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Abstract——This paper proposes a new method for service res‐
toration of distribution network with the support of transport‐
able power sources (TPSs) and repair crews (RCs). Firstly, a 
coupling model of distribution networks and vehicle routing of 
TPSs and RCs is proposed, where the TPSs serve as emergency 
power supply sources, and the RCs are used to repair the fault‐
ed lines. Considering the uncertainty of traffic congestion, the 
probability distribution of the travel time spent on each road is 
derived based on the Nesterov user equilibrium model, and a 
two-stage stochastic program is formulated to determine the op‐
timal routings of TPSs and RCs. To efficiently solve the pro‐
posed stochastic mixed-integer linear program (MILP), a two-
phase scenario reduction method is then developed to scale 
down the problem size, and an adaptive progressive hedging al‐
gorithm is used for an efficient solution. The effectiveness of the 
proposed methods and algorithms has been illustrated in a mod‐
ified IEEE 33-bus system.

Index Terms——Service restoration, distribution network, traf‐
fic uncertainty, transportable power source, repair crew, sto‐
chastic program.
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Index of TPSs and RCs

Sets of damaged lines and lines with switches

Set of truck-mounted emergency generators 
(TEGs)

Set of transportable energy storage (TESs)

Indices of traffic nodes for damaged components 
and charging points, and depots

Set of DN buses, indexed by line (i, j)

Set of DN substations

Set of TPS charging points

Set of paths belonging to each origin-destination 
(OD) pair π

Link set of road

Set of OD pairs

Set of damaged components and depots

Set of damaged components

Error factor

Capacity of road link a

Allowed number of TPSs connected to point i

Distance between component m and depot n

The maximum active and reactive power outputs 
of TEG k

The maximum charging and discharging power 
of TES k

Active and reactive loads at bus i at time t

Traffic demand of OD pair π in each scenario

Resource capacity of RC k

Resistance and reactance of line (i, j)

Required resources to repair component m

Time for RC k to repair component m

Travel time from component m to depot n

Number of time steps
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C. Variables
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Weight of load at bus i

Binary variable indicating whether RC or TPS k 
travels from component m to depot n

Binary variable indicating whether component m 
is assigned to depot n

Decision vectors in the first and second stages

Random vector

Binary variable, which equals 1 when path p 
goes through link a

Binary variable, which equals 1 if component m 
is repaired at time t

Binary variable equals 1 if charging point m is 
visited by TPS k at time t

Binary variable indicating operation status of 
load at bus i, and εt

i = 1 means the load is re‐
stored at time t in scenario s, εt

i = 0, otherwise

Connection status of line (i, j) at time t in real 
DN

Time when RC k arrives at component m

Time when TPS k arrives at charging point

Connection status of line (i, j) at time t in ficti‐
tious network

Unit monetary value of traffic time

Fictitious flow among line (i, j) at time t

Travel time (cost) on path p between OD pair π 
in each scenario

Time TPS k spends at charging point m

Traffic flow on path p between OD pair π in 
each scenario

Charging and discharging statuses of TPS k at 
time t

Binary variable, which equals 1 if TPS k leaves 
charging point m at time t

Active and reactive power outputs of TEG k at 
time t

Charging and discharging power of TES k at 
time t

Active and reactive power generated at bus i at 
time t

Active and reactive power flows on line (i, j) at 
time t

Free travel time on link a

Travel time on link a in each scenario

Operation status of DN line (i, j) at time t

Voltage magnitude of bus i at time t

Traffic flow on link a in each scenario

Binary variable, which equals 1 if component m 
is fixed by RC k

Binary variable, which equals 1 if TPS k visits 
charging point m

Binary variable, which equals 1 if TPS k is stay‐
ing at charging point m at time t

I. INTRODUCTION

IN recent decades, extreme weather events and natural ca‐
tastrophes occur frequently [1]. The consequence of exten‐

sive power outages and corresponding economic loss high‐
light the importance of enhancing the power system resil‐
ience [2]. After a contingency, service restoration is to dis‐
patch available resources to restore the system to its normal 
state rapidly and efficiently. Hence, an effective service resto‐
ration is crucial to the resilience enhancement of the distribu‐
tion networks (DNs).

The transportable resources have a great potential to im‐
prove the power system resilience due to their high mobility 
and flexibility. Transportable power sources (TPSs) and re‐
paire crews (RCs) are two of the main transportable resourc‐
es that have been widely applied in DNs. In particular, TPSs 
include large-capacity batteries or small generator sets car‐
ried by trucks or vehicles that could be timely dispatched to 
restore critical loads [3], [4]. Meanwhile, RCs can be used 
for coupling repair and restoration processes. To fully restore 
a power grid after disasters, it is essential to dispatch RCs 
properly to repair the specific damaged components and sup‐
port the network restoration of DNs [5], [6]. Reference [7] 
coordinates the scheduling of transportable energy storage 
(TES) with dynamic microgrid formation to minimize the to‐
tal cost of DN after the disaster. Co-optimizing RC routing 
and reconfiguration for DN restoration is studied in [8]. 
However, most existing studies on coupling traffic routing 
models with DNs only consider either TPSs or RCs. Since 
both resources have strong interdependence with the power 
networks, it is essential to coordinate TPSs and RCs together 
within the coupling model of traffic routing and DNs.

The uncertainties of multiple components could also pose 
challenges in the service restoration process. Reference [9] 
discusses the influence of wind energy uncertainty on power 
system restoration planning. Reference [10] designs a real-
time recovery method for power networks with preposition‐
ing and assignment of repair resources considering the uncer‐
tain propagation of the disaster. Reference [11] models load 
demand and repair time uncertainty in a DN repair and resto‐
ration problem. The unpredictable nature of weather is dis‐
cussed in [12], [13] for its influence on power system resil‐
ience. For the problem with the routing of TPSs and RCs, 
the fluctuations of traffic demand in the traffic network re‐
sult in recurrent congestion and the variability of travel time 
[14]. The corresponding uncertain link travel time will then 
affect the detailed dispatching plan of the disaster recovery 
scheme [15]. In reality, it is hard to predict the traffic de‐
mand between each origin-destination (OD) accurately, espe‐
cially in some rural areas. Therefore, it is essential to consid‐
er the stochastic traffic demand when coupling the service 
restoration with the resource routing problem. A few studies, 
like [16], incorporate travel time uncertainty in an optimal 
post-disruption repairing schedule. Still, it is inapplicable for 
the service restoration problem since it does not consider the 
coupling model of the DN and traffic system.

