supports (13) and (14).

C. CVaR-based Reformulation of Distributionally Joint 
Chance Constraints 

As shown in [40], the joint chance constraint (24) is 
equivalent to the individual chance constraint:

P[Z(yξ)£ 0]³ 1 - β (29)

Z(yξ): = max
jÎ{12...m}

{H T
j (y)ξ - gj (y)} (30)

where H T
j (y) denotes the jth row of the matrix H(y); and 

gj (y) is the jth element of the vector g(y). Constraint (29) is 
an individual chance constraint that can be equivalently re‐
formulated as a worst-case conditional value at risk (CVaR) 
constraint [20], [41], [42].

Remark: for a given measurable loss function L: Rk®R, 
probability distribution P on Rk, and tolerance βÎ(01), it is 
well known that [41]:

P(L(ξ)£CVaRβ (L(ξ)))³ 1 - β (31)

where CVaRβ (L(ξ)) is the CVaR of the function L(ξ) at the 
confidence level β. Thus, CVaRβ (L(ξ))£ 0 is sufficient to im‐
ply that P(L(ξ)£ 0)³ 1 - β.

Using the above remark, the chance constraint (29) can be 
reformulated as:

CVaRβ (Z(yξ))£ 0 (32)

We then use the CVaR definition introduced in [41]:

CVaRβ (Z(yξ)): = inf
ϱÎR{ϱ + 1

β
EP [(Z(yξ)- ϱ)+ ]} (33)

where (×)+ =max(×0).
We then require the CVaR constraint (33) to hold for a 

family of distributions defined directly from observed sam‐
ples via the Wasserstein metric. Therefore, the worst-case 
CVaR constraint (32) is re-expressed as:

sup
PÎBϵ (P̂N )

inf
ϱÎR{ϱ + 1

β
EP [(Z(yξ)- ϱ)+ ]} £ 0 (34)

With a similar approach to (28), we can now reformulate 
(34) as a finite-dimensional convex program given by (35) 
(see the Proposition 3.1 in [40] for details of this reformula‐
tion).

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

λ͂ϵ+
1
N∑

i=1

N

s͂i £ϱβ

s.t.  -gj (y)+ϱ+(H T
j (y)-W T μ͂ ij )

T ξ̂i+ μ͂
T
ij h£ s͂i "iÎ{12...N}

        W T μ͂ ij-H T
j (y) £ λ͂

       λ͂³0ϱÎRμ͂ij³0s͂i³0

(35)

Note that function Z(yξ) is substituted with (30) before 
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applying the reformulation.

D. Robust Constraints 

As mentioned earlier, we apply the constraint-wise robust 
counterpart approach to deal with hard constraints. We use 
the max protection function (23), to robustify the constraints 
against the worst uncertainty realisation within Ξ. We then 
utilise the duality approach described in [43] to replace (23) 
with a finite set of linear inequality constraints:

$ρ:hT ρ £ f (y)W T ρ ³E(y) (36)

where ρ is the vector of dual variables associated with the 
bounding constraints in the uncertainty set Ξ.

In summary, we model the Wasserstein distributionally ad‐
justable robust chance-constrained PV capacity assessment 
model using (37)-(40), which is a convex conic program and 
solvable using commercial solvers such as CPLEX. 

inf
yλsμλ͂sμ͂

ì
í
î

ü
ý
þ

d(y)+ λϵ +
1
N∑

i = 1

N

si (37)

s.t.

cT (y)ξ̂i + μ
T
i (h -Wξ̂ i )£ si (38)

 W Tμ i - cT (y) £ λ (39)

(35) (36) (40)

It is worth noting that the OPF model (37)-(40) allows for 
extensions incorporating additional technologies such as dis‐
tributed generators beyond PV or voltage control devices 
like OLTCs. However, to maintain simplicity and focus, we 
have deferred exploring these extensions and their impact on 
the final hosting capacity value to future research endeav‐
ours.

