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Abstract——With the rapid development of renewable energy, 
wind-thermal-bundled power transmission by line-commutated 
converter　based high-voltage direct current (LCC-HVDC) sys‐
tems has been widely developed. The dynamic interaction mech‐
anisms among permanent magnet synchronous generators 
(PMSGs), synchronous generators (SGs), and LCC-HVDC sys‐
tem become complex. To deal with this issue, a path analysis 
method (PAM) is proposed to study the dynamic interaction 
mechanism, and the damping reconstruction is used to analyze 
the damping characteristic of the system. First, based on the 
modular modeling, linearized models for the PMSG subsystem, 
the LCC-HVDC subsystem, and the SG subsystem are estab‐
lished. Second, based on the closed-loop transfer function dia‐
gram of the system, the disturbance transfer path and coupling 
relationship among subsystems are analyzed by the PAM, and 
the damping characteristic analysis of the SG-dominated oscilla‐
tion mode is studied based on the damping reconstruction. 
Compared with the PAM, the small-signal model of the system 
is obtained and eigenvalue analysis results are presented. Then, 
the effect of the control parameters on the damping characteris‐
tic is analyzed and the conclusions are verified by time-domain 
simulations. Finally, the penalty functions of the oscillation 
modes and decay modes are taken as the objective function, 
and an optimization strategy based on the Monte Carlo method 
is proposed to solve the parameter optimization problem. Nu‐
merical simulation results are presented to validate the effective‐
ness of the proposed strategy.

Index Terms——Wind-thermal-bundled power transmission, 
line-commutated converter based high-voltage direct current 
(LCC-HVDC), path analysis method (PAM), damping character‐
istic analysis, Monte Carlo method.

I. INTRODUCTION 

WITH the development of clean energy, the installed 
capacity of wind power has been gradually increas‐

ing. On the one hand, large-scale wind power plants (WPPs) 
are usually concentrated in remote areas and unbalanced 

with load centers in terms of geographical distribution. The 
requirements for system operational stability and power 
transmission economics make large-scale wind power bun‐
dled with thermal power and transmitted to the loads by line-
commutated converter based high-voltage direct current 
(LCC-HVDC) systems [1]. On the other hand, the perma‐
nent magnet synchronous generator (PMSG) has the advan‐
tages of high efficiency, high power density, and high reli‐
ability, which makes PMSGs a research hotspot in the field 
of wind power technology [2]. In such power systems, the 
dynamic interaction among synchronous generators (SGs), 
PMSGs, and LCC-HVDC system becomes complex. It is of 
practical engineering value to investigate the dynamic inter‐
action mechanism and damping characteristic of wind-ther‐
mal-bundled power transmission by the LCC-HVDC system.

Until recently, the dynamic interaction between wind tur‐
bines (WTs) and AC grids has been extensively studied. It is 
found that the system instability occurs when the PMSGs 
are integrated with weak AC grids [3] - [6]. In [7], modal 
analysis is adopted to study the effect of WTs on power sys‐
tem small-signal stability. In [8], the WPP is modeled with 
individual WTs and the impact of individual WTs on the 
damping of the power oscillation is investigated based on 
the eigenvalue analysis. In [9], based on the participation fac‐
tors, it is found that the electromechanical oscillation modes 
(EOMs) of the power system can be influenced by the outer-
loop control of the PMSG reactive power, and the converter 
oscillation modes (COMs) of PMSGs are influenced by the 
SGs considerably. The dual participation of the PMSG and 
SG occurs when the COMs and EOMs have close frequen‐
cies [9]. In [10], it is shown that inertia control of WTs has 
an adverse impact on the damping of EOMs. In [11] and 
[12], it is pointed out that the modal resonance occurs when 
an open-loop EOM of the power system is close to an open-
loop COM of the PMSG on the complex plane. For multiple 
PMSGs connected to a weak AC grid, eigenvalue analysis 
method, impedance-based analysis method, and time-domain 
simulation are used to reveal the sub-synchronous oscillation 
(SSO) mechanism [13].