Faced with the above issues, this paper proposes a two-
stage joint stochastic service restoration method with the co‐
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ordination of TPSs and RCs, considering the uncertainty of 
traffic congestion. A coupling model of DNs and vehicle 
routing of TPSs and RCs is proposed, where the TPSs serve 
as emergency power supply sources while the RCs deter‐
mine the state of the faulted lines. To address the uncertainty 
of traffic congestion, this paper derives probability distribu‐
tions of the travel time spent on each road based on the 
Nesterov user equilibrium (UE) model [17] and then applies 
a two-stage stochastic program to determine the optimal rout‐
ings of TPSs and RCs. Motivated by [18], the model size is 
reduced by the partitioning of the damaged components. 
When generating numerous scenarios in the stochastic pro‐
gram, a novel two-phase scenario reduction method is pro‐
posed to reduce the computational complexity. Moreover, the 
adaptive progressive hedging (A-PH) algorithm is utilized to 
decompose and solve the proposed stochastic mixed-integer 
linear program (MILP).

The main contributions of this paper can be summarized 
as follows.

1) A novel two-stage restoration framework is developed 
with the coordination of transportable resource dispatching 
and DN operation, where the first stage is to determine the 
dispatching decisions of TPS and RC while the second stage 
is to optimize DN operation. In this manner, all the resourc‐
es from both traffic networks and power networks can be 
more effectively coordinated for fast and secure restoration.

2) Uncertain traffic congestion during the routing of TPS 
and RC is modeled based on the Nesterov UE model, which 
is effective to quantify the impacts of traffic conditions on 
the system restoration process under contingencies. To the 
best of the author’s knowledge, it is the first paper to ad‐
dress the uncertainty of traffic congestion in the system res‐
toration problem.

3) A two-phase scenario reduction method and improved 
decomposition algorithm are proposed to efficiently solve 
the whole optimization model. Compared with the existing 
methods, both solution efficiency and accuracy are signifi‐
cantly improved.

The rest of this paper is organized as follows. Section II 
presents the problem description. Section III presents the 
mathematical formulation. Section IV details the solution 
method. Section V presents the case studies. Section VI con‐
cludes the paper.

II. PROBLEM DESCRIPTION

A. Joint Stochastic Service Restoration

The entire framework of the proposed joint stochastic ser‐
vice restoration method is shown in Fig. 1, where the mathe‐
matical equations will be detailed in the sequel. The main 
objective of the proposed method is to maximize the amount 
of the restored loads by optimizing the decisions of routings 
of TPSs and RCs, topology reconfiguration, and DN power 
flow. Considering the uncertainty of traffic congestion, this 
paper designs a two-stage restoration framework based on 
stochastic optimization. The first stage is to determine the 
routing decisions of TPSs and RCs ahead of restoration im‐

plementation. The uncertain traffic congestion is considered 
as multiple potential scenarios of travel time with a corre‐
sponding probability. The objective function is modeled as 
the expected value of restored loads in all scenarios. The sec‐
ond stage is implemented after the restoration begins and un‐
certainty is realized. In the second stage, decisions of topolo‐
gy reconfiguration and DN power flow will be re-optimized 
to achieve optimal service restoration in real time.

B. Uncertainty Handling

Multiple scenarios of travel time are generated from uncer‐
tain traffic congestion. To achieve it, this paper firstly de‐
rives a simplified traffic network (TN) by extracting the loca‐
tions of depots, damaged components, and candidate charg‐
ing points. Then, based on the Nesterov UE model, the prob‐
ability distribution of travel time is derived from the traffic 
demand uncertainty between each OD pair. Finally, the trav‐
el time scenarios are generated based on the proposed two-
phase scenario reduction method.

III. MATHEMATICAL FORMULATION

The detailed mathematical model of the proposed joint sto‐
chastic service restoration method could finally be formulat‐
ed as a two-stage stochastic program. The objective and de‐
tailed constraints of these two stages are shown as follows.

A. Objective Function

Firstly, the objective function of the proposed two-stage 
stochastic program is given as:
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λ

E
é
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The objective of the co-optimization model is to maxi‐
mize the expected weighted sum of picked-up loads in the 
designed timeframe. Different load weights can be set based 
on priority levels [19].
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i  is the ex‐

pected value of the second-stage problem. The inner max is 
used to gain the optimal value of the second stage with the 
first-stage decision, and the external max gains the total ex‐
pected optimal maximum value.
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Fig. 1.　Framework of proposed joint stochastic service restoration method.
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B. Constraints for the First Stage

The routing problem aims to find an optimal routing for 
RCs and TPSs to travel among depots, damaged compo‐
nents, and candidate charging points. Assume that the rout‐
ing problem can be defined by two undirected graphs GRC =
( )VERC  and GTPS = ( )NmETPS . The dp and tp in these two 
graphs represent the depot of each graph. Detailed routing 
constraints are modeled as:∑

"nÎV \{ }m

αmnk = ∑
"nÎV \{ }m

αnmk    "km (2)

∑
"mÎV \{ }dp

αdpmk - ∑
"mÎV \{ }dp

αmdpk = 1    "k (3)

∑
"mÎV \{ }tp

αmtpk - ∑
"mÎV \{ }tp

αtpmk = 1    "k (4)

Y TPS
mk = ∑

"nÎNm \{ }m

αmnk    "kÎω2mÎNm (5)

Y RC
mk = ∑

"nÎV \{ }m

αmnk    "kÎω1mÎV (6)

∑
"kÎω1

Y RC
mk £ 1    "mÎV1 (7)

Constraints from (2) to (7) represent the routing con‐
straints for TPSs and RCs. Constraint (2) guarantees that 
each TPS or RC leaves the candidate charging point and 
damaged component once it completes the action, referred to 
as the flow conservation constraint in the vehicle routing 
problem (VRP) model [20]. Constraints (3) and (4) define 
that each fleet starts from and returns to the designed depot 
after the assigned repair work is completed. Constraint (7) 
indicates that a maximum of one RC can fix each damaged 
line. The difference between TPSs and RCs is that the candi‐
date charging points of TPSs can be visited multiple times 
by different TPS fleets.

C. Modeling for Uncertain Traffic Congestion

The uncertain traffic congestion can be reflected as multi‐
ple scenarios of travel time, which is expressed as a proba‐
bility distribution. However, the traffic condition has a major 
impact on travel time. The improvement of relevant statisti‐
cal methods and traffic observation tools allows for the accu‐
rate evaluation of road conditions and the monitoring of traf‐
fic demand [21]. Nonetheless, to acquire the travel time of 
RCs and TPSs to any given destination, the topology of the 
traffic networks should also be considered. With the above 
consideration, the Nesterov UE model is used in this paper 
to determine the probability distribution of travel time based 
on traffic demand uncertainty.

The traffic demand uncertainty is modeled through a set 
of discrete scenarios, which are realizations of a uniform dis‐
tribution with given upper and lower bounds [ (1 - ϱ)-di (1 +
ϱ)-di ] [22], where ϱ represents the uncertainty level of the 

traffic demand; and 
-
di is the mean value of the demand. 