Since PV capacity assessment is a planning study and de‐
pending on the period of the study and temporal resolution 
of the demand and PV generation samples, it typically has a 
very large scale. Therefore, the WDAR-JCC optimisation 
model (37)-(40), despite being convex, is a challenging large-
scale optimisation problem that is not easily solvable using 
the centralised approaches. Note that in addition to the study 
period and resolution of data, the number of constraints of 
this problem increases with the number of samples, leading 
to high dimensionality. In the next section, we present a nov‐
el formulation based on ADMM algorithm as an alternative 
solution methodology to deal with such large-scale optimisa‐
tion problems.

VI. SOLUTION METHODOLOGY

In this section, we present the decomposition methodolo‐
gy using the ADMM algorithm. The ADMM algorithm can 
decompose the problem into many user-defined subproblems 
which negotiate over their common variables. In our case, 
we exploit the specific structural properties of the multi-time 
PV capacity assessment problem, where we decompose the 
problem over time. By doing so, we end up with many 
smaller subproblems where each subproblem is defined over 
a time interval, and therefore, the subproblems are solved in‐
dependently of each other. The time-coupled variables are 

then negotiated between the subproblems and the master 
problem, which contains all the constraints that are coupled 
between all time intervals such as curtailment constraint (11) 
to obtain a feasible solution.

We will further benefit from the specific structural proper‐
ties of the master problem and propose a separable formula‐
tion which allows decomposing the master problem to sever‐
al smaller subproblems, and therefore, solve them in a paral‐
lel fashion. By doing so, we significantly break down the 
computation time of the master problem and hence the PV 
capacity assessment problem.

An overview of our decomposition methodology is shown 
in Fig. 2. At each iteration of the ADMM algorithm, we first 
solve the subproblems and the decomposed form of the mas‐
ter problem. Then, the ADMM dual variables are updated 
and the primal and dual residuals are calculated. At last, we 
check the stopping criteria and if they are satisfied, the AD‐
MM algorithm converges; otherwise, it will continue to the 
next iteration.

In the following, the details of each block of our algo‐
rithm are presented.

A. Subproblem Model 

Let us consider the general form of the uncertain PV ca‐
pacity assessment model (22)-(24) and define yt: =[x u

t x
a
0t
αt ] 

which denotes the decision variables of the subproblem cor‐
responding to the time interval t, and y': =[xu ′x a

0 ′α′ ] as the 
decision variables of the master problem which contains the 
decision variables for all time intervals. Then, each subprob‐
lem is formulated as:

y(m)
t : = arg  min

yt
( )d(yt )+ λ

(m- 1)
t || yt - y't

(m- 1) +
σt

2
|| yt - y't

(m- 1) 2

(41)

s.t.

max
ξtÎΞ

{E(yt )ξt }£ f (yt ) (42)

P[H v (yt )ξt £ gv (yt )]³ 1 - βv
t (43)

where y't
(m- 1): =[xu' (m- 1)x a

0t
' (m- 1)α(m- 1)

t′ ] denotes the decision 

Updating ADMM duals (27)  

Are stopping

criteria met?

N

End

Y

Subproblem t1
Subproblem tSubproblem t

(24)

…

Master problem

Subproblem t1Subproblem t1Subproblem ( j, φ)

(26)

…

λ    , λ'

y
t

y'

(m)

y
t
(m)

(m) (m)

(m-1)

Fig. 2.　Overview of decomposition methodology.
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variables of the master problem corresponding to the time in‐
terval t, which is obtained in the iteration m - 1 and there‐
fore is known. Note that xu' (m- 1) does not have subscript t as 
it shows the PV capacities G′jφ.

To solve each subproblem (41) - (43), robust constraints 
(42) and distributionally robust joint chance constraints (43) 
are reformulated similar to (36) and (35).

B. Master Problem Model 

The master problem is defined over the constraints which 
couple all the time intervals, and the worst-case expectation 
of the objective, the second term in (22), which is the sum‐
mation of PV generations over all time intervals, as given by:
y′ (m): =

argmin
y′

ì
í
î

ü
ý
þ

sup
ξ

 EP [cT (y′ )ξ]+ λ′ (m- 1) || y′- y(m) +
σ′
2

|| y′- y(m) 2

(44)

s.t.

P[H c (y′ )ξ £ gc (y′ )]³ 1 - βc (45)

where vector y(m) collects the decision variables of all sub-
problems which are obtained at the iteration m; vector λ' (m- 1) 
denotes the dual variables of the master problem that are ob‐
tained at the iteration m - 1; vector σ' is the constant penalty 
parameter; the superscript c in the risk level βc shows that 
these joint chance constraints correspond to the uncertain 
form of the curtailment constraint (9) which limits the 
amount of allowable PV output curtailment to preserve the 
economic viability; and vector functions H c and gc are used 
to show the portion of chance constraints that correspond to 
the curtailment constraints.

Constraint (45) shows the joint satisfaction of the curtail‐
ment constraint for all prosumers. Fortunately, these con‐
straints are independent, where constraint (45) represents the 
general form of the constraint (11) which needs to be satis‐
fied for each customer and therefore customers can be treat‐
ed independently, and therefore we can further decompose 
them for each prosumer. On the other hand, the term cT (y′ )ξ 
in the objective (44), which is derived from (3) in our PV ca‐
pacity assessment problem, is separable (for each node). 
Here, we propose to approximate the model (44), (45) with 
a set of optimisation models where each is defined for a pro‐
sumer, i.e., "( jφ)ÎVg:

y′ (m)
jφ : = arg  min

y′jφ

ì
í
î

sup
ξjφ

EP [cT (y′jφ )ξjφ ]+

ü
ý
þ

λ′ (m- 1)
jφ || y′jφ - y(m)

jφ +
σ′jφ
2 || y′jφ - y(m)

jφ

2

(46)

s.t.

P[H c (y′jφ )ξjφ £ gc (y′jφ )]³ 1 - βc
jφ (47)

The advantage of this formulation is that they can be 
solved in parallel, and therefore, speed up the solving time.

C. Updating Dual Variables 

After solving the subproblems (41) - (43) and the decom‐

posed form of the master problem (46), (47), the dual vari‐
ables are updated using:

λ(m)
t = λ(m- 1)

t + σt (y(m)
t - y′ (m)

t ) "tÎ T (48)

λ′ (m)
jφ = λ′

(m- 1)
jφ + σ′jφ (y′ (m)

jφ - y(m)
jφ ) "jφÎVg (49)

D. Stopping Criteria and Convergence of Algorithm 

We define the stopping criteria using primal and dual re‐
siduals R(m)

p  and R(m)
d  as:

ì
í
î

ïï
ïï

R(m)
p : = y′ (m)- y(m)

R(m)
d : = λ′ (m)- λ(m)

(50)

In this paper, we consider the problem to have converged 
when the 2-norms of the primal and dual residuals are both 
smaller than 10-4.

Note that our final model, i. e., (41) - (43), (46) - (50), is a 
convex quadratic model for which the convergence of the 
ADMM algorithm is guaranteed [43].

VII. NUMERICAL RESULTS AND DISCUSSION

We examine the performance of the proposed approach on 
a modified unbalanced IEEE 37-node distribution system as 
well as IEEE European low-voltage 906-node network to 
demonstrate the scalability of the proposed approach. We 
use [0.95,1.05]p.u. as the acceptable voltage envelope while 
the voltage of the slack node is kept constant at 1 p. u.. In 
the following text, we first briefly introduce our simulation 
data and then demonstrate the results for each test system. 
Specifically, we investigate the PV capacity assessment re‐
sults using the WDAR-JCC optimisation model. We also use 
Monte Carlo simulations to compare the out-of-sample per‐
formance of the proposed approach with other state-of-the-
art approaches.

A. Simulation Data 

We use the 32-year historical hourly PV efficiency coeffi‐
cient data from [44], as shown in Fig. 3.
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Fig. 3.　Historical hourly PV efficiency coefficient data for 32 years.
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The data are zoomed in for two days, i. e., April 8 and 
June 19 (as an example of a rainy day), to provide a better 
picture of the data. At each hour, we have 32 samples of PV 
efficiency coefficients (one per year), by which we form a 
box containing all the historical values. The blue line is the 
average of the observed values at each hour and will be 
used as the forecasted values. For electrical demand, we use 
the data from [45], which is for one year and has a 5 min 
resolution.