For the dynamic interaction between the high-voltage di‐
rect current (HVDC) system and the AC grid, the effect of 
the controller parameters and the AC grid strength on the sta‐
bility is investigated based on the eigenvalue analysis [14]. 
When the HVDC and the rest of the power system (ROPS) 
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have close open-loop SSO modes, the modal resonance oc‐
curs and the system stability degrades [15]. In [16] - [18], 
when an open-loop oscillation mode of the voltage source 
converter based high-voltage direct current (VSC-HVDC) 
and a torsional oscillation mode of the SG are close on the 
complex plane, the system stability is reduced. In [19] and 
[20], it is pointed out that the rectifier-side controller of the 
LCC-HVDC system provides the negative damping torque to 
the torsional system of a nearby SG.

However, previous studies in [3] - [20] are the two-device 
scenario. The three-device scenario, namely the SG, WT, 
and LCC-HVDC system, becomes more general. There are 
many studies about this type of grid such as [21]-[27]. It is 
pointed out that a doubly-fed induction generator (DFIG) 
connected to the LCC-HVDC system can support the system 
frequency [21], [22]. Considering the frequency coupling, 
the interaction among DFIG, LCC-HVDC system, and weak 
AC grid is studied using the impedance model [23]. Based 
on the strong mode resonance theory, the interaction among 
PMSG, AC grid, and LCC-HVDC system is studied in [24]. 
In [25], based on the closed-loop transfer function diagram, 
the transmission path of sub-synchronous frequency distur‐
bance between PMSG and LCC-HVDC system is analyzed 
and the effect of the control parameters on SSO mode damp‐
ing is presented. However, the external AC grid is equivalent 
to a voltage source and the dynamics of the thermal power 
unit are not considered [21]-[25]. Referring to [13], the tor‐
sional vibration of the SG shaft system was excited and the 
torsional vibration protection operated, which caused a seri‐
ous SSO incident in the Hami grid, China on July 1, 2015. 
Thus, the dynamics of the SG need to be considered to fur‐
ther investigate the dynamic interaction among the PMSG, 
SG, and LCC-HVDC system.

In [26], based on the swing dynamic equation of the SG, 
the DFIG connected with the LCC-HVDC system in a weak 
AC grid is established as a four-order nonlinear model. The 
influence of frequency droop control of DFIGs and frequen‐
cy control of LCC-HVDC systems on the synchronizing and 
damping torque of the rectifier-side generator is studied [26]. 
However, the frequency controllers of WTs and LCC-HVDC 
systems are different from the conventional double-loop con‐
trol of WTs and the constant current control of the LCC-
HVDC system. For wind-thermal-bundled power transmis‐
sion by the LCC-HVDC system, explicit paths can explain 
how the interaction between the PMSG and LCC-HVDC sys‐
tem affects the total sub-synchronous torsional interaction 
(SSTI) damping of SGs [27]. Although the SG model with 
six windings and a mechanical subsystem is established to 
study the SSTI, the dynamic interaction of this three-device 
system is not clear for the EOM of SGs.

Eigenvalue analysis, impedance analysis, and time domain 
simulations are used to analyze the interaction mechanism in 
power systems. Eigenvalue analysis can provide the relevant 
variables for the oscillation modes, but the physical meaning 
of this method for the description of the dynamic interaction 
process among subsystems is unclear. The impedance analy‐
sis method describes the characteristics of the system based 
on an impedance model and evaluates the stability based on 

the impedance stability criterion. The impedance analysis is 
not suitable to reveal the disturbance transfer process. Time-
domain simulations are used to verify the validity of other 
methods, which do not reveal dynamic interaction. Due to 
the limitations of the above methods, it is necessary to find 
a new method to analyze the interaction mechanisms and 
damping characteristics of wind-thermal-bundled power 
transmission by the LCC-HVDC system.

Compared with the above-mentioned methods, the path 
analysis method (PAM) can analyze the interaction mecha‐
nism through the closed-loop transfer function block dia‐
gram of the system, which has been used to investigate the 
SSO issue in [25], [28]-[31]. The process of PAM are as fol‐
lows.

1) Based on the closed-loop transfer function block dia‐
gram, PAM can intuitively present the disturbance transfer 
process and the coupling relationship among subsystems.

2) Based on the dominant variables of the oscillation 
mode, the multi-input and multi-output (MIMO) transfer 
function matrix can be transformed into a single-input and 
single-output (SISO) transfer function by the damping con‐
struction method.

3) The damping coefficient can be used to quantify the 
stability of the oscillation mode.

Therefore, PAM is more explicit and practical to study the 
dynamic interaction and damping characteristics for wind-
thermal-bundled power transmission by the LCC-HVDC sys‐
tem.

At present, various control strategies have been proposed 
to enhance system stability [32]-[37]. With the invariant con‐
trol scheme, the small-signal stability can be improved based 
on the control parameter optimization. In terms of the dy‐
namic performance, the error integral performance index 
(ITAE) is adopted to construct the objective function [34], 
[35]. Based on the eigenvalue sensitivity iterative method of 
the linearized state space model, the optimized control pa‐
rameters are selected to improve the optimization efficiency 
[36], [37]. In [34]-[37], only the dominant modes are consid‐
ered. However, the change in the parameters can lead to the 
migration of the dominant oscillation mode. In this paper, 
based on the small-signal model of the system, the penalty 
functions of oscillation modes and decay modes are used to 
construct the objective function, and the Monte Carlo meth‐
od is adopted to solve the optimization problem.

For wind-thermal-bundled power transmission by LCC-
HVDC systems, there are multiple oscillation modes. Among 
them, the SG-dominated oscillation mode is selected to in‐
vestigate the interaction mechanism and coupling relation‐
ship based on the PAM in this paper. The effect of PMSG 
and LCC-HVDC system on the damping of SG-dominated 
oscillation modes is analyzed based on the damping recon‐
struction and eigenvalue method, respectively. The main con‐
tributions of this paper are as follows.

1) The linearized models (LMs) for the PMSG subsystem, 
LCC-HVDC subsystem, and SG subsystem are established, 
and the closed-loop transfer function block diagram of the 
system is obtained. The disturbance transfer path and cou‐
pling relationship among subsystems are revealed based on 
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the PAM. The damping characteristic of the system is stud‐
ied based on the damping reconstruction method.

2) The small-signal model of wind-thermal-bundled power 
transmission by LCC-HVDC systems is established and the 
damping characteristic is analyzed based on eigenvalue anal‐
ysis.

3) Based on the small-signal model, the penalty functions 
of oscillation modes and decay modes are used to construct 
the objective function. The parameter optimization problem 
is solved by the Monte Carlo method.

The rest of the paper is organized as follows. Based on 
the modular modeling, the LMs for the PMSG, LCC-HVDC, 
and SG subsystems are established in Section II. In Section 
III, the damping characteristic of the power system is ana‐
lyzed based on the PAM and the eigenvalue analysis, respec‐
tively. In Section IV, the effect of the control parameters on 
the damping characteristic is presented. An optimization 
strategy based on Monte Carlo method is proposed to en‐
hance the system stability in Section V. Finally, the conclu‐
sions are presented in Section VI.

II. LMS FOR PMSG, LCC-HVDC, AND SG SUBSYSTEMS 

In this section, the LMs for the PMSG, LCC-HVDC, and 
SG subsystems are established based on the transfer func‐
tion, and the accuracy of the LMs is verified.

The schematic diagram of the wind-thermal-bundled pow‐
er transmission by LCC-HVDC systems is shown in Fig. 1. 
To reveal the dynamic interaction mechanisms, the whole 
system is divided into the PMSG subsystem, the SG subsys‐
tem, and the LCC-HVDC subsystem.

In the PMSG subsystem, us and is are the stator voltage 
and current of the WT, respectively; Pin is the output power 
of the machine-side converter (MSC); Pe is the input power 
of the grid-side converter (GSC); Cdc is the DC capacitance 
between the MSC and the GSC; Udc is the DC voltage of the 
PMSG; Lg is the filter inductance; C1 is the line capacitance; 
k is the transformer ratio of the grid-connected PMSG; ut 
and ig are the output voltage and current of the GSC, respec‐
tively; ug is the voltage of the line capacitance; and R1, L1, 
and i1 are the grid-side resistance, inductance, and current, 
respectively.

In the SG subsystem, us1 and is1 are the terminal voltage 
and output current of the SG, respectively; and Rs1 and Ls1 

are the resistance and inductance of the transmission lines, 
respectively.

In the LCC-HVDC subsystem, Rd, Ld, and Cd are the DC 
resistance, inductance, and capacitance of the LCC-HVDC 
system, respectively; Ucd is the voltage of the DC capaci‐
tance; kr and ki are the transformer ratios of the rectifier and 
inverter side, respectively; Udr and Udi are the DC voltages 
of the rectifier and inverter, respectively; Idcr and Idci are the 
DC currents of the rectifier and inverter, respectively; ir and 
ii are the AC currents of the rectifier and inverter sides, re‐
spectively; ur and ui are the AC voltages of the rectifier and 
inverter sides, respectively; Rs2 and Ls2 are the resistance and 
inductance of the receiving-end AC grid, respectively; and 
us2 and is2 are the voltage and current of the receiving-end 
AC grid, respectively.

For the wind-thermal-bundled power transmission by LCC-
HVDC systems, there are four coordinate systems, including 
the d-q coordinate system of the PMSG, the polar coordinate 
system of the LCC-HVDC system, the d2-q2 coordinate sys‐
tem of the SG, and the x-y synchronous coordinate system 
of the AC grid. In the following, the subscripts d, q, d2, q2, 
x and y denote the components of the variable in the corre‐
sponding coordinate system, and the subscript 0 denotes the 
initial value of the variable.

A. Model for PMSG Subsystem

The WT of the PMSG system is completely decoupled 
from the electrical circuit of the AC grid. The electromagnet‐
ic and electromechanical dynamics of the WT and MSC 
have little influence on the dynamics of the power system, 
which means that the dynamics of the WT and MSC can be 
equivalent to a steady power source. Thus, the PMSG sub‐
system consists of the DC capacitance, GSC, phase-locked 
loop (PLL), filter inductance, and AC transmission line. The 
GSC adopts constant DC voltage control, and its control 
structure is given in Fig. 2.

In Fig. 2, Udcref is the reference value of the DC voltage; 
ωg is the controller frequency; igdref and igqref are the d- and q-
axis components of reference outputs of the outer-loop con‐
trol, respectively; Kpdc and Kidc are the proportional and inte‐
gral coefficients of the DC voltage outer-loop control, respec‐
tively; kp1 and ki1 are the proportional and integral coeffi‐
cients of the current inner-loop control, respectively; utd and 
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Fig. 1.　Schematic diagram of wind-thermal-bundled power transmission by 
LCC-HVDC systems.
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utq are the d- and q-axis components of the GSC output volt‐
age, respectively; ugd and ugq are the d- and q-axis compo‐
nents of the line capacitance voltage, respectively; igd and igq 
are the d- and q-axis components of the converter-side cur‐
rent, respectively; and kVFF/(tVFFs + 1) is a first-order filter for 
the voltage feedback.

The dynamics of the DC capacitance, GSC, and PLL are:
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where Hdc( )s , HPI( )s , and Hpll( )s  are the transfer functions 

of the DC capacitance, DC voltage outer-loop control, and 
PLL, respectively; and Dθpll is the PLL output angle.

The transfer functions in (1)-(3) are expressed as:
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where kppll and kipll are the proportional and integral coeffi‐
cients of the PLL in the PMSG subsystem, respectively.

Considering the requirement to decouple the inner and out‐
er loops of the controller, the bandwidth of the DC voltage 
outer loop is generally designed to be one-tenth of that of 
the inner loop. Therefore, it is believed that the current inner 
loop of the GSC allows the converter-side current to trace 
its reference value. It can be expressed as Digd =Digdref, Digq =
Digqref. Since the power factor of the GSC is 1, Digqref is set 
to be 0. Thus, Digq and igq are equal to 0.

The dynamic equations for the filter inductance, line ca‐
pacitance, and line impedance are given as:
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where the detailed expressions of transfer functions GC1( )s , 
GC2( )s , and GL1( )s - GL4( )s  are given in (A1)-(A5) in Sup‐
plementary Material A.

The conversion equations between the corresponding com‐
ponents of Dug and Dig in the d-q coordinate system and x-y 
coordinate system are expressed as:
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where θ0 is the initial value of θpll; and the detailed expres‐
sions of K1-K4 are given in (A6) in Supplementary Materi‐
al A.

Based on (6), (7), and (9), Di1x and Di1y are expressed as:
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where G1xi(s) (i = 1234) denotes the transfer functions 
from Digd, Dθpll, Durx, and Dury to Di1x, respectively; and 
G1yi(s) (i = 1234) denotes the transfer functions from Digd, 

Dθpll, Durx, and Dury to Di1y, respectively.
Based on (6), (8), and (9), Dugd and Dugq are expressed as:
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where Ggdi(s) (i = 1234) denotes the transfer functions 

from Digd, Dθpll, Di1x, and Di1y to Dugd, respectively; and 
Ggqi(s) (i = 1234) denotes the transfer functions from Digd, 

Dθpll, Di1x, and Di1y to Dugq, respectively.
According to (1)-(4) and (10), the grid-side current Di1 is 

expressed as:
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where Yp1( )s  and Yp2( )s  are the transfer function matrices 

from DUdc and Dur to Di1, respectively.
According to (1)-(3), (5), (10), and (11), the transfer func‐

tion block diagram of the PMSG is shown in Fig. 3.
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Fig. 3.　Transfer function block diagram of PMSG.
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In Fig. 3, the red lines denote the output paths of Dugd, 
Dugq, and Dutd; the purple lines represent the paths directly 
related to Dθpll; and the green lines are the paths directly re‐
lated to Digd.

B. Model for LCC-HVDC Subsystem

In the LCC-HVDC system, the rectifier operates in con‐
stant current control and the inverter operates in constant ex‐
tinction angle control. On the LCC-HVDC rectifier side, the 
converter model, constant current controller, and PLL are 
considered. The control diagram of the LCC-HVDC rectifier 
is shown in Fig. 4.

In Fig. 4, Idcref and Idcrm are the reference and measured val‐
ues of the DC current, respectively; kmr/ ( )1 + sTmr  is a first-

order filter for current measurement; αr is the actual firing 
angle of the rectifier; φur is the phase angle of the AC bus 
voltage at the rectifier side; θpllr is the output angle of PLL 
in the rectifier; and Kpr and Kir are the proportional and inte‐
gral gains in the constant current controller, respectively.

The dynamic equations for the LCC-HVDC rectifier are 
expressed as:
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(16)

where Dur and Dφur are the amplitude and angle of the PCC 
voltage, respectively; Dφr is the power factor angle; Hdcr( )s  
is the transfer function from DIdcr to Dαr; and the detailed ex‐
pressions of G1L(s)-G6L(s) and Hdcr( )s  are given in (A13) -
(A17) in Supplementary Material A.

Based on the conversion between the x-y coordinate sys‐
tem and the polar coordinate system, Dir and Dur are ex‐
pressed as:

é
ë
êêêê ù

û
úúúúDirx

Diry

= é
ë
êêêê ù

û
úúúúK5 K6 K7

K8 K9 K10

é
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ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úDIdcr

Dφur

Dφr

(17)

é
ë
êêêê

ù
û
úúúú

Dur

Dφur

= é
ë
êêêê ù

û
úúúúK11 K12

K13 K14

é
ë
êêêê ù

û
úúúúDurx

Dury

(18)

where the detailed expressions of K5-K14 are given in (A15) 
in Supplementary Material A.

By substituting (15), (16), and (18) into (13), (19) is ob‐
tained.

DIdcr = [GIdc1( )s GIdc2( )s ] é
ë
êêêê ù

û
úúúúDurx

Dury

(19)

where the detailed expressions of GIdc1(s) and GIdc2(s) are 
given in (A18) in Supplementary Material A.

By substituting (19) into (14) and eliminating DIdcr, the 
power factor angle is calculated by:

Dφr = [Gφr1( )s Gφr2( )s ] é
ë
êêêê ù

û
úúúúDurx

Dury

(20)

where the detailed expressions of Gφr1(s) and Gφr2(s) are 

given in (A19) in Supplementary Material A.
By substituting (18)-(20) into (17), (21) is obtained.

é
ë
êêêê ù

û
úúúúDirx

Diry

=YLCC(s) é
ë
êêêê ù

û
úúúúDurx

Dury

(21)

where YLCC( )s  is the transfer function matrix from Dur to 
Dir, and its detailed expression is given in (A20) in Supple‐
mentary Material A.

According to (13) - (20), the transfer function block dia‐
gram of LCC-HVDC system is shown in Fig. 5.

C. Model for SG Subsystem

In the d2-q2 coordinate system, the output current Dis1 is 
expressed as:

é
ë
êêêê ù

û
úúúúDis1d2

Dis1q2

=
é

ë

ê
êê
ê ù

û

ú
úú
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Dus1q2
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Durq2

(22)

where the detailed expressions of GSL1(s) and GSL2(s) are 
given in (A21) in Supplementary Material A.

The terminal voltage Dus1 in the d2-q2 coordinate system 
is expressed as:

ì
í
î

ïïDus1d2 =XqDis1q2

Dus1q2 =DE′q -X ′dDis1d2

(23)

where E′q, Xq, and X ′d are the q-axis transient electromotive 
force voltage, q-axis reactance, and d-axis sub-transient reac‐
tance of SG, respectively.
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Fig. 4.　Control diagram of LCC-HVDC rectifier.
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The rotor swing equation for SG is:

ì
í
î

ïï

ïïïï

sDδ =ω0Dω

sDω =
1
M ( )DPm -DPt -DDω

 (24) 

where Dδ is the power angle; Dω is the rotor speed; ω0 is 
synchronous speed; M is the inertia; D is the damping coeffi‐
cient; and DPm and DPt are the mechanical power and elec‐
tromagnetic power of SG, respectively.

By combining (22) and (23), (25) is obtained.
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(25)

where the detailed expressions of Gs1r(s)-Gs4r(s) are given 
in (A22) in Supplementary Material A.

The conversion equations between the corresponding com‐
ponents of Dur and Dis1 in the d2-q2 coordinate system and 
the x-y coordinate system are:
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Dis1y

Dδ
(27)

where δ0 is the initial value of δ; and the detailed expres‐
sions of K15-K18 are given in (A23) in Supplementary Materi‐
al A.

By combining (25)-(27), (28) is obtained.

é
ë
êêêê ù

û
úúúúDis1x

Dis1y

=Gs1(s) é
ë
êêêê ù

û
úúúúDurx

Dury

+Gs2(s)Dδ (28)

where Gs1( )s  and Gs2( )s  are the transfer function matrices 
from Dur and Dδ to Dis1, respectively. The detailed expres‐
sions of Gs1( )s  and Gs2( )s  are given in (A24) and (A25) in 
Supplementary Material A.

The electromagnetic power of SG is calculated by:

DPt = [ ]is1d20 is1q20 us1d20 us1q20
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By substituting (23) and (27) into (29), (30) is obtained.

DPt =Hpxy(s) é
ë
êêêê ù

û
úúúúDis1x

Dis1y

+Hpδ(s)Dδ (30)

where Hpxy( )s  is the transfer function matrix from Dis1 to 

DPt; and Hpδ(s) is the transfer function from Dδ to DPt. The 

detailed expressions of Hpxy( )s  and Hpδ( )s  are given in 

(A26) in Supplementary Material A.
By substituting (28) into (30), (31) is obtained.

DPt =Gpxy(s) é
ë
êêêê ù

û
úúúúDurx

Dury

+Gpδ(s)Dδ (31)

where Gpxy( )s  is the transfer function matrix from Dur to 

DPt; and Gpδ(s) is the transfer function from Dδ to DPt. The 

detailed expressions of Gpxy( )s  and Gpδ(s) are given in 

(A27) in Supplementary Material A.

In the LCC-HVDC rectifier, the AC filter is equivalent to 
a capacitance, denoted by Cg1. The dynamic equation of the 
PCC bus is:
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û
úúúúDurx

Dury

=GPM(s) é
ë
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ë
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û
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(32)

where GPM( )s , GSG( )s , and GLCC( )s  are the transfer function 
matrices from Di1, Dis1, and Dir to Dur, respectively. The de‐
tailed expressions of GPM( )s , GSG( )s , and GLCC( )s  are given 
in (A28) and (A29) in Supplementary Material A.

D. Validation of LMs

The complete LM is formed by interconnecting the dy‐
namic models of each subsystem. Before analyzing the dy‐
namic interaction mechanism, the accuracy of the LM in 
MATLAB/Simulink needs to be verified through the electro‐
magnetic transient model (ETM) in DigSILENT/PowerFacto‐
ry. The PMSG is subject to a step change of the DC voltage 
reference value Udcref from 1.1 p.u. to 1.15 p.u. at t = 0.6 s. 
The system responses under the LM and the ETM are given 
in Fig. 6. In Fig. 6, the responses of the LM are consistent 
with those of the ETM, verifying the accuracy of the LM.

III. DAMPING CHARACTERISTIC ANALYSIS 

In this section, the damping characteristic of the wind-ther‐
mal-bundled power transmission by the LCC-HVDC system 
is studied based on the PAM and the eigenvalue analysis 
method, respectively. In the PAM, the damping path and the 
disturbance transfer path are defined to reveal the dynamic 
interaction mechanism. Based on the damping decomposi‐
tion method, the internal damping of SG and the interaction 
damping among subsystems are calculated. In the eigenvalue 
analysis, the small-signal model of the system and the re‐
sults of the eigenvalue analysis are presented.

A. Damping Characteristