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Optimal SOC Headroom of Pump Storage 
Hydropower for Maximizing Joint Revenue 

from Day-ahead and Real-time Markets Under 
Regional Transmission Organization Dispatch
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Abstract——In response to the increasing penetration of volatile 
and uncertain renewable energy, the regional transmission orga‐
nizations (RTOs) have been recently focusing on enhancing the 
models of pump storage hydropower (PSH) plants, which are 
one of the key flexibility assets in the day-ahead (DA) and real-
time (RT) markets, to further boost their flexibility provision 
potentials. Inspired by the recent research works that explored 
the potential benefits of excluding PSHs’ cost-related terms 
from the objective functions of the DA market clearing model, 
this paper completes a rolling RT market scheme that is com‐
patible with the DA market. Then, with the vision that PSHs 
could be permitted to submit state-of-charge (SOC) headrooms 
in the DA market and to release them in the RT market, this 
paper uncovers that PSHs could increase the total revenues 
from the two markets by optimizing their SOC headrooms, as‐
sisted by the proposed tri-level optimal SOC headroom model. 
Specifically, in the proposed tri-level model, the middle and low‐
er levels respectively mimic the DA and RT scheduling process‐
es of PSHs, and the upper level determines the optimal head‐
rooms to be submitted to the RTO for maximizing the total rev‐
enue from the two markets. Numerical case studies quantify the 
profitability of the optimal SOC headroom submissions as well 
as the associated financial risks.

Index Terms——Pump storage hydropower, energy market, 
state-of-charge (SOC), headroom, market revenue, tri-level 
problem.
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in scenario s at RT scheduling level of the pro‐
posed tri-level model

I. INTRODUCTION

REGIONAL transmission organizations (RTOs) in the 
U.S. have witnessed the rapid growth of renewable en‐

ergy in recent years. Among heterogeneous renewable ener‐
gy technologies, solar energy and wind energy present the 
most prominent propositions and manifest a rather faster 
growth trend. For instance, about half of the demand in Cali‐
fornia Independent System Operator’s (CAISO’s) control ar‐
ea is supplied by solar energy during the daytime. As anoth‐
er example, in Midcontinent Independent System Operator 
(MISO), the total installed capacity of wind energy has ex‐
ceeded 26 GW with an average hourly wind energy output 
of 8 GWh, accounting for 12% of the average hourly elec‐
tric energy output from all resources in 2020 [1]. However, 
solar energy and wind energy present noticeable variability 
and uncertainty, which cause critical challenges to system re‐
liability and the great need for system flexibility.

To facilitate deeper integration of renewable energy, it be‐
comes necessary to incent existing units, e.g., combined-cy‐
cle gas turbines (CCGTs) and pump storage hydropower 
(PSH) plants, with fast-response and quick-ramping abilities 

for providing system flexibility. Enhanced system scheduling 
platforms and asset dispatching models could help augment 
the effective utilization of these existing flexibility resources 
in the system by exploring their full flexibility potential. In‐
deed, CCGTs and PSHs are among the recent focuses [2]-[4] 
because: ① they are ideal system flexibility providers; ② 
their dispatching models are more complicated than ordinary 
thermal units; and ③ their dispatching models are oversim‐
plified in the current RTO market clearing model, which oth‐
erwise could dramatically enhance the effective utilization of 
their full flexibility potentials.

This paper focuses on PSH plant modeling in the current 
RTO market clearing practice. For instance, in the MISO 
market, a PSH can exclusively bid as an ordinary generation 
source or a price-sensitive load in each time interval of the 
day-ahead (DA) market, requiring PSHs to pre-determine 
their pumping and generating plans. Then, MISO optimizes 
the generating mode using the maximum daily energy con‐
straint. The development of the next-generation market clear‐
ing model is the state-of-charge (SOC) based formulation 
[5], [6], which tracks dynamic SOC levels via SOC evolu‐
tion, SOC boundary, and dispatchable range constraints. The 
SOC-based formulation allows the RTO to co-optimize 
pumping and generating modes of PSHs with other genera‐
tion and load resources to achieve the highest social welfare. 
In the academic field, this formulation has become the most 
fundamental and typical dispatching model [7], [8], and 
many related delicate variants have been studied [9] - [15]. 
References [9] and [10] integrate the SOC-based PSH formu‐
lation into unit commitment problems under a robust frame‐
work and a stochastic framework. References [11] and [12] 
determine the power generation of a hydro unit while consid‐
ering the joint effects of water head, water tail, and water 
discharge. References [14] and [15] put their focus on model‐
ing the reserve provision of PSHs. However, from the per‐
spective of RTO, the balance between model accuracy, com‐
putational efficiency, and data availability is always a linger‐
ing challenge. Therefore, these SOC-based models are un‐
likely to be implemented in the near future by RTOs, mainly 
due to the concern about computational performance. It is 
worth mentioning that [6] interestingly extends the PSH for‐
mulation into a mode transition based PSH operation model, 
analogous to the configuration based CCGT model, and tests 
this model with DA market cases of MISO.

Notably, different from traditional generators, SOC con‐
straints of energy-limited PSHs induce new challenges in ex‐
actly following energy and reserve instructions of RTO over 
time. Specifically, SOC limits imply restricted stored energy 
and spare storage space, which cannot freely support pro‐
longed energy and reserve deployment. Because of this ener‐
gy-limited characteristic, the SOC headroom model of PSHs 
in the RTO DA market is explored in [16] and [17], intend‐
ing to withhold sufficient stored energy and storage for en‐
suring that reserves of PSHs cleared in the DA market are 
deliverable in the real-time (RT) markets. On the one hand, 
SOC headrooms could avoid exhausting PSH capability in 
the DA stage and be conducive to system security in RT op‐
erations. References [16] and [17] discuss the importance of 
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enforcing SOC headrooms to withhold the capability from 
the perspective of securely delivering the DA-scheduled re‐
serve in the RT markets. On the other hand, releasing with‐
held energy and capacity in the RT markets could possibly 
bring higher total revenues to PSHs from the two markets 
jointly. This could be achieved by leveraging the locational 
marginal price (LMP) differences between the two markets 
to release the SOC headroom of PSHs in RT on request. 
However, most of the existing research works mainly focus 
on the system security but rarely analyze the proper head‐
rooms from the angle of PSH profit.

Focusing on the energy markets of RTOs in the U.S., [6] 
proposes to have PSHs fully optimized by RTOs, by exclud‐
ing the cost of PSHs from the objective function of the DA 
market of RTOs. This is motivated by the observation that 
the flexibility of PSHs has not been fully explored. Indeed, 
inappropriate bids of PSHs frequently make them miss the 
opportunity of being cleared and arbitraging in the RT mar‐
ket. Nevertheless, this idea may not be directly extendable to 
the RT market because its rolling scheme has no or limited 
look-ahead time window. This motivates [18] to initiate the 
effort of realizing this idea in the RT market so that the 
RTOs could achieve the fully optimized utilization of PSHs. 
In this paper, inspired by [18], we complete the design of a 
rolling RT market scheme that realizes the idea and is fully 
compatible with the DA market scheme. Under this market 
scheme, we envision that the RTOs in the U.S. with similar 
market structures and policies could allow PSHs to submit 
the lower and upper SOC headrooms in the DA market on a 
daily basis and release them in the RT market. We propose a 
tri-level problem from the perspective of PSH owners to as‐
sist them in optimizing the SOC headrooms submitted to the 
DA markets of RTOs, for achieving the highest total reve‐
nues from the two markets.