We first convert them to hourly data using averaging tech‐
nique, and then, without loss of generality, for each hour, we 
randomly generate 32 values (to match the PV data) such 
that they deviate from the given value by 10% while follow‐
ing a Gaussian distribution.

We split the available samples into training and test sets. 
Eighty percent of the data are used for training and the re‐
maining 20% are used for evaluating the out-of-sample per‐
formance of the proposed approach.

B. Results for IEEE 37-node Distribution System 

1) PV Capacity Assessment Results Using Proposed Approach
In this part, we investigate the performance of the pro‐

posed model to obtain the total PV installation capacities 
and net PV generation for the candidate nodes (six nodes) in 
the test system. The study period is considered to be one 
year with the hourly resolutions for PV and demand data. 
Since the PV efficiency coefficient typically takes on non-ze‐
ro values during the daytime, we only consider 9 hours 
(from 08: 00 to 16: 00) per day for analysis. As mentioned 
earlier, the considered ANM schemes include inverters’  reac‐
tive power compensation and real power curtailment.

To investigate the sensitivity of the results to different risk 
levels of the chance constraints, i.e., βv

t  in (41)-(43) and βc
jφ 

in (46), (47), we repeat our experiments for three different 
values βv

t = β
c
jφ = βÎ {0.010.050.1}, which implies that all 

voltage constraints and curtailment chance constraints are sat‐
isfied with confidences of 99%, 95%, and 90%, respectively. 
Other model parameters are summarised in Table I. For 
these experiments, we fix the Wasserstein radius at ϵ = 0.01. 
Later in this subsection, we will investigate the sensitivity of 
the results to the Wasserstein metric.

We use the above-mentioned parameters to solve (41) -
(43), (46) - (49). After ADMM converges, the decision vari‐
ables G pcur0 qg0 αg

p α
d
p α

g
q and αd

q are obtained. The to‐
tal PV installation capacities for different risk levels are 
shown in Fig. 4(a). As can be observed, by allowing more 
violations (larger β), we can install more PVs in the system.

We also obtain the out-of-sample performance for the 
yearly net PV generation using the test samples whose box‐
plots are shown in Fig. 4(b). To provide a better intuition, 
the average PV annual generation is shown in Table II. As 
can be observed, increasing the risk level or in other words 
allowing more constraint violations leads to higher net PV 
generation in the system.

We then fix the risk levels βv
t = β

c
jφ = 0.1 and vary the Was‐

serstein metric ϵ to observe the sensitivity of the results to 
the radius of the Wasserstein ball. We try three different val‐
ues {0.0010.010.1} and represent the results in Fig. 5(a) for 
the total PV installation capacities and Fig. 5(b) as the out-
of-sample total PV annual generation. It is observed that 
with the increase in the Wasserstein radius, the results be‐
come more conservative. For instance, the total PV installa‐
tion capacity is 8.32 MW when ϵ = 0.001, while it is 7.35 
MW when ϵ = 0.1, which shows the decrease of 11.66%. The 
average PV annual generations for different ϵ are sum‐
marised in Table III. As can be observed, the average PV an‐
nual generation decreases when the ϵ increases. For instance, 
we observe the decrease of 8.9%  when ϵ changes from 
0.001 to 0.1. Therefore, in cases where we have access to 
more samples, we can construct smaller ambiguity sets, 
which in turn result in less conservative results.
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installation capacities. (b) Total PV annual generation.

TABLE II
AVERAGE PV ANNUAL GENERATION FOR DIFFERENT RISK LEVELS

β
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Fig. 5.　 Out-of-sample performance of proposed approach when Wasser‐
stein radius ϵ varies while risk level is fixed (β = 0.1). (a) Total PV installa‐
tion capacities. (b) Total PV annual generation.