Since the traffic demand does not always vary on a short-
time basis [23], [24], the road condition of each scenario 
could reach a state of equilibrium. Therefore, a scenario-
based UE model [25] is employed to derive the link travel 

time of each scenario from the travel demand [26]:
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ì
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f π
p ( )cπp - υ

π = 0

( )cπp - υ
π ³ 0

    "πÎ TπpÎPπ (13)

f π
p ³ 0   "πÎ TπpÎPπ (14)

cπp =∑
a

tra × δ
π
ap    "ap (15)

   According to (8), the objective of this optimization pro‐
cess is to minimize the total path (link) travel cost in this 
equilibrium state. Constraint (9) states the relationship be‐
tween the link and path flow. Based on the typical bureau of 
public roads (BPR) function, the link travel time of each sce‐
nario can be expressed as (10). Constraint (11) guarantees 
that the link flow is within the range of the link capacity. 
Constraint (12) denotes the traffic flow conservation, which 
represents that in each scenario, the sum of the path flow on 
each OD pair should meet the travel demand qπ. Constraints 
(13)-(14) determine the equilibrium state. When the flow dis‐
tribution reaches equilibrium, the equilibrium travel cost be‐
tween each OD pair υπ is always no greater than that of any 
path. Constraint (15) explains that cπp is the travel time (cost) 
of path p between OD π. Since the travel time function (10) 
and UE condition (13) have several nonlinear items, e.g., the 
biquadratic item in (10), the piecewise linearization and a 
big M method are utilized to linearize nonlinear terms to 
ease the solving bottlenecks [25].

By elaborating the above Nesterov UE model as the uncer‐
tainty revealing process, tra in each scenario could be ob‐
tained. Related parameter settings of TN could be found in 
[21], and the TN topology is shown in Appendix A Fig. A1.

D. Constraints for the Second Stage

1) Modeling of RCs
After determining the optimal routing of RCs at the first 

stage, the state of RCs should be determined considering the 
uncertainty of traffic congestion, which acts as the connec‐
tion between the DN and the routing model. The travel time 
uncertainty in this paper, as different from other kinds of un‐
certainties like electricity load fluctuation, influences the RC 
arrival time at any given destination, and further affects the 
repair states of damages. However, the repair state is typical‐
ly depicted in the general service restoration model based on 
the fixed time step, and it is difficult to integrate the travel 
time directly with the restoration model. Thus, we derive the 
following arrival time constraints to couple the RC arrival 
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time and the corresponding repair states of damage. Use the 
binary variable ζ RC

mt  to indicate the state transition of the dis‐
tribution line from the faulted state (ζ RC

mt = 0) to the health 
state (ζ RC

mt = 1). Relevant constraints are modeled as follows.
Firstly, arrival time constraints are stated as:

aT RC
mk + rtmk + trmn(ξ ) - aT RC

nk £ (1 - αmnk )M

"kÎω1mÎVnÎV1 (16)

- (1 - αmnk )M £ aT RC
mk + rtmk + trmn(ξ ) - aT RC

nk

"kÎω1mÎVnÎV1 (17)

For example, the RC k arrives at the damaged component 
m at time aT RC

mk. Once arrived, rtmk is spent for k to repair m. 
Then, after a trmn(ξ ) travel period from m to n, the RC ar‐
rives at component n at time aT RC

nk . The big M method is ap‐
plied to decouple the arrival time at m and n if RC k does 
not travel from m to n. Then, to determine the repair comple‐
tion time of each damaged component, the following formu‐
lae are enforced: ∑

"t

ζ RC
mt £ 1    "mÎV1 (18)

∑
"t

tζ RC
mt ³∑

"k
( )aT RC

mk + rtmk × Y
RC

mk     "kÎω1mÎV (19)

∑
"t

tζ RC
mt £∑

"k
( )aT RC

mk + rtmk × Y
RC

mk + 1 - ϑ    "kÎω1mÎV (20)

0 £ aT RC
mk £ Y RC

mk M    "kÎω1mÎV (21)

aT RC
dpk = 0    "kÎω1 (22)

Formula (18) enforces that each component is repaired 
once. Constraints (19) and (20) define the time when a com‐
ponent is repaired with the corresponding RC arrival time 
and the required repair time. For example, if RC k = 1 ar‐
rives at component m = 1 at time t = 1, repair time rt11 = 2 is 
used to repair the component, so the damaged component is 
repaired at tζ RC

13 = 3. ϑ is utilized since the schedule time hori‐
zon is the integer value. Constraint (21) indicates that aT RC

mk 
equals 0 if m is not in the route of RC k. Equation (22) en‐
forces that all RCs depart from the depot when t = 0.

Resource availability is guaranteed by constraint (23), 
which states that each RC’s resource capacity could satisfy 
the total resource demand of damaged components in its as‐
signed route. ∑

mÎV

Y RC
mk × rsm £RSk    "kÎω1 (23)

At each time step, the repair results of the damaged com‐
ponents will reflect on the connection status of the DN and 
then affect the DN operation. The interdependent constraints 
between component repair and DN operation can be ex‐
pressed as:

ut + 1
im jm

£∑
τ = 1

t

ζ RC
mτ     "mÎV1"t £ Ts - 1 (24)

ut
ij £ ut + 1

ij     " (ij ) ÎE"t £ Ts - 1 (25)

ut
ij = 1    " (ij ) ÎE\L1"t (26)

u1
ij = 0    " (ij ) Î L1 (27)

at
ij £ ut

ij    " ( )ij ÎE"t (28)

Constraint (24) enforces that the damaged lines will be op‐
erable once an RC repairs it in the previous time step. Con‐
straints (25)-(27) restrict the line status. Constraint (25) indi‐
cates that lines should remain operable once it is repaired.  
Constraint (26) states that all unbroken lines are operable. 
Constraint (27) sets the initial status of the damaged line to 
complement the time horizon of ut

ij. Constraint (28) is the in‐
dependent constraint that states one line could be closed on‐
ly if it is operable.
2) Modeling of TPSs

The TPSs, including TES and truck-mounted emergency 
generators (TEGs), should be appropriately dispatched 
among the candidate charging points to supply critical loads 
after the outage. Similar to RC, the arrival time constraints 
are also employed to derive the TPS travel time to the opera‐
tion time step. The scheduling principle of the TPSs is 
roughly similar to that of RCs with differences: one dam‐
aged component could be repaired only once by one RC, but 
one candidate charging point could be connected by more 
than one TPS at the same time. In addition, the repair time 
for RCs to repair the damaged component is a parameter, 
but the time one TPS spends at a candidate station is a vari‐
able. Detailed constraints are expressed as:

aT TPS
mk + ctmk + trmn(ξ ) - aT TPS

nk £ (1 - αmnk )M

"kÎω2mÎNmnÎNm \{ }m (29)

- (1 - αmnk )M £ aT TPS
mk + ctmk + trmn(ξ ) - aT TPS

nk

"kÎω2mÎNmnÎNm \{ }m (30)

The arrival time constraints (29) and (30) of TPSs are sim‐
ilar to those of RCs. With travel time variation trmn(ξ ), the 
time one TPS arrives at and leaves a charging point could be 
influenced. The major difference is that the time one TPS 
spends at a candidate charging point ctmk is a variable.