The contributions of this paper are twofold:
1) Following the innovative DA market scheme [6] of co-

optimizing PSHs with other resources by the RTOs while ex‐
cluding cost-related terms of PSHs from the objective func‐
tion, we design a corresponding rolling RT market scheme 
that is compatible with the DA market scheme.

2) Envisioning that the RTOs could allow PSHs to submit 
two SOC headrooms, a tri-level optimal SOC headroom 
model is proposed to assist PSHs in optimally determining 
their SOC headrooms in achieving the highest joint revenue 
in DA and RT markets.

The rest of the paper is organized as follows. The new 
role of PSHs in the RTO markets is introduced in Section II. 
Section III presents the optimizing headroom submissions 
for PSHs. Numerical case studies are conducted in Section 
IV, and the conclusions are drawn in Section V. Please note 
that the views expressed herein do not necessarily represent 
those of the MISO.

II. NEW ROLE OF PSHS IN RTO MARKETS

According to the technologies of installed generators, 
PSHs can be classified into single-speed PSHs and adjust‐
able-speed PSHs. Both types can generate at variable power 
levels, but the former pumps at a fixed power level, while 

the latter can adjust the pumping power level within a range. 
Adjustable-speed PSHs are the focus of this paper. The RTO 
oversees the DA and RT markets. Referring to the DA bids, 
it clears the DA market to determine the unit commitment 
and base power dispatches of the next operation day. During 
the operation day, the RTO, referring to the RT bids as well 
as the unit commitment results from the DA market, clears 
the RT market in a rolling manner to balance power genera‐
tion and RT demand.

A. DA Market Model of RTO to Optimize PSH Operations

A PSH optimized by the RTO in the DA market can be 
modeled as in constraints (1). Power dispatchable ranges un‐
der generating and pumping modes are formulated as in (1a) 
and (1b), respectively; constraint (1c) ensures the exclusive‐
ness of the pumping and generating modes; SOC evolution 
is represented as in (1d); SOC boundaries are enforced by 
(1e); constraints (1f) and (1g) specify the initial and terminal 
SOC levels at the beginning and end of the day, respectively.

GLBuGDA
t £ g DA

t £GUBuGDA
t     "tÎ T (1a)

PLBuPDA
t £ pDA

t £PUBuPDA
t     "tÎ T (1b)

uGDA
t + uPDA

t £ 1    "tÎ T (1c)

socDA
t ·CAP = socDA

t - 1·CAP + ηP pDA
t -

1
ηG

g DA
t     "tÎ T (1d)

SOCLB £ socDA
t £ SOCUB    "tÎ T (1e)

socDA
0 = SOC IN (1f)

socDA
T = SOCTM (1g)

Based on the above PSH model (1), [6] innovatively pro‐
poses to remove the PSH related terms, including power gen‐
erating and pumping bids, startup costs, and no-load costs, 
from the objective function of the DA market clearing mod‐
el, allowing PSHs to be fully optimized by RTOs according 
to the system needs. Numerical studies with production cas‐
es of MISO [6] have shown three encouraging observations: 
① although optimized by the RTO instead of designing com‐
prehensive bidding strategies, the DA market revenues of 
PSHs are likely to be higher than the original setting, i. e., 
when including the PSH bids in the objective; ② PSHs can 
be flexibly dispatched according to the system needs instead 
of following their pre-specified generating and pumping 
schedules, i.e., generating and pumping schedules optimized 
by RTOs align with LMP signals; and ③ this enhanced flexi‐
bility of PSHs helps reduce operating costs of the entire sys‐
tem. It is worthwhile to mention that the SOC terminal con‐
straint (1g) is introduced to avoid the exhaustive generation 
of PSHs in the absence of bids, otherwise, the stored energy 
becomes free and tends to be fully used.

B. RT Market Model of PSHs Compatible with DA Market

With the above change, PSHs will no longer need to sub‐
mit power generating and pumping bids to RTO in the DA 
market. To keep the consistency, PSHs shall also be re‐
moved from the objective function of the RT market clear‐
ing model. Reference [6] does not discuss the corresponding 
RT market implementation, which in fact could give rise to 
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a significant challenge. Specifically, different from the DA 
market in which (1g) could be reasonably enforced to avoid 
the exhaustive generation of PSHs throughout the entire day, 
the current RT market implementations have no or limited 
look-ahead time horizon. This disables directly implementing 
a counterpart of (1g) in the RT market model when PSHs 
are removed from the objective function, resulting in poten‐
tial shortsightedness that PSHs uneconomically exhaust their 
stored energy quickly while neglecting their potential values 
in future RT markets.

An intuitive remedy is to enforce the terminal SOCs of 
PSHs at the end of the look-ahead time horizon equal to 
their DA scheduled values of the corresponding hours. Al‐
though simple and easy to implement, its disadvantage is 
that the flexibility of PSHs will be severely compromised 
when the RT market operation condition significantly differs 
from the DA market, which indeed could make the DA SOC 
schedules far from optimal for both PSHs and the system in 
RT.

Another potential option is to extend the look-ahead time 
horizon to the end of the day so that the DA terminal SOC 
constraint (1g) can be restored. However, this option could 
raise data availability and computational issues. The extra 
computational burden is inevitable as the problem scale in‐
creases, raising concerns for RT markets which have strict 
solution time limits. Moreover, the RT market bids of other 
resources could be updated with market rolling forward, and 
only cover a short period of future time instead of the entire 
day. Thus, RT market bids of other resources in extended 
time intervals may be unavailable in the current RT market 
run.

Reference [18] proposes to merely model PSHs in extend‐
ed time intervals and with hourly time granularity, so that 
terminal SOC constraints can be enforced while avoiding the 
above two issues. In the extended time intervals, only PSHs 
related constraints are added, including SOC evolution equa‐
tions, SOC boundaries, and power dispatchable ranges. How‐
ever, without the drive of the system needs, in extended time 
intervals, PSHs will fall into aimlessness. To this end, [18] 
further introduces the term (2) into the objective function of 
each RT market run to evaluate the monetary value of gener‐
ating and pumping in the extended time intervals via the 
forecasted RT LMPs.∑

vÎVET

LMP RTFR
v ×(g RT

v - pRT
v ) (2)

C. Optimal Headroom of PSHs Submitted to RTO

In this paper, we consider that besides upper and lower 
SOC bounds which represent physical limits and remain un‐
changed for a relatively long period of time, e.g., weeks or 
months, RTOs allow PSHs to submit SOC headrooms on a 
daily basis but merely in the DA market. The SOC head‐
rooms are applied on (1e) as in (3). With this shrunken re‐
gion for SOC changes, the energy awarded to a PSH in the 
DA market is likely to be either reduced or gathered in only 
a few hours.