TABLE I
MODEL PARAMETERS

Parameter

γ

e

θ

σ

[-G jφ, 
-
G jφ]

Value

0.1

8

cos-1 (1)

0.5

[P nom
jφ ,10P nom

jφ ]
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2) Computational Impact of Proposed Distributed Solution 
Methodology

In this part, we investigate how the proposed separable 
formulation (46), (47) impacts the optimisation problem char‐
acteristics such as the number of constraints (NoC), number 
of variables (NoV), number of non-zeros (NNZ), and the 
solving time. These values for the distributed models before 
and after applying our approximation, i.e., solving (41)-(45), 
(48) - (50) compared with solving (41) - (43), (46) - (50), are 
summarised in Table IV for the under-study network. Since 
the proposed formulation breaks down the problem per each 
node and there are six candidate nodes in the network, the 
number of variables, constraints and non-zeros are decreased 
by a factor of 6. Therefore, in larger networks with more 
candidate nodes, this formulation can be even more effec‐
tive. We observe that the proposed separable formulation sig‐
nificantly breaks down the computational time, from around 
4600 s to 280 s, which is in fact around 94% decrease in the 
solving time. In return, it only introduces less than 0.2% er‐
ror in the calculated decision variables.

3) Comparison with Other State-of-the-art Approaches
In this part, we use Monte Carlo simulations to compare 

the results of the proposed approach with the other state-of-
the-art approaches. In particular, we compare the propsoed 
approach with the adjustable robust PV capacity assessment 
model to evaluate the effectiveness of using distribution in‐
formation of the uncertain parameters. We also investigate 
the impact of inverters’  recourse actions by comparing the 
proposed approach with the conventional distributionally ro‐
bust model, where the capability of inverters to take re‐
course actions is not considered. By doing so, we will also 
demonstrate the significance of modelling ANM schemes 
when investigating the hosting capacity of a distribution sys‐
tem.

Similar to the previous subsection, we first fix the Wasser‐
stein metric to ϵ = 0.01 and vary the risk level as 
βÎ{0.010.050.1}. Figure 6(a) and (b) shows the total PV in‐

stallation capacities and out-of-sample total PV annual gener‐
ation for the proposed model compared with the correspond‐
ing values obtained using the adjustable robust approach. As 
can be observed, the results of adjustable robust approach is 
more conservative than the proposed approach. For a fixed 
Wasserstein metric, if we allow for higher risk levels, i. e., 
larger β, we can obtain higher PV installation capacities and 
total PV annual generation. For instance, allowing 10% risk 
level, the total PV annual generation increases by 11.5% on 
average (5.13 GWh compared with adjustable robust case 
which is 4.6 GWh), and also the total PV installation capaci‐
ty increases from 7.23 MW to 7.9 MW (9.3% increase). We 
then fix the risk level at β = 0.1 and vary the Wasserstein 
metric. Figure 6(c) and (d) compares the results for different 
values of ϵ. The larger Wasserstein metric leads to larger un‐
certainty set which in turn results in more conservative re‐
sults, and therefore gets closer to the robust case. For in‐
stance, using metric ϵ = 0.1 the net annual PV generation (on 
average) is only 4.6% more than robust case whereas if we 
can choose smaller metrics like ϵ = 0.001, this percentage in‐
creases to 15.4%.

We have conducted additional experiments to evaluate the 
out-of-sample performance of the proposed approach com‐
pared with the conventional distributionally robust approach. 
In the conventional approach, the capability of inverters to 
take recourse actions is not considered when determining to‐
tal PV installation capacities and total PV annual generation. 
Figure 7 illustrates the findings, indicating that incorporating 
inverters’  recourse capabilities lead to a significant improve‐
ment. Specifically, we observed an increase of up to 50% in 
total PV installation capacity and a 40% increase in net PV 
annual generation. These results unequivocally demonstrate 
the importance of integrating an ANM scheme in hosting 
capacity analysis to avoid underestimating the hosting ca‐
pacity.
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Fig. 6.　Comparison between out-of-sample performance of proposed ap‐
proach and adjustable robust approach. (a) Total PV installation capacities 
when risk level β varies (ϵ = 0.01 is fixed). (b) Total PV annual generation 
when risk level β varies (ϵ = 0.01 is fixed). (c) Total PV installation capaci‐
ties when ϵ varies while β = 0.1 is fixed. (d) Total PV annual generation 
when ϵ varies while β = 0.1 is fixed.

TABLE III
AVERAGE PV ANNUAL GENERATION FOR DIFFERENT WASSERSTEIN RADIUSES

ϵ

0.001

0.010

0.100

Average PV annual generation (MW)

5.39

5.13

4.90

TABLE IV
COMPARISON BETWEEN CENTRAL AND TWO DISTRIBUTED SOLUTION 
METHODOLOGIES IN TERMS OF NOV, NOC, NNZ, AND SOLVING TIME

Solution methodology

Central (37)-(40)

Distributed (41)-(45), (48)-(50)

Proposed distributed (41)-(43), (46)-(50)

NoV

Not solvable

4.1×106

6.8×105

NoC

331

56

NNZ

6.49×106

1.08×106

Solving 
time (s)

4600

280
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C. Results for IEEE European Low-voltage 906-node Net‐
work 

To demonstrate the scalability and practical applicability 
of the proposed approach, we have conducted experiments 
on the IEEE European low-voltage 906-node network. By 
utilising the same model parameters outlined in Table I, we 
maintain consistency and avoid redundancy. Fixed values β 
and ϵ are set to be 0.1 and 0.01, respectively, and the total 
PV installation capacities and median PV annual generation 
are calculated. Additionally, similar calculations are per‐
formed for alternative approaches such as the adjustable ro‐
bust model that incorporates distribution information of un‐
certain parameters, and the conventional distributionally ro‐
bust model, which assesses the impact of inverters’  recourse 
actions.

The summary of simulation results in IEEE European low-
voltage 906-node network is presented in Table V, affirming 
the superior performance of the proposed approach com‐
pared with the existing approaches. Notably, the proposed ap‐
proach surpasses the adjustable robust approach by achiev‐
ing a 12% improvement in total PV installation capacity. 
Similarly, it outperforms the conventional distributionally ro‐
bust approach by 47%. Furthermore, in terms of total PV an‐
nual generation, the proposed approach exhibits a 14.5% and 
37.6% advantage over these approaches, respectively.

To further assess the scalability of the proposed approach, 
we compared the computing time with that of alternative ap‐
proaches. The results of these simulations on a MacBook 
Pro M1 with 8 GB of memory using the CPLEX solver are 
presented in Table VI. As can be observed, the proposed ap‐
proach demonstrates comparable computational efficiency to 
both the adjustable robust and conventional distributionally 
robust approaches, while simultaneously yielding increased 

hosting capacity for the network.

Overall, these results validate the efficacy of the proposed 
approach in terms of scalability, practicality, and its ability 
to outperform alternative approaches, thereby highlighting its 
potential in real-world applications.

VIII. CONCLUSION

This paper proposes a data-driven approach based on dis‐
tributionally robust chance-constrained programs to deter‐
mine the capacity of DG that an active distribution system 
can safely accommodate. The WDAR-JCC optimization mod‐
el employs the Wasserstein ambiguity set, a ball in the space 
of probability distributions centred at the empirical distribu‐
tion, to hedge against load demand and DG output uncertain‐
ties. It also builds upon the distributionally robust approach 
by empowering it with the adjustable robust counterpart 
methodology, allowing fast-acting control devices such as in‐
verters to take live recourse actions in response to demand 
and generation uncertainties. To deal with the uncertain 
chance constraints, we first define them via the distribution‐
ally robust CVaR and then, using tractable convex reformula‐
tions, we develop a convex quadratic model. To solve the de‐
veloped large-scale DG capacity assessment problem, we 
utilise the ADMM technique. Simulations on the modified 
IEEE 37-node distribution system show that the proposed ap‐
proach performs 15% better in terms of total PV installation 
capacity and PV annual generation compared with the adjust‐
able robust approach. We also show that taking inverters’  re‐
course capabilities into account, unlike the conventional dis‐
tributionally robust approach, results in up to an increase of 
50% in total PV installation capacity and an increase of 40% 
in PV annual generation.
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