The accessing state of the TPSs depends on the arrival 
time and the length of stay, which is modeled in detail as:∑

"t

ζ TPS
mtk £ 1    "kÎω2mÎNm (31)

∑
"t

ζ TPS
mtk =∑

"t

l TPS
mtk    "kÎω2mÎNm (32)

aT TPS
mk £∑

"t

tζ TPS
mtk £ aT TPS

mk + 1 - ϑ    "kÎω2mÎNm (33)

∑
"t

tl TPS
mtk ³∑

"k
( )aT TPS

mk + ctmk     "kÎω2mÎNm (34)

∑
"t

tl TPS
mtk £∑

"k
( )aT TPS

mk + ctmk + 1 - ϑ    "kÎω2mÎNm (35)

0 £ aT TPS
mk £ Y TPS

mk M    "kÎω2mÎNm (36)

0 £ ctmk £ Ts    "kÎω2mÎNm (37)

aT TPS
dpk = 0    "kÎω2 (38)

Constraint (31) states that each TPS only visits one candi‐
date charging point once. Flow conservation constraint is 
guaranteed by constraint (32), which enforces that once a 
TPS arrives at a candidate charging point, it must also leave 
it. Similar to constraints (19) and (20), constraints (33)-(35) 

193



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 1, January 2024

determine the time that one TPS arrives at and leaves a 
charging point with its corresponding arrival time and length 
of stay. For example, if TPS k = 1 arrives at charging point 
m = 1 at time t = 2 and discharges for ct11 = 1 hour, tζ TPS

121 = 2 
and tl TPS

131 = 2 + 1 = 3. Constraint (36) indicates that the arrival 
time aT TPS

mk  equals 0 if TPS k does not visit candidate charg‐
ing point m. Constraint (37) restricts the range of the time 
one TPS spends at a candidate station. Constraint (38) indi‐
cates the initial location of all TPSs at t = 0.

Besides the time-related constraints, constraint (39) re‐
stricts the number of TPSs that can be connected to one can‐
didate charging point.∑

"k

z k
mt £ capi    "kÎω2mÎNm"t (39)

To better couple the dispatch of TPSs with the DN opera‐
tion, a binary variable z k

mt is introduced to represent the sta‐
tus of the TPS.

z k
mt =∑

τ = 1

t - 1( )ζ TPS
mtk - l TPS

mtk     "kÎω2mÎNm (40)

∑
"m

z k
mt £ 1    "mÎNm"tkÎω2 (41)

Specifically, constraint (40) indicates that z k
mt = 1 if and on‐

ly if the TPS is staying at the candidate charging point; oth‐
erwise, it equals 0 if the TPS did not arrive at the candidate 
charging point or already left the point. Constraint (41) en‐
forces that one TPS could only visit one candidate charging 
point.

The dispatch and operation of TPSs, e. g., discharging of 
the TES and TEG, could also affect the DN operation:

P t
i = ∑

kÎM1

z k
it P

ge
kt + ∑

kÎM2

z k
it( )P d

kt -P c
kt     "iÎNm"t (42)

Qt
i =∑

kÎM

z k
itQ

ge
kt    "iÎNm"t (43)

P t
i =Qt

i = 0    "iÎN\ (Nm ig ) "t (44)

Constraints (42) and (43) indicate the contribution of the 
TPS output to the DN. The total injection from the TPS is 
the sum of the output of TESs and TEGs. Constraint (44) re‐
stricts the power injection to zero for the buses without con‐
nection to TPSs or substations.

It should be noted that there are several bilinear items in 
(42) and (43). A typical reformulation-linearization method 
[27] converts the non-linear model into an MILP.

During the scheduling process of the TPSs, when they are 
staying at the candidate charging points, power charging or 
discharging between TPSs and the DN will occur. The opera‐
tion constraints of the mentioned two types of the TPSs can 
be modeled as:

0 £P ge
kt £ ∑

iÎNm

z k
it P̄

ge
k     "kÎM1"t (45)

0 £Qge
kt £ ∑

iÎNm

z k
itQ̄

ge
k     "kÎM1"t (46)

0 £P c
kt £ Ick

t × P̄
c
k    "kÎM2"t (47)

0 £P d
kt £ Id k

t × P̄
d
k     "kÎM2"t (48)

Ick
t + Id k

t £ ∑
iÎNm

z k
it    "kÎM2"t (49)

0 £Qge
kt £ ( Ick

t + Id k
t ) Q̄ge

kt    "kÎM2"t (50)

sock
t + 1 = sock

t + (P c
ktη

c
k -P d

kt /η
d
k )Dt    "kÎM2"t £ Ts - 1

(51)

-soc k £ sock
t £

- -----
soc

k
    "kÎM2"t (52)

Constraints (45) and (46) are the real and reactive power 
output limits of TEGs. These two constraints enforce that on‐
ly if the TEG is connected to a candidate charging point, 
both P ge

kt and Qge
kt could have positive values. Charging and 

discharging power limits of TESs are indicated in (47) and 
(48). Constraint (49) states the operation modes of the TES. 
Specifically, only if ∑

iÎNm

z k
it = 1, which means that the TES is 

staying at a candidate charging point, it could operate in 
charging or discharging mode; otherwise, both Ick

t  and Id k
t  

will be zero. Similar to (46), (50) restricts the reactive pow‐
er output of the TES. The state of charge (SOC) variation of 
the TES is modeled by (51); and (52) limits the upper and 
lower bounds of SOC for the TES.
3) Operation Constraints of DNs

A linearized Distflow model is utilized in this paper for 
DN operation analysis [28], [29]. The detailed formulation 
can be expressed as:

PGt
i - ε

t
i ×PDt

i = ∑
(ij)ÎE

P t
ij - ∑

(ki)ÎE

P t
ki    "iÎNtÎ Ts (53)

QGt
i - ε

t
i ×QDt

i = ∑
(ij)ÎE

Qt
ij - ∑

(ki)ÎE

Qt
ki    "iÎNtÎ Ts (54)

V t
j -V t

i £M ( )1 - at
ij - ( )P t

ijrij +Qt
ij xij /V0    " ( )ij t (55)

V t
j -V t

i ³-M ( )1 - at
ij - ( )P t

ijrij +Qt
ij xij /V0    " ( )ij t (56)

-at
ijS

max
ij £P t

ij £ at
ijS

max
ij     " ( )ij ÎEtÎ Ts (57)

-at
ijS

max
ij £Qt

ij £ at
ijS

max
ij     " ( )ij ÎEtÎ Ts (58)

- 2 at
ijS

max
ij £P t

ij +Qt
ij £ 2 at

ijS
max
ij     " ( )ij ÎEtÎ Ts (59)

- 2 at
ijS

max
ij £P t

ij -Qt
ij £ 2 at

ijS
max
ij     " ( )ij ÎEtÎ Ts (60)

V min
i £V t

i £V max
i     "iÎN\DtÎ Ts (61)

εt
i £ ε

t + 1
i     "i"t £ Ts - 1 (62)

Constraints (53) and (54) represent the real and reactive 
power balance constraints. The line voltage drop constraints 
are formulated by (55) and (56). The big M method decou‐
ples the disconnected buses [30]. Constraints (57) to (60) in‐
dicate the line flow limitations and enforce that the line flow 
equals zero if the line is open. Constraint (61) sets the upper 
and lower bounds of the voltage magnitude. Constraint (62) 
enforces that a load should keep energized during the follow‐
ing period once it is restored.

The DN is dynamically reconfigured in the restoration pro‐
cess to maintain the radial structure by using remotely con‐
trolled switches. In this paper, the spanning forest model is 
used to ensure the radial arrangement of the DN during each 
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step of the restoration process. To strictly guarantee the radi‐
al construction, the single-commodity flow (SCF) model is 
utilized in this paper as the radiality constraints [31]:∑

(ij)ÎE

bt
ij = | N | - | Ns |     "t (63)

∑
( ji)ÎE

cf t
ji - ∑

(ij)ÎE

cf t
ij = 1    "iÎN \ig"t (64)

-bt
ij ×
-
cf £ cf t

ij £ bt
ij ×
-
cf     " ( )ij ÎE"t (65)

-
cf = | N | - | Ns | (66)

at
ij £ bt

ij    " ( )ij ÎE"t (67)

at
ij = 1    " (ij ) ÎE \{L1 L2}"t (68)

As the SCF model states, a DN with N buses and Ns sub‐
stations could remain a radial topology only if the following 
two conditions are satisfied.

1) The DN should have N -Ns closed lines.
2) All buses of the DN should be connected.
The first condition is satisfied by (63). The single-com‐

modity flow constraints (64) and (65) are used to guarantee 
the second condition. Constraint (64) states that the substa‐
tion should feed each bus with one unit of fictitious load. 
Constraint (65) ensures that there is no fictitious flow on dis‐
connected lines. The capacity value of the fictitious flow is 
set as || N - || Ns , as shown in (66).

To ensure the radial structure of the DN in each time step, 
the binary variable bt

ij is set as the connection status of the 
line (ij ) at time t in fictitious network, and the variable at

ij 

is the connection status of the line (ij ) at time t in real DN. 
Therefore, constraint (67) guarantees that at each time step, 
the closed lines in DN are a subset of lines in a fictitious 
network so that the feasible solutions at

ij could form a span‐
ning forest at each time t. Except for the damaged lines and 
lines with remotely-controlled switches, the connection sta‐
tus of all other lines are kept closed by (68).

Finally, the extensive form (EF) of the proposed two-stage 
stochastic program is formulated by objective (1) and con‐
straints (2)-(7) and (16)-(68) presented above. For better un‐
derstanding, the constraints are classified in detail as:

1) Constraints for the first stage: routing of RCs and 
TPSs: (2)-(7).

2) Constraints for the second stage: ① modeling of RCs: 
(16)-(28); ② modeling of TRSs: (29)-(52); and ③ operation 
constraints of DNs: (53)-(68).

Combined with the clarification of the general model in 
(1), the first-stage variables of vector λ contain binary vari‐
ables αmnk, Y RC

mk, Y TPS
mk  which determine the routing of TPSs 

and RCs. Then, the vector y denotes the remaining decision 
valuables in the second stage, i.e., ζ RC

mt , ζ
TPS

mtk, l
TPS
mtk, z

k
mt, ε

t
i, a

t
ij,

bt
ij, ut

ij, Ick
t , Id k

t , aT RC
mk, aT TPS

mk , ctmk, P ge
kt, Qge

kt, P c
kt, P d

kt, sock
t , 

PGt
i, QGt

i, P
t
ij, Q

t
ij, V

t
i , cf t

ij .

IV. SOLUTION METHOD

A. Scenario-based Two-stage Stochastic Optimization

To handle the challenge posed by the uncertainty source, 

scenario-based two-stage stochastic optimization is utilized. 
As described in Section III, the stochastic variation of the 
traffic demand between each OD pair is modeled through a 
known distribution. The Monte Carlo sampling method is im‐
plemented to generate multiple demand realizations. Then, 
possible scenarios of different travel demands are reduced to 
a reasonable number through a novel two-phase scenario re‐
duction method, which will be detailedly introduced in the 
following subsection.

Through the employing of the Nesterov UE model, the 
link travel time realizations (in terms of scenarios) which re‐
flect the uncertain traffic congestion are derived. After the 
first stage of decision-making, the uncertain travel time is re‐
vealed and is considered in the second stage of decision-
making. As shown in (1), two-stage stochastic program aims 
to find a solution that maximizes the expected restored load 
over all the simulated scenarios. Thus, all the second-stage 
variables shall be scenario-related and could be expressed 
with the added subscript of s (denoted as scenario), i. e., 
ζ RC

mts, ζ
TPS

mtks, l TPS
mtks, z k

mts, ε
t
is, at

ijs, bt
ijs, ut

ijs, Ick
ts, Id k

ts, aT RC
mks,

aT TPS
mks, ctmks, P ge

kts, Qge
kts, P c

kts, P d
kts, sock

ts, PGt
is, QGt

is, P t
ijs,

Qt
ijs, V

t
is, cf t

ijs.

B. Depot-based Partitioning of Damaged Components

After a large disaster, local neighboring utilities can pro‐
vide assistance by deploying additional RCs to help restore 
the destroyed network. When there are multiple RC depots 
in the disaster-affected area, the computational burden can 
be reduced by first partitioning the damages to different de‐
pots [8]. By assigning damaged components to depots, the 
entire destroyed network can be divided into several small 
clusters/regions. Thus, the large-scale NP-hard VRP for the 
routing problem can be decomposed into several small 
VRPs. Therefore, the model scale and computational com‐
plexity are greatly reduced.

The detailed partitioning model is formulated as:

min ∑
mÎV1

∑
nÎD

βmndmn (69)

∑
nÎD

βmn £ 1    "mÎV1 (70)

uim jm
£∑

nÎD

βmn    "mÎV1 (71)

∑
( )ij ÎE

Pij - ∑
( )ki ÎE

Pki -PDi = 0    "iÎN (72)

∑
( )ij ÎE

Qij - ∑
( )ki ÎE

Qki -QDi = 0    "iÎN (73)

(26), (28), (55)-(61), (63)-(68) (without superscript t) (74)

The objective of the above small MILP (69) is to mini‐
mize the total distance between the damages and their as‐
signed depots. Constraint (70) restricts that one component 
can be clustered to a maximum of one depot. Motivated by 
[18], constraints (71) - (74) guarantee that rather than all the 
damaged components, the above model is applied to select a 
minimum number of damages that could fully pick up the 
DN loads without the support of TPSs. The schematic of the 
depot-based partitioning method is given in Fig. 2.
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C. Two-phase Scenario Reduction

1) Phase 1: Clustering for Point Operation
A large number of demand realizations of each OD could 

cause a relatively huge number of combinations of different 
OD demands as the total traffic demand matrix scenarios. 
Since the operation objects in this phase are the points that 
represent the possible demand values of a specific OD, a 
clustering technique is applied to select several representa‐
tive points to form the demand matrix for a further reduction 
in the second phase.

In this phase, a modified K-means algorithm, K-
means++ , is implemented for clustering data. The K-means 
algorithm has the characteristics of low computational com‐
plexity and fast speed [32], which is suitable for the afore‐
mentioned point value operation. Furthermore, the K-
means++ algorithm determines the cluster centers sequential‐
ly according to their distances, which will make the distribu‐
tion of selected cluster centers more uniform.
2) Phase 2: Kantorovich Distance (KD) for Matrix Scenarios

After clustering in phase 1, a smaller representative num‐
ber of demand values for each OD is obtained. Then, after 
the combination, a computable number of traffic demand ma‐
trix realizations are selected for the secondary reduction in 
this phase. Here, an efficient KD-based backward method is 
used to reduce the scenarios [33]. By constructing the Kanto‐
rovich distance matrix (KDM), scenarios could be eliminated 
based on their KD with other scenarios and their probability 
of occurrence.

Finally, by applying the proposed two-phase scenario re‐
duction method shown in Fig. 3, a small representative num‐
ber of scenarios remain. Thus, the model size is significantly 
reduced, and the solving process can be sped up greatly.

D. A-PH Algorithm

The two-stage stochastic problem can be solved as a sin‐
gle-stage large linear program with duplicated constraints in 
each scenario when the random vector has a finite number 
of scenarios. However, when the number of integer variables 
is large in each scenario, the computational burden could be 
increased by directly solving the single-stage large linear pro‐
gram. This section proposes an A-PH algorithm, as shown in 
Algorithm 1, for decomposing and solving the stochastic 
MILP, where Qs represents the subproblem constraints in 
each scenario; P r

s is the probability of scenario s; τ1 and τ2 
denote at which iteration ρ is adjusted to be larger or small‐
er; β1 and β2 denote in which proportion ρ is adjusted to be 
larger or smaller; and σν denotes the solution gap of itera‐
tion v.

Firstly, in Steps 1-3, a non-anticipative “initial guess” is 
obtained by solving the scenario subproblems in the initial‐
ization phase. Then, by applying a penalty parameter ρ, the 
non-anticipative is enforced through the updating of the mul‐
tiplier φνs in Step 5, where the superscript v is the iteration 
number and the subscript s denotes the scenario counter. The 
subproblems are then solved by augmenting linear and qua‐
dratic proximal items in Step 6. Finally, as shown in Steps 8 
and 11, a non-anticipative solution is yielded once all first-
stage decisions converge on a common λ̄.

From Algorithm 1, we know that ρ is the parameter that 
determines the movement range of λ and in turn, affects the 
PH convergence. If ρ is small, PH convergence will be great‐
ly delayed due to minor movement in λ. If ρ is large, the ac‐
curacy of the optimization results cannot be guaranteed. 
Therefore, the optimal ρ needs not to be a fixed value for 
each stochastic MILP. However, most existing research ap‐
plies the fixed ρ value to obtain the PH convergence. Some 
research works use a fixed position to adjust the ρ value, but 
that position needs to be changed once the problem parame‐
ter changes.

In the proposed A-PH algorithm, the penalty factor is self-

Depot 1 

Depot 2

Depot 3

Region 1 Region 3

Region 2

Damage m

d(m,3)

Fig. 2.　Schematic of depot-based partitioning method.

Demand value clustering of each OD

Selection of traffic demand matrix realization

Representative number of scenarios

Scenario generation

Phase 1

Phase 2

Start

K-means++ algorithm

KD-based backward method

End

Fig. 3.　Framework of two-phase scenario reduction method.

Algorithm 1: the proposed A-PH algorithm

Step 1: initialization: ν¬ 0, φνs ¬ 0, ρ¬ ρ0, i¬ 1, j¬ 1, "sÎ S

Step 2: iteration 0: "sÎ S, λνs = arg min
λ

{mTλ + nT
s ys:( λys ) ÎQs}

Step 3: aggregation: λ̄ν =∑
sÎ S

P r
s λ

ν
s

Step 4: iteration update: ν¬ ν + 1

Step 5: multiplier update: φνs ¬ φν - 1
s + ρ ( λν - 1

s - λ̄ν - 1 ) "sÎ S

Step 6: iteration ν: "sÎ S λνs = arg min
λ

{mTλ + nT
s ys + φ

ν
s λ +

ρ
2
 λ - λ̄ν - 1 2

:

   ( λys ) ÎQs}
Step 7: aggregation: λ̄ν =∑

sÎ S

P r
s λ

ν
s

Step 8: σν =∑
sÎ S

P r
s λ - λ̄ν

Step 9: threshold value check: if σν - 1 - σν £ψ1σ
ν - 1, then i¬ i + 1. Else if 

   σν - 1 - σν ³ψ2σ
ν - 1, then j¬ j + 1. Else, i¬ 1, j¬ 1. End if.

Step 10: penalty factor adjustment: if i = τ1, then ρ = ( )1 + β1 ρ; i¬ 1. Else  

 if j = τ2, then ρ = ( )1 + β2 ρ; j¬ 1. End if.

Step 11: convergence check: if σν < ϵ, halt. Otherwise, go to Step 4.
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adjusting during the solving process according to the change 
of the gap valve. The change of gap value σv is checked in 
Step 9 during each iteration. If the changes remain in a 
small range after a continuous fixed number of iterations, 
the penalty factor will increase proportionally as Step 10 
shows. In contrast, if the changes remain in a relatively 
large range after a continuous fixed number of iterations, ρ 
will decrease proportionally. These actions will repeat the 
whole solving process until the program reaches conver‐
gence. By doing this, the adjustment position of the ρ value 
could be adaptive and will do self-adjusting according to dif‐
ferent problems.

V. CASE STUDIES

This section uses a modified IEEE 33-bus system as the 
test case for the proposed restoration procedure [34]. The 
routing of TPSs and RCs in two comparison cases is shown 
in Fig. 4. The proposed method is modeled by using MAT‐
LAB 2021a, and all subproblems and the depot-based parti‐
tioning model are solved by Gurobi (or other off-the-shelf 
solvers), on an Intel(R) Xeon(R) 3.7 GHz PC with 16 GB 
RAM.

A. Test System

As Fig. 4 shows, we assume six damaged lines, two RCs, 
and two TPS fleets (one TES and one TEG) in this test sys‐
tem. Both RCs and TPSs are supposed to have identical 
properties. Two RCs start from one depot, and the initial 
point of both TPS fleets is set at the same candidate charg‐
ing point. Assume that the outages happen at midnight, and 
let the time step equals 0.5 hour. Both required repair time 
and resources for different damaged components are listed in 
Table I. For resource constraints, the resource capacity of 

the RC is set to be 10. Detailed parameters of TPSs are 
shown in Table II.

For the DN test feeder, the upper and lower bounds of the 
voltage value are set to be ±5% of the nominal level, which 
is 1.0 p.u.. According to constraint (58), the commodity flow 
capacity is set to be 32. In the optimal case, each line could 
be equipped with a remotely controlled switch. To reduce 
the number of switching actions and related costs [35], sev‐
en switches are allocated (lines 9-10, 23-24, 28-29, 8-21, 12-
22, 18-33, 25-29). The buses without switches can be ex‐
pressed as “branch blocks”, which could be used to simplify 
the topology structure of the test system, and then reduce 
the computational complexity [36].

Meanwhile, the number of damaged components that need 
to be repaired could also influence the calculation complica‐
tion of the proposed method. In the aforementioned test case 
with one RC depot, the assigning algorithm in Section IV is 
implemented to pre-assign the minimum set of repair tasks 
to the depots. Four lines are selected by processing this as‐
signing algorithm before the main optimization, and the 
problem size is further reduced.

B. Simulation Results and Analysis

1) Comparison Study
The co-optimization problem under the deterministic situa‐

tion is set as the benchmark for comparison. The convention‐
al deterministic case is tested without considering traffic un‐
certainty, and the traffic demand is set as their expected val‐
ues.

To show the importance of the uncertainty consideration, 
the deterministic dispatch solution of RCs and TPSs is tested 

TABLE I
REQUIRED REPAIR TIME AND RESOURCES FOR DIFFERENT DAMAGED 

COMPONENTS

Damaged 
component

D1

D2

D3

D4

D5

D6

Required repair time (time step)

RC1

1

2

1

1

2

1

RC2

2

1

2

1

1

2

Required resources 
(units) of all RCs

3

3

1

3

2

1

TABLE II
DETAILED PARAMETERS OF TPSS

Type

TEG

TES

Parameter

Initial position (DN bus number)

Real power (MW)

Reactive power (Mvar)

Initial position (DN bus number)

Charging/discharging power (MW)

Energy capacity (MWh)

Initial -soc
socmaxsocmin

Charging/discharging efficiency

Value

8.0

0.5

0.3

8.0

0.2

0.2

0.9

0.9, 0.1

0.95

1

2

3

4

5 6 7

8

9 10 11 12 13 14 15 16 17 18

19

20

21 22

23

24

25

26

27

28 29 33

32

31

30

1
2

G

1

2

3 4 5 6 8 9 10

11

12 13 14 15 16 17 18

19 20 21 22

23

24

25

26

27

28

29 33

32

31

30

1 2

Depot; Charging pointTEG;TES; Damaged line;RC;

G

7

G

(a)

(b)

Fig. 4.　Routing of TPSs and RCs in two comparison cases. (a) Benchmark 
case. (b) Stochastic case.
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using 30 random scenarios of traffic demands, as shown in 
Fig. 5, where all the colored lines represent random scenari‐
os. The load of around 30% of scenarios cannot be thorough‐
ly picked up under the deterministic benchmark case during 
the scheduled period.

Therefore, based on the main aim of load restoration, it is 
necessary to consider the traffic demand uncertainty in the 
proposed service restoration method. One thousand random 
scenarios for each OD are generated using the Monte Carlo 
sampling technique to describe the stochastic nature of the 
traffic demand. The uncertainty level of the travel demand is 
set to be 0.4, and the value of each OD demand is given in 
Table III. Then, the proposed two-phase scenario reduction 
method is applied. After the first phase of clustering, 
54 = 625 groups of different OD demand combinations re‐

main. Then, after the second-phase reduction with KD, ten 
traffic demand matrixes (scenarios) are selected as the most 
representative ones for stochastic program.

It can be observed from Fig. 4 that in the stochastic case, 
one more line is assigned to RC1 for repair. Since traffic de‐
mand varies and traffic congestion may occur in this case, in‐
creasing repair work could ensure the restoration plan with 
sufficient capability to fully restore the system load. Besides, 
the repair order of RC2 changes. Compared with the bench‐
mark case, though microgrids are connected to the main 
grid, loads like 27 still need extra connections like line 32-
33 to satisfy operational constraints for picking up. Since the 
deterministic travel time from depot to line 32-33 is also far‐
ther than that of line 19-20, repairing line 32-33 firstly 
makes the restoration plan more robust when facing traffic 
demand fluctuation. In addition to the RCs, the routing of 
TES1 also changes. Since traffic congestion may occur on 
its travel paths, to be more robust against the possible con‐
gestion, TES1 is assigned to reduce the number of position 
changes and stay at suitable points for supporting power. 
Meanwhile, during the restoration process, lines 25-29 and 
18-33 are permanently assigned to be closed; and bus 29 is 
a good injection point to support the maximum loads based 
on the topology. Therefore, TES1 changes its routes and is 
assigned to be connected to bus 29 directly.

Regarding the scheduling solution of the second stage, we 
use one possible realization (scenario) for detailed analysis 
in the stochastic case. The dispatching solution of RCs in 
two comparison cases is shown in Table IV. We take TES1 
as the example for analyzing the scheduling solution. Buses 
8, 15, 29, and 25 of the DN are represented by charging 
points 1-4. The fluctuation of the traffic demand causes con‐
gestion on the paths of TPSs. Thus, in this scenario, TPSs 
take more time to arrive at their assigned locations. There‐
fore, from Fig. 6, we can observe that TES1 starts injecting 
power from t = 2 in the benchmark case, but in the stochastic 
case, the discharging of TES1 starts from t = 3 due to the 
traffic congestion. During the following period, in the bench‐
mark case, the amount of TES1 power injection remains 
high until line 32-33 is repaired. TES1 is needed to satisfy 
the operational constraints of buses at the end of the topolo‐
gy. However, in this test case, since the lines 32-33 and 9-15 
are repaired at t = 5 and t = 6 firstly, TES1 could be discon‐
nected after t = 5. Finally, as soon as line 19-20 is repaired, 
all TPS fleets could be disconnected, and network loads 
could be fully restored.
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Fig. 5.　Load restoration of deterministic benchmark case in random scenar‐
ios.

TABLE III
VALUES OF OD DEMAND FOR 10 REPRESENTATIVE SCENARIOS

OD pairs

π4 (T1-T12)

π3 (T1-T11)

π1 (T1-T6)

π2 (T1-T10)

Probability

Expected value

70

60

50

70

Value of OD demand

1

41.680

60.360

69.150

53.340

0.072

2

41.680

72.260

38.470

96.110

0.064

3

70.310

72.260

38.470

80.050

0.096

4

97.920

72.260

38.470

53.340

0.094

5

55.660

49.280

38.470

66.000

0.123

6

55.660

60.360

69.150

80.050

0.093

7

55.660

72.260

38.470

53.340

0.107

8

84.150

49.280

38.470

53.340

0.114

9

84.150

49.280

38.470

96.110

0.110

10

84.150

60.360

69.150

53.340

0.126

TABLE IV
DISPATCHING SOLUTION OF RCS IN TWO COMPARISON CASES

Case

Benchmark

Stochastic

Fleet

RC1

RC2

RC1

RC2

Time step

0

Depot

Depot

Depot

Depot

1

Travel

Travel

Travel

Travel

2

Line 2-3

Line 19-20

Line 2-3

Travel

3

Line 2-3

Line 19-20

Line 2-3

Line 32-33

4

Return to depot

Travel

Travel

Line 32-33

5

Return to depot

Line 32-33

Lines 9-15

Travel

6

Return to depot

Return to depot

Return to depot

Line 19-20

7

Return to depot

Return to depot

Return to depot

Return to depot

8

Return to depot

Return to depot

Return to depot

Return to depot
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Unlike the deterministic case, Fig. 7 shows that by solv‐
ing the two-stage stochastic model, loads in all scenarios 
could be fully restored in the designed planning period. Ta‐
ble V shows the statistical results of two comparison cases. 
Through modeling with the traffic uncertainty, the mean val‐
ue of the objective has been improved and the variance of 
objective values in stochastic case is smaller than that in the 
benchmark case. Therefore, it means that the proposed joint 
stochastic service restoration method could generate a more 
robust recovery plan and could better deal with the uncertain 
traffic condition for DN load restoration.

2) Performance of Solution
Firstly, the proposed joint stochastic service restoration 

method on the aforementioned test case is utilized to demon‐
strate the performance of the proposed methods. The perfor‐
mance comparison is shown in Table VI.

In Table VI, the %gap is the computational gap obtained 
from directly solving the EF using Gurobi, and the last col‐
umn is the relative gap σ we set in PH and A-PH algo‐
rithms. We can observe that the A-PH algorithm converges 
in 15.3 min, the solution of which is the highest among the 
three algorithms, and the relative gap is below the given 
threshold ϵ = 0.01. The %gap shows that solving EF cannot 
gain an optimal solution in 2 hours. The high complexity of 
EF also results in the lowest objective value in the designed 
timeframe. According to the σ value, the PH also does not 
achieve an optimal solution with a constant ρ. In test cases, 
the same initial penalty factor value is applied in both PH 
and A-PH algorithms. If the penalty factor is fixed during 
the solving process, PH may not be able to converge to a 
smaller gap when compared with A-PH algorithm in reason‐
able timeframes.

Moreover, the advantage of using PH over EF is also 
shown from the results. Though both solutions are not opti‐
mal, PH gains a higher objective value than EF.

Therefore, the computational burden could be significantly 
reduced by creating the decomposed stochastic program us‐
ing the A-PH algorithm while a reasonable accuracy is main‐
tained. Thus, more representative scenarios could be used, 
and solutions with more robustness will be obtained.

To make the proposed joint stochastic service restoration 
method more realistic and applicable against the unexpected 
contingency, the performance analysis regarding the damage 
partitioning with multiple depots is conducted, as shown in 
Table VII.

Case 1 is described in Section V-A with only one depot 
which contains two RCs. Case 2 is the one with two depots 
(each with one RC) and without partitioning of damages. 
Case 3 has two depots (each with one RC), and the damages 
are divided into two regions through the method in Section 
IV. As shown in Table VII, by comparing the performance 
between Case 1 and Case 2, the total served loads increase, 
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Fig. 6.　Scheduling of TES1 in two comparison cases. (a) Benchmark case.
(b) Selected scenario in stochastic case.

TABLE VI
PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS

Algorithm

EF

PH

A-PH

Computation 
time (min)

120

120

15.3

Objective value 
(MWh)

5390.1

5472.6

5560.9

Whether reaches optimality

No (%gap = 3.2% > 0.01%)

No (σ= 2.3 > 0.01)

Yes (σ= 1.6´10-14 < 0.01)

Time step

L
o
ad

 r
es

to
ra

ti
o
n
 (

%
)

0 1 2 3 4 5 6 7 8

20

40

60

80

100

Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6
Scenario 7
Scenario 8
Scenario 9
Scenario 10
Full load

Fig. 7.　Load restoration for 10 representative scenarios by stochastic case.

TABLE V
STATISTICAL RESULTS OF TWO COMPARISON CASES

Case

Benchmark

Stochastic

Optimal value (MWh)

5770.9

5560.9

Mean value (MWh)

5556.7

5578.2

Variance (MWh)

518540.6

494590.3

TABLE VII
PERFORMANCE ANALYSIS REGARDING DAMAGE PARTITIONING WITH 

MULTIPLE DEPOTS

Case

Case 1

Case 2

Case 3

Objective value (MWh)

5560.9

7062.3

7062.3

Computation time (s)

918.0

402.0

117.5
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and the computation time is reduced when the number of de‐
pots increases from 1 to 2.

When the total served loads are basically the same, it can 
be observed from the comparison between Case 2 and Case 
3 that by dividing the damaged network into smaller clusters/
regions, the computation time of Case 3 is greatly reduced 
to 117.5 s.

Thus, it can be concluded that through the partitioning of 
damages with multiple depots, the computational complexity 
can be greatly reduced, and a fast response can be realized 
after the contingency.

VI. CONCLUSION

This paper proposes a joint stochastic service restoration 
method to co-optimize the DN repair and restoration. The 
dispatching of TPSs and RCs and dynamic DN restoration 
strategies are coordinated together with traffic uncertainty. 
The mathematical model of the proposed method is formulat‐
ed as a two-stage stochastic program. In the first stage, the 
optimal routings of TPSs and RCs are decided. The second 
stage derives the scheduling sequences of the discharging of 
TPSs and the corresponding DN reconfiguration. The pro‐
posed method is finally linearized and transformed into an 
MILP. An improved decomposition algorithm, A-PH algo‐
rithm, is applied to solve the proposed stochastic MILP. The 
numerical results demonstrate the effectiveness and robust‐
ness of the joint stochastic service restoration method com‐
pared with the deterministic case. The results also show that 
the improved decomposition method could significantly re‐
duce the computational complexity while maintaining the 
necessary accuracy. Moreover, to ensure a fast response re‐
garding post-disaster recovery, the advantages of employing 
the depot-based partitioning technique have also been veri‐
fied.
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