SOCLB ×CAP +H L £ socDA
t £ SOCUB ×CAP -H U (3)

The total revenue of a PSH consists of the DA and RT 

market parts as in (4), where the first term is the DA reve‐
nue and the second term is the RT revenue. The RT revenue 
of a PSH equals the RT dispatch deviations to its DA 
awards multiplying RT LMPs. For a PSH under the genera‐
tion mode, the settlement of 5-min RT markets will ask it to 
buy back less-generated energy or repay it for extra genera‐
tion at the RT LMP referring to its DA awards. Similarly, un‐
der the pumping mode, the PSH will pay for over-pumped 
energy or be paid for less-pumped energy referring to its DA 
awards. Since RT markets are in a rolling scheme, only dis‐
patches of the first interval of each run will be implemented 
and its corresponding LMP will settle the RT market. Thus, 
vÎVBD has a granularity of 5 min. As DA and RT markets 
have different time granularities, we use τ(v) to map sub-
hour v to the corresponding hour in the DA market.∑

tÎ T
LMP DA

t ×(g DA
t - pDA

t ) +

∑
vÎV  BD

LMP RT
v ×[(g RT

v - pRT
v )- (g DA

τ(v) - pDA
τ(v) )]Dt (4)

When a PSH foresees that the RT LMP will be higher 
than the DA LMP, it can leverage H L to reserve a certain 
amount of energy to be released in RT. This allows g RT

v  to 
be larger than g DA

τ(v) in (4) when LMP RT
v  is higher than 

LMP DA
t , which could bring extra revenues to the PSH. Simi‐

larly, when a lower RT LMP is expected, the PSH can re‐
serve its storage via H U for activating pumping in real time. 
This enlarges the difference between pDA

τ(v) and pRT
v  in (4) and 

brings extra stored energy. Ideally, if the above two situa‐
tions happen at peak and valley load hours, the PSH could 
potentially profit more by arbitraging with the extra energy 
in real time. It is noteworthy that improper SOC headrooms 
may reverse the above revenue analysis and make PSHs po‐
tentially lose revenues compared with the case without SOC 
headrooms.

III. OPTIMIZING HEADROOM SUBMISSIONS FOR PSHS

A. Optimal SOC Headroom Model of PSHs

The optimal SOC headroom model of a PSH is formulat‐
ed as a stochastic tri-level problem (5)-(9), in which the up‐
per-level problem determines the optimal SOC headrooms 
that would achieve the maximum expected revenue from the 
DA and RT markets jointly. The objective function (5) is a 
stochastic reformulation of (4) over a set of market price sce‐
narios, which is constrained by the middle-level (8) and the 
lower-level (9) optimization problems that respectively mim‐
ic the PSH schedule optimized by the RTO in the DA and 
RT markets. Hereafter, they are referred to as the DA and 
RT scheduling levels of RTO. This stochastic tri-level model 
will be built and solved by the PSH to optimize its SOC 
headrooms submitted to the DA market of RTO. It is noted 
that (5) calculates the revenue of PSHs, instead of their net 
profits which can be computed by subtracting the startup 
costs of PSHs. Following the objective of the DA market of 
RTO [6], startup costs are not included in the tri-level prob‐
lem (5)-(9) because they are usually negligibly small [6]. In 
addition, according to the current market practice, if the reve‐
nue of a PSH cannot cover its total cost, including the start‐
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up cost, it will be compensated with extra uplift payments.

max
hLhU
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As market participants, PSHs do not have direct access to 
system network data and bid information of other assets be‐
fore market clearing, although some RTOs will reveal bid in‐
formation after a period of confidentiality. Thus, it is not 
practically feasible for the PSH to reproduce the energy mar‐
ket model of RTO. Referring [19], it can be derived from 
Karush-Kuhn-Tucker (KKT) conditions that optimal dispatch‐
es from the profit maximization problem of a unit with giv‐
en LMPs after the market clearing shall be consistent with 
the optimal schedules determined by RTOs via a convex 
market clearing model. To this end, we design (8) and (9) 

that maximize the PSH revenue referring to the correspond‐
ing LMPs to approximately mimic the PSH schedule of 
RTO in the DA and RT markets [19]. This is illustrated in 
Fig. 1. It is worthwhile to emphasize that (8) and (9) indeed 
mimic how the PSH will be scheduled by the RTO accord‐
ing to system needs (which shall be consistent with LMP 
profiles), rather than the model’s self-responding against 
LMPs. Therefore, (8) and (9) adopt the typical dispatching 
formulation that is consistent with the market clearing model 
(1) of RTO. We also assume that the impact of the PSH 
headrooms on LMPs is limited. It is usually valid when the 
capacity of PSHs is relatively insignificant compared with 
the total generation capacity of the system. DA LMPs before 
and after including PSHs headrooms in the DA market clear‐
ing model are quantitively compared in the case study to ver‐
ify that this assumption is held in our simulation setup.

The remaining issue is that actual LMPs remain unknown 
before the DA and RT markets are settled. To this end, we 
adopt simulated LMP scenarios, rendering a stochastic tri-
level formulation of the optimal SOC headroom model. In 
this stochastic tri-level model, the upper-level variables hL 
and hU are scenario-independent. With each LMP scenario s 
that contains a DA LMP scenario and a corresponding RT 
LMP scenario, a copy of the DA and RT scheduling levels is 
built to mimic the corresponding scenario-dependent unit 
commitment and dispatch schedules optimized by the RTO. 
Solutions to those dispatch variables, i.e., g DA

ts , pDA
ts , g RT

vs , and 
pRT

vs, will impact the objective function (5) with weight ρs, i.e., 
the probability of scenario s, which satisfies ∑

sÎS
ρs = 1. Refer‐

ence [20] proposes some practical LMP forecasting and sce‐
nario generation methods that properly fit the LMP simula‐
tion need of the proposed model. Thus, LMP forecasting and 
scenario generation methods will not be elaborated as they 
are not the focus of this paper. Alternatively, the impact of 
scenarios on the performance of the proposed tri-level model 
will be quantitatively assessed via case studies in Section IV.

In the upper level, the boundary constraints (6) and (7) re‐
strict the ranges of SOC headrooms. The DA and RT sched‐
uling levels of RTO consist of multiple parallel sub-prob‐
lems, each of which represents a scenario of LMPs as indi‐
cated by subscript s of the variables. At the DA scheduling 
level of RTO (8), constraints (8b)-(8e) and (8g)-(8h) are re‐
spectively the stochastic reformulation of constraints (1a) -

Approximately mimic

DA scheduling of PSH

profit maximization

against DA LMPs

RT scheduling of PSH

profit maximization

against RT LMPs

DA scheduling

level of RTO

RT scheduling

level of RTO

Optimal SOC headroom model of PSH

DA market RT market

RTO markets

SOC

headroom

Fig. 1.　 Relationship between DA and RT scheduling level of PSH and 
RTO market.
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(1d) and (1f) - (1g), and constraint (8f) with the upper-level 
variables hL and hU is the stochastic reformulation of (3). At 
the RT scheduling level of RTO (9), constraints (9b) - (9d) 
and (9h)-(9i) have the same meaning as constraints (1a)-(1c) 
and (1f) - (1g), respectively. Constraint (9e) connects the DA 
and RT scheduling levels of RTO, describing that the RTO 
would keep the RT scheduling of PSH to be consistent with 
the DA market, which means they can be re-committed but 
not de-committed. This setting refers to the current practice 
of MISO that most PSHs do not participate in RT commit‐
ment, namely, they comply with DA commitment as much 
as possible. Constraint (9f) represents the SOC evolution in 
real time, while different from the DA scheduling level mod‐
el, the timespan of each time interval is explicitly written 
out since it is less than an hour, i.e., Dt < 1. In addition, dif‐
ferent from the SOC boundary limits at the DA scheduling 
level, the headrooms hL and hU are removed from constraint 
(9g), meaning the stored energy and storage withheld in the 
DA market can be released in the RT scheduling.

Besides the hourly DA market and the 5-min RT market, 
an RT commitment that runs in between, e.g., 15-min inter‐
vals, can recommit offline fast-startup units such as PSHs. 
Indeed, the RT scheduling level (9) combines the 5-min RT 
market and the RT commitment. To this end, we could set 
Dt = 0.25, i.e., 15 min, and card(V  )= 96, namely V = 96. Cor‐
respondingly, LMP RT

vs  of each 15-min v can be set as the av‐
erage of three underneath 5-min LMPs.

B. Solution Methodology

It is direct to observe that, in the proposed tri-level prob‐
lem (5) - (9), the upper level only contains two continuous 
variables hL and hU together with their boundary constraints, 
while the other two levels are mixed-integer linear program‐
ming (MILP) problems of moderate size that can be effi‐
ciently solved via commercial solvers. This neat structure of 
the upper-level problem indeed makes the searching of hL 
and hU rather straightforward. With this, instead of seeking 
complicated mathematical methods to equivalently reformu‐
late the tri-level problem (5)-(9) into a single-level optimiza‐
tion model for the solution, it is possible to use a brute-force 
search for discovering a near-optimal solution. Specifically, 
we could use multiple points to discretize the entire SOC 
headroom range, calculate objective values (5) for individual 
discretized points, and select the one with the best value as 
the final solution. However, a higher discretization granulari‐
ty undoubtedly results in a heavier computational burden. In‐
deed, whenever the discretization granularity is doubled, the 
points that need to be evaluated will be quadrupled. A practi‐
cal method could be to first locate a small range with coarse 
granularity, and then refine the solution within the identified 
range using a finer granularity.

Alternatively, we use the differential evolution (DE) algo‐
rithm [21], which is an evolutionary method that can effec‐
tively solve this tri-level model through an iterative process. 
Specifically, in each iteration, DE is employed to update hL 
and hU according to the results of DA and RT scheduling lev‐
els of RTO in the previous iteration, and the DA and RT 
scheduling levels of RTO (8) and (9) are solved sequentially 

as MILP problems based on the updated hL and hU values.
Similar to other evolutionary methods, first, a population 

of N points are randomly generated to initialize hLn
0  and hUn

0  
for n = 12N. In each DE iteration k (k = 12K), the 
DE algorithm applies strategies such as rescaling and cross‐
ing, and adds additional randomness on each point n (n =
12N) to generate new tentative points. Then, with the 
tentative points, the DA scheduling level of RTO is solved 
and the solutions to uGDA

ts  and uPDA
ts  are passed to the RT 

scheduling level of RTO that will be solved next. The results 
from the two levels are used to assess the objective function 
(5) of individual tentative points. For each point n, if its ob‐
jective value is smaller than that of the corresponding tenta‐
tive point, point n will be updated with its corresponding ten‐
tative point; otherwise, point n will keep unchanged. After 
all points have been evaluated, the DE algorithm enters the 
next iteration. This iterative process terminates after the num‐
ber of interactions reaches the pre-specified threshold K, and 
the point with the highest objective value is the final solu‐
tion. It is worth mentioning that during the iterative process, 
for an infeasible point, its corresponding objective value is 
set as negative infinity, and its values hL and hU violating (6) 
and/or (7) are fixed to the closest boundary. The flowchart 
of the DE-based solution algorithm is shown in Fig. 2. The 
further explanation and the pseudocode are provided in the 
Appendix A.

In fact, with a proper K, all generated points are expected 
to converge. In other words, all the points will finally pro‐
duce identical or close-enough solutions. Although non-con‐
vergence may not necessarily compromise the discovery of a 
final solution, convergence usually implies final solutions of 
higher quality. However, an excessively large K could intro‐
duce unnecessary computation, because, after a certain num‐
ber of iterations, the best objective will only improve margin‐
ally. Thus, a comprehensive K setting combined with an ap‐
propriate N value could usually bring good-enough perfor‐
mance [21].

≤ K?k

≤ N?n

Generate tentative values to ℎL and ℎU

Solve the DA scheduling level of RTO

Solve the RT scheduling level of  RTO

Evaluate objective

Update point n

Initialization

Y

Y

N

Terminate
N

Fig. 2.　Flowchart of DE-based solution algorithm.
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IV. CASE STUDIES

A. Market Platform Implementation and Test System Setup

1) Implementation of DA and RT Markets
The effectiveness of the SOC headrooms calculated by the 

proposed optimal SOC headroom model in Section III will 
be evaluated via the total revenue of PSHs. We implement a 
platform with DA and RT market clearing functionalities to 
calculate the total revenue of PSHs from the two markets. 
The total revenue throughout a day is calculated as in (4).

1) DA market: the DA market has a time horizon of 24 
hours, i.e., card(T   )= 24. The PSH model in the DA market 
includes constraints (1a)-(1d), (1f)-(1g), and (3). In (3), SOC 
headrooms H L and H U come from the proposed optimal 
SOC headroom model (5)-(9).

2) RT market: referring to the RT market timeline of New 
York Independent System Operator (NYISO) [22], we imple‐
ment a modified RT market scheme as shown in Fig. 3. 
Each RT market run covers a 5-min binding time interval, a 
look-ahead time interval of varying time lengths, and an ex‐
tended time interval.

The binding time interval spans the first 5 min. This inter‐
val calculates LMPs and energy awards and rolls forward 5 
min at each RT market run. Energy awards are released to 
units, including PSHs, for implementation.

The look-ahead time interval spans till the end of the next 
hour. It includes one advisory time interval of a varying 
time length that is right after the binding time interval, fol‐
lowed by additional 15-min intervals to cover the end of the 
next hour. The timespan of the advisory time interval is de‐
termined by the remaining time to the next quarter-hour, 
namely the 0th, 15th, 30th, and 45th min of an hour. Thus, in 
each RT market run, depending on its starting time, the time 
length of the advisory time interval changes cyclically 
among 5, 10, and 15 min, and the number of additional 15-
min intervals varies from 3 to 7.

The extended time intervals with a one-hour step span till 
the end of the day, and they are used to extend the look-
ahead time intreval and are especially valuable for PSHs to 
facilitate their SOC scheduling throughout the day.

In this scheme, the objective functions of the DA and RT 
markets of RTO are to maximize social welfare [6], [18] 
while excluding PSH bids. Unit commitments of thermal 
units are fixed from the DA to RT. PSHs can be re-commit‐
ted but not decommitted in RT, and their binding recommit‐
ment will be determined every quarter by RT market run‐

ning on the 0th, 15th, 30th, and 45th min of an hour that con‐
tains a 10-min advisory time interval. This implementation 
indeed incorporates the 15-min RT commitment into the 5-
min RT scheduling [23].
2) Test System Setup

We use a modified IEEE 118-bus system with 2 PSHs as 
the test system. The two PSHs share the same physical pa‐
rameters, but are on different buses, i. e., buses 46 and 60. 
The capacities of the two PSHs are 100 MWh. For both 
PSHs, we set SOCLB = 20% (20 MWh), SOCUB = 100% (100 
MWh), and SOCTM = SOC IN = 50% (50 MWh). Lower and 
upper power bounds of pumping and generating modes are 
set to be 5 MW and 20 MW, respectively. Pumping and gen‐
erating efficiencies ηP and ηG are set to be 0.9. H LUB and 
H UUB are not explicitly set. However, to accommodate 
SOCTM = 50% (50 MWh), hL and hU are implicitly restricted 
within [0, 30]MWh and [0, 50]MWh, respectively. The opti‐
mal SOC headroom model and the market platform are im‐
plemented in MATLAB. The middle and lower levels of the 
optimal SOC headroom model and the two markets are 
MILP and linear programming problems, which are solved 
by Gurobi 9.0.1. We adopt the default settings of Gurobi and 
the mixed interger programming (MIP) gap is set to be 0%. 
All numerical simulations are executed on a PC with an In‐
tel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 16 GB RAM. 

00:00

Look-ahead to the next hour end

The second interval spans to quarter hour

Extended time interval

10 15 60

00:05 00:15 00:30 00:45 01:00

60

03:00 24:00
…5 15 15 15

01:15

15

02:00

00:05 00:10 00:15 00:30 00:45 01:00 03:00 24:0001:15 02:00

00:10 00:15 00:30 00:45 01:00 03:00 24:0001:15 02:00

00:15 00:20 00:30 00:45 01:00 03:00 24:0001:15 02:00

00:20 00:25 00:30 00:45 01:00 03:00 24:0001:15 02:00

00:25 00:30 00:45 01:00 03:00 24:00

24:00

01:15 02:00

…

15 60 60…5 15 15 15 15…

15 60 60…15 15 15 15…5 5

10 60 60…5 15 15 15 15
…
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… 5

23:55

Advisory time interval; Additional 15-min interval;Binding time interval; Extended hourly interval

Fig. 3.　RT market timeline implementation.
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The detailed test data and MATLAB code can be found 
in [22].

Two cases are studied: ① the non-headroom case in 
which PSHs do not submit SOC headrooms in the DA mar‐
ket, i.e., the current practice, and the corresponding revenue 
of PSHs is referred to as non-headroom case revenue; and 
② the headroom case in which PSHs submit SOC head‐
rooms derived by the proposed optimal SOC headroom mod‐
el (5)-(9) in the DA market, and the corresponding revenue 
of PSHs is referred to as headroom case revenue. The reve‐
nue of PSHs calculated via the DA and RT markets in Sec‐
tion IV is referred to as the actual revenue, while the objec‐
tive value (5) of the proposed optimal SOC headroom model 
is referred to as the approximated revenue. The solving time 
of the DA market is around 6 s, and that of a single RT mar‐
ket is 9.8 s on average. The solving time of the optimal 
SOC headroom model is about 1600 s.

B. Rationality of SOC Headrooms Under Ideal Setup

Intuitively, the quality of LMP scenarios used in the opti‐
mal SOC headroom model (5) - (9) could noticeably impact 
the financial consequence of its produced SOC headroom 
submissions in the markets. To justify the rationality of sub‐
mitting SOC headrooms in the DA market while avoiding 
mixing the impacts of quality of LMP scenarios, we first 
adopt an ideal setup to illustrate the potential of SOC head‐
rooms in increasing PSH revenues.

Specifically, in the ideal setup, we consider that DA and 
RT market LMPs of the non-headroom case are available, 
which can be directly used in the optimal SOC headroom 
model as the only scenario. These LMPs are obtained by run‐
ning the DA and RT markets of RTO with the two PSHs. 
The idea is that the limited capacities of the two PSHs 
would inconspicuously influence the LMPs. In other words, 
the LMPs yielded by the non-headroom case shall be rather 
close to those in the headroom case. Thus, this ideal setup 
could possibly characterize the best SOC headroom withhold 
decisions, leading to the maximum potential revenues.

Based on the original hourly load levels of the IEEE 118-
bus system, we generate five DA hourly load profiles by res‐
caling peak loads and introducing fluctuations to simulate 
five market days. Using the same strategies and applying in‐
terpolation between hourly load values, we further create the 
corresponding RT load profiles that deviate from the DA 
ones with typical patterns as shown in Table I, which repre‐
sent potential deviations between the DA and RT load fore‐
casts in practice. Correspondingly, LMPs deviate along with 
the load profiles and their trends are also shown in Table I. 
Taking day 2 in Table I as an example, at off-peak hours of 
this day, the load level and LMP in the RT market are lower 
than those in the DA market. During peak hours of this day, 
the load level and LMP in the RT market are higher than 
those in the DA market.

For each of the five market days, the optimal SOC head‐
room model is first solved to determine the optimal SOC 
headrooms. The DA market is then cleared with these de‐
rived SOC headrooms. Finally, the RT markets are cleared 
sequentially, and the total revenue is calculated. The SOC 

headrooms for the five market days are reported in Table II. 
SOC headrooms of the two PSHs are generally close be‐
cause the LMPs at the connection buses of PSHs are close, 
while SOC headrooms among the 5 days are noticeably dif‐
ferent because of different RT load deviation patterns as 
shown in Table I.

Days 2 and 5 represent two extreme cases with the largest 
and smallest differences between peak and off-peak hours. 
On day 2, a higher load level at peak hours induces larger 
LMPs, while a lower load level at off-peak hours causes 
smaller LMPs. These together boost the arbitrage potential 
between the DA and RT markets, leading to large SOC head‐
rooms. In this case, the headrooms of PSH 2 shrink its SOC 
range in the DA market to [45.32%, 50.04%] ([45.32, 50.04] 
MWh). Day 5 describes the opposite situation of day 2. 
When PSHs anticipate that LMPs of off-peak hours in RT 
could be too high to pump and LMPs of peak hours could 
be too low to generate, they will become more active in the 
DA market.

Days 1, 3, and 4 are in between these two extreme cases. 
Because LMPs of day 1 in the two markets are close, PSHs 
lack arbitrage opportunities, resulting in limited SOC head‐
rooms. The RT load deviation patterns against the DA on 
day 3 and day 4 are in opposite directions, causing LMPs to 
change in opposite directions. The former has lower LMPs 
at off-peak and peak hours in real time, while the latter has 
higher ones. Thus, day 3 and day 4 have completely differ‐
ent SOC headrooms, which is a result of the interaction be‐
tween H L and H U. Specifically, on day 3, if a non-zero H U 
is applied, it can help PSHs avoid pumping at relatively 
higher prices in DA, but will also limit the available cycling 
energy throughout the day and reduce the energy generated 

TABLE I
LOAD AND LMP DEVIATION PATTERNS OF RT MARKET TO DA MARKET

Day

1

2

3

4

5

Off-peak hours

Load level

Close RT load

Lower RT load

Lower RT load

Higher RT load

Higher RT load

LMP

Close RT LMP

Lower RT LMP

Lower RT LMP

Higher RT LMP

Higher RT LMP

Peak hours

Load level

Close RT load

Higher RT load

Lower RT load

Higher RT load

Lower RT load

LMP

Close RT LMP

Higher RT LMP

Lower RT LMP

Higher RT LMP

Lower RT LMP

Note: off-peak hours denote hours 1-6 and 19-24, when PSHs are likely to 
pump; and peak hours denote hours 12-18, when PSHs are likely to gener‐
ate.

TABLE II
OPTIMAL SOC HEADROOMS OF TWO PSHS

Day

1

2

3

4

5

PSH 1

H L (MWh)

9.60

28.03

0.00

27.70

0.00

H U (MWh)

2.21

44.47

0.00

27.76

0.00

PSH 2

H L (MWh)

11.17

25.32

0.00

28.40

0.00

H U (MWh)

0.00

49.96

0.00

27.78

0.00
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at the peak hours in the DA market. After removing H U in 
RT, compared with DA, additional energy will be generated 
at the peak hours, which, will be accounted with lower RT 
LMPs. By contrast, although the non-zero H L and H U on 
day 4 will similarly reduce the DA cycling energy, since the 
additional energy generation in RT will be accounted for 
with higher RT LMPs, the SOC headrooms would finally 
boost PSH profit.

Revenues of days 1, 2, and 4 in the non-headroom and 
headroom cases are further compared in Table III. Day 3 
and day 5 are not listed because of their zero SOC head‐
rooms, i. e., their revenues in the non-headroom and head‐
room cases are the same. In all three listed days, both PSHs 
more or less achieve extra revenues. For the non-headroom 
case, in all three days, most revenues come from the DA 
market. Indeed, the revenue from the RT market, calculated 
as the second term of (4), could be negative. By contrast, 
with the headroom case, PSHs start making dramatically 
more revenue in the RT market. It is not surprising that reve‐
nues from the DA market decline to a certain extent because 
(1e) is replaced by (3) in the non-headroom case. In fact, 
part of the reduced revenue is realized in the RT market, and 
potentially with higher gains. An extreme example is day 2, 
in which the PSHs are not awarded any energy in the DA 
market because of their large SOC headrooms, but they re‐
ceive much higher revenues in the RT market. In summary, 
these studies show that proper SOC headrooms yielded by 
the proposed optimal SOC headroom model can achieve 
higher revenues for PSHs.

Finally, Fig. 4 shows the DA LMPs of PSH 1 with and 
without headrooms, which highly overlap with each other 
with negligible deviations. 

The largest deviation is 0.91 $/MWh or 1.67%, occurring 
at hour 19, while the two LMP profiles are identical in 17 
out of 24 hours. This result clearly shows that the assump‐
tion of the limited impacts of PSH headrooms on LMPs is 
valid in this test system.

C. Performance of Proposed Optimal SOC Headroom Model 
Under Practical Setup

In this subsection, the profitability of the SOC headrooms 
is further evaluated under a practical setup. Focusing on day 
2 and day 4, we assess the impacts of LMP scenario quality 
on the SOC headrooms and revenues by adding normally dis‐
tributed random deviations to the DA and RT LMPs of the 
non-headroom case for mimicking LMP forecasting errors. 
Four maximum forecasting error levels are considered, in‐
cluding ±5%, ±10%, ±15%, and ±20%. The value of the 
LMP forecasting error is normally distributed. The normal 
distribution has zero mean, and its standard deviation is set 
as 1/3 of the maximum forecasting error multiplying the ac‐
tual value, i.e., the three-sigma rule of thumb. For each mar‐
ket day and each level of the maximum forecasting error, 30 
scenarios are generated. The SOC headrooms and revenues 
of PSH 1 and PSH 2 on day 2 are shown in Table IV.

On day 2, except for the maximum forecasting error of 
±20%, the final profitability of the two PSHs remains the 
same as the one calculated under the ideal setup in Section 
IV-B. This is mainly caused by the close SOC headroom val‐
ues submitted to the DA market as well as their similar ef‐
fect in inactivating PSHs in the DA market. We take H L =
25.29 MWh and H U = 46.11 MWh of PSH 1 as an example, 
which makes the actual dispatchable SOC range in the DA 
market become 45.29% to 53.89% ([45.29, 53.89]MWh). 
Considering the pumping and generating efficiencies of 0.9 
and power lower bound of 5 MW, the SOC change caused 
by each hourly pumping and generating actions will be at 
least +4.5%/-5.55% (+4.5 MWh/-5.55 MWh). However, 
with the initial SOC of 50% (50 MWh), the SOC range of 
[45.29%, 53.89%] ([45.29, 53.89]MWh) leaves no room for 
pumping or generating action at any hour, making the PSH 
completely inactive in the DA market. Another example is 
H L = 27.77 MWh and H U = 45.01 MWh, which makes the 

30

40

50

60

70

0 4 8 12 16 20 24

Without headrooms

With headrooms

Time (hour)

L
M

P
 (

$
/M

W
h

)

Fig. 4.　DA LMPs of PSH 1 with and without headrooms.

TABLE III
COMPARISON OF NON-HEADROOM AND HEADROOM CASES

Day

1

2

4

PSH

1

2

1

2

1

2

Revenue of non-
headroom case ($)

DA

1332.71

1350.40

1352.85

1413.38

1359.11

1375.81

RT

5.58

-3.45

9.61

8.41

1.19

-3.41

Total

1338.29

1346.95

1362.46

1421.79

1360.31

1372.39

Revenue of headroom 
case ($)

DA

1179.65

1208.17

0.00

0.00

426.18

430.51

RT

164.19

147.79

2244.07

2175.80

1017.28

1007.41

Total

1343.85

1355.97

2244.07

2175.80

1443.47

1437.92

Incre‐
ment

+5.56

+9.02

+881.61

+754.01

+83.16

+65.53

Note: “increment” indicates the difference to the revenue of non-headroom 
case.

TABLE IV
SOC HEADROOMS AND REVENUES OF PSH 1 AND PSH 2 ON DAY 2

The maximum 
forecasting 

error (%)

±5

±10

±15

±20

PSH

1

2

1

2

1

2

1

2

H L

(MWh)

25.29

27.77

25.33

24.52

24.61

27.57

27.29

11.58

H U

(MWh)

46.11

45.01

45.96

47.24

47.80

44.78

45.11

49.90

Revenue of headroom case ($)

DA

0

0

0

0

0

0

0

360.74

RT

2244.07

2175.80

2244.07

2175.80

2244.07

2175.80

2243.86

1362.27

Total

2244.07

2175.80

2244.07

2175.80

2244.07

2175.80

2243.86

1723.01

Incre‐
ment

+881.61

+762.42

+881.61

+762.42

+881.61

+762.42

+881.40

+350.62

Note: “increment” indicates the difference to the revenue of non-headroom 
case.
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corresponding actual dispatchable SOC range in the DA mar‐
ket become [47.77%, 54.99%] ([47.77, 54.99]MWh). This 
range seems to be able to support one hourly pumping ac‐
tion with the minimum pumping level, changing SOC to 
54.5% (54.5 MWh). However, if this action is taken, the 
PSH can no longer satisfy (1g), i.e., bringing SOCTM back to 
50%. When the maximum forecasting error is raised to 
±20%, with the generated scenarios, PSH 2 makes a differ‐
ent decision on the headrooms, leading to a different reve‐
nue.

The SOC headrooms and revenues of the two PSHs on 
day 4 are shown in Table V, showing that the SOC head‐
rooms are sensitive to the maximum forecasting errors. In 
other words, LMP scenarios with different forecasting quali‐
ties could lead to noticeably different headrooms and conse‐
quently varying total revenues. The results of day 4 show 
that the SOC headrooms yielded by a higher LMP forecast‐
ing accuracy could lead to higher revenue. Indeed, for the 
maximum forecasting error of ±20%, PSH 1 even loses reve‐
nue compared with the non-headroom case. It indicates that 
submitting SOC headrooms bears certain financial risks with 
potential revenue loss against the non-headroom case, espe‐
cially when the LMP forecasting qualities are low.

Intuitively, the approximated revenue could deviate from 
the actual revenue, because of the inaccuracy of the LMP 
forecasts and the generated scenarios, and the simplified 
modeling of the actual market operation. Therefore, the giv‐
en optimal headrooms from the optimal SOC headroom mod‐
el may not lead to the best actual revenue. The negative in‐
crement of -16 dollars shown in Table V is one such exam‐
ple that the optimal SOC headrooms could even reduce the 
total revenue. To this end, in the next subsection, the ability 
of the proposed optimal SOC headroom model in approxi‐
mating the actual revenue will be further evaluated.

D. Approximation Ability of Proposed Optimal SOC Head‐
room Model

The ability of the proposed optimal SOC headroom model 
in mimicking the actual markets is further evaluated by com‐
paring the approximated revenue, i.e., the objective function 
(5) and the corresponding actual headroom case revenue, i.e., 

revenue calculated via (4) using actual LMPs from the DA 
and RT market simulations. Obviously, the smaller the differ‐
ence between the two, the better the approximation ability of 
the proposed optimal SOC headroom model.

The approximated revenues and the actual revenues of the 
3 market days, i. e., days 1, 2, and 4, under the ideal setup 
are compared in Table VI. The differences between the ap‐
proximated revenues and the corresponding actual revenues 
are shown in parentheses in percentages. The comparisons 
verify the strong simulation ability of the proposed model. 
In addition, the difference between approximated and actual 
revenues of the DA market is usually smaller than that of 
the RT market, indicating that the simulation of the DA mar‐
ket is usually more accurate than the RT market. This is be‐
cause, in the optimal SOC headroom model, Dt is set to be 
15 min to simulate the RT recommitment of PSHs. Howev‐
er, this is incompatible with the 5-min based RT LMPs. To 
address the incompatibility, the average of three consecutive 
5-min LMPs is taken as the 15-min LMP at the RT schedul‐
ing level. This adjustment inevitably introduces extra errors. 
In addition, different from the single run of the DA market, 
the RT markets are cleared via a rolling manner that could 
further complicate the simulation accuracy and accumulate 
approximation errors.

The approximated revenue erros under the practical setup 
are further compared in Fig. 5. Not surprisingly, approximat‐
ed revenue errors increase with the increase in the maximum 
forecasting error. Indeed, the increase of the approximated 
revenue errors in certain cases, e. g., PSH 2 from ±15% to 
±20%, is rather significant, emphasizing the importance of 
the LMP forecasting accuracy to the proposed optimal SOC 
headroom model. 

TABLE V
SOC HEADROOMS AND REVENUES OF TWO PSHS ON DAY 4

The maximum 
forecasting 

error (%)

±5

±10

±15

±20

PSH

1

2

1

2

1

2

1

2

H L

(MWh)

28.93

29.47

29.03

29.62

29.38

21.36

11.97

12.05

H U

(MWh)

13.95

31.98

27.59

27.78

13.94

13.86

13.98

32.06

Revenue of headroom case ($)

DA

681.93

351.71

429.44

430.49

679.62

832.36

973.15

649.98

RT

711.70

1148.52

1014.23

1007.42

721.85

564.31

371.16

747.07

Total

1393.63

1500.23

1443.68

1437.92

1401.47

1396.67

1344.31

1397.05

Incre‐
ment

+33.32

+127.84

+83.37

+65.53

+41.16

+24.28

-16.00

+24.66

Note: “increment” indicates the difference to the revenue of non-headroom 
case.

TABLE VI
COMPARISON OF APPROXIMATED AND ACTUAL REVENUES

Day

1

2

4

Revenue of optimal SOC headroom 
model ($)

PSH 1

1391.88 (3.57%)

2250.00 (0.26%)

1519.40 (5.26%)

PSH 2

1410.78 (4.04%)

2181.74 (0.27%)

1549.82 (7.78%)

Revenue of headroom 
case ($)

PSH 1

1343.85

2244.07

1443.47

PSH 2

1355.97

2175.80

1437.92
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Fig. 5.　Approximated revenue errors under practical setup. (a) PSH 1 on 
day 2. (b) PSH 1 on day 4. (c) PSH 2 on day 2. (d) PSH 2 on day 4.
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Moreover, the approximated revenue error could vary sig‐
nificantly on different market days. For PSH 1, the approxi‐
mated revenue error on day 4 is 6.5 times that on day 2 on 
average. The high approximated revenue error of PSH 2 on 
day 2 causes a dramatic revenue reduction as shown in Ta‐
ble IV. The generated scenarios cause the SOC approxima‐
tion model to estimate the revenue poorly and produce unfa‐
vorable SOC headrooms. This indicates that LMP scenarios 
of low quality could lead to a cliff-like decline in revenue.

In addition, for PSH 2 with a maximum forecasting error 
of ±5% and PSH 1 with a maximum forecasting error of 
±10%, they even have higher total revenues than the ideal 
setup, i.e., +$62.31 and +$0.21, as shown in Table V. This is 
also a result of the approximated revenue error. Intuitively, 
even the optimal SOC headrooms produced under the ideal 
setup cannot affirmatively lead to the best revenue from the 
actual market clearing. Thus, it is possible that with scenari‐
os other than the ideal setup, the coincidentally produced 
SOC headrooms could lead to higher revenues.

E. Computational Performance of DE-based Algorithm

The computational performance of the DE-based algo‐
rithm in solving the proposed optimal SOC headroom model 
is further assessed. As discussed in Section III, with proper 
granularity, brute-force search could produce a near-optimal 
solution, which will be used as a benchmark to evaluate the 
solution quality of the DE-based algorithm. To avoid the ex‐
cessive computational burden, the searching process is con‐
ducted via a two-round strategy: the first round uses a dis‐
cretization granularity of 5 MWh, namely 5% of the capaci‐
ty; and after it is done, the range of ±5 MWh around the 
best point identified in the first round will be explored in the 
second round with a refined discretization granularity of 1 
MWh. The final best solution from the second round will be 
compared with the solution from the DE-based algorithm. 
We evaluate the performance of the DE-based algorithm via 
10 cases that are composed of different DA and RT LMP 
scenarios for PSH 1. All 10 cases are solved with the same 
settings of K = 50 (number of iterations), N = 20 (population 
of points), F = 0.7 (rescaling factor), and R = 0.9 (crossing 
rate). These settings follow the recommendation in [21].

The proposed DE-based algorithm converges in 9 out of 
the 10 cases except case 8, showing that the settings are ef‐
fective. Furthermore, in case 8, after 50 iterations, 3 points 
(out of 20) linger around a slightly worse solution, while the 
other 17 points converge to a better solution. The results are 
compared in Fig. 6. In all 10 cases, the objective values 
from the DE-based algorithm are no smaller than those from 
the brute-force search, indicating that the DE-based algo‐
rithm finds sub-optimal solutions that are better or at least 
close. In addition, except case 2, Euclidean distances of solu‐
tions from the DE-based algorithm and the brute-force 
search are all smaller than the maximum difference, i.e., 2 , 
corresponding to the discretization granularity of 1 MWh, 
showing the solutions found by the two algorithms are rather 
close. Although case 2 presents the largest Euclidean dis‐
tance, the objective values from the two algorithms are the 
same, suggesting that the two algorithms have derived differ‐
ent solutions with the same level of optimality.

In fact, the optimal SOC headroom problem could have 
multiple optimal solutions due to the presence of power 
pumping and generating lower bounds of PSHs. With the 
power lower bounds, each switch of the operation mode, i.e., 
from idle to pumping and generating or from pumping and 
generating to idle, implicates a minimum change on SOC. 
Thus, at the DA scheduling level, when the changes of the 
SOC headroom are unable to accommodate the minimum 
SOC change induced by an additional PSH mode switch, the 
scheduling result of the DA scheduling level will no longer 
change. That is, there could exist multiple SOC headroom 
solutions corresponding to the same DA market results and 
consequently the same objective value (5), i.e., multiple opti‐
mal solutions may exist. The solution plane of case 2 with a 
granularity of 1 MWh is plotted in Fig. 7. It shows that flat 
planes appear in multiple areas of hL and hU, indicating solu‐
tions in these areas have the same objective values, i.e., reve‐
nues. Particularly, it can be observed that the flat plane in 
the area of hL =[2630]MWh and hU =[4550]MWh has the 
highest objective value, suggesting that there are multiple op‐
timal solutions. It is worthwhile to mention that because the 
SOC headroom is a parameter submitted by the PSH to the 
RTO, rather than an operational instruction issued by the 
RTO to the PSH, the PSH can choose to use any one of the 
obtained solutions and its economic consequence will not be 
compromised.

It is worthwhile to mention that due to the repeated calcu‐
lation of the DA and RT scheduling levels, the DE-based al‐
gorithm might face a considerable computational burden. As 
for these 10 cases, the average computational time is 1020 s. 
However, as part of the bidding preparation process that is 
done offline, the computational burden would be practically 
acceptable.
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Fig. 6.　 Comparisons of proposed DE-based algorithm and brute-force 
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V. CONCLUSION

Following the idea of removing PSH bids from the objec‐
tive functions of DA and RT markets of RTO as proposed in 
[6] and [18], this paper considers a future scenario that 
PSHs could be allowed to submit SOC headrooms in the DA 
market and discusses the possibility of increasing the total 
revenues of PSHs through optimizing such SOC headrooms. 
The proposed tri-level optimal SOC headroom model shows 
a strong ability to assist PSHs in determining the optimal 
SOC headrooms by properly mimicking how RTOs schedule 
their resources in the DA and RT markets. The DE-based al‐
gorithm can effectively solve the tri-level model and pro‐
duce good-enough solutions with acceptable approximated 
revenue errors.

Case studies illustrate that SOC headrooms can help PSHs 
achieve higher revenues, while the magnitude of such in‐
creases depends on the LMP volatilities of the two markets. 
In some cases, the optimal SOC model may suggest zero 
SOC headrooms, indicating that there is no room for arbi‐
trage based on the simulated DA and RT LMPs. The SOC 
headrooms and the associated profitability also strongly de‐
pend on the quality of simulated LMPs. Thus, compared to 
not submitting SOC headrooms, although there is a chance 
to achieve higher revenues, PSHs also bear financial risks of 
possible revenue loss, especially when LMP forecasting qual‐
ities are low. In our future work, we will consider reducing 
the sensitivity of profitability to LMP forecasting by con‐
structing a closed-loop predict-and-optimize framework. In 
addition, ancillary services from PSHs will also be studied 
by leveraging the economics and security aspects of the 
headroom.

APPENDIX A

Similar to other evolutionary methods, first, a population 
of N points is randomly generated to initialize hLn

0  and hUn
0  

for n = 12N. In each DE iteration k (k = 12K), the 
DE-based algorithm first applies strategies such as rescaling 
and crossing and adds additional randomness on each point 
n (n = 12N) to generate new tentative points. Then, with 
the tentative points, the DA scheduling level of RTO is 
solved and the solutions to uGDA

τ(v)s  and uPDA
τ(v)s  are passed to the 

RT scheduling level of RTO that will be solved next. The re‐
sults from the two levels are used to assess the objective val‐
ue of individual tentative points. For each point n, if its ob‐
jective value is smaller than that of the corresponding tenta‐
tive point, point n will be updated with its corresponding ten‐
tative point; otherwise, point n will keep unchanged. After 
all the points have been processed, the DE-based algorithm 
enters the next iteration. This iterative process terminates af‐
ter a given number of interactions is reached. After the algo‐
rithm terminates, the point with the highest objective value 
is picked as the final solution. It is worth mentioning that 
during the iterative process, for an infeasible point, its corre‐
sponding objective value is set as negative infinity, and its 
values hL and hU violating [0, H LLIM] and [0, H ULIM] are 
fixed to the closest boundary.

The pseudocode of DE-based algorithm is shown in Ap‐

pendix A Algorithm A1, where ĥLn and ĥUn are the temporal 
values to hL and hU of point n; hLn

k  and hUn
k  are the value to 

hL and hU of point n at iteration k; and Rand(01) is the ran‐
dom decimal between 0 and 1.

REFERENCES

[1] MISO. (2021, Jun.). 2020 state of the market report for the MISO elec‐
tricity markets. [Online]. Available: https://www. potomaceconomics.
com/wp-content/uploads/2021/05/2020-MISO-SOM_Report_Body_Com 
piled_Final_rev-6-1-21.pdf

[2] P. Ilak, I. Kuzle, L. Herenčić et al., “Market power of coordinated hy‐
dro-wind joint bidding: croatian power system case study,” Journal of 
Modern Power Systems and Clean Energy, vol. 10, no. 2, pp. 531-541, 
Mar. 2022.

[3] C. Dai, Y. Chen, F. Wang et al., “A configuration-component-based hy‐
brid model for combined-cycle units in MISO day-ahead market,” 
IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 883-896, 
Mar. 2019.

[4] Y. Liu, L. Wu, J. Li et al., “Towards accurate modeling on configura‐
tion transitions and dynamic ramping of combined-cycle units in UC 
problems,” IEEE Transactions on Power Systems, vol. 35, no. 3, pp. 
2200-2211, May 2020.

Algorithm 1: DE-based algorithm

Input: K, N, F, R

For n = 12N
       Initialize hLn

k hUn
k  and calculate its objective value

End for
For k = 12K
       For n = 12N
              Randomly select three district points from all points other than 

point n: hLn1
k hUn1

k , hLn2
k hUn2

k , hLn3
k hUn3

k

              Randomly select an element in hL and hU

              If hL is selected
                     ĥLn = hLn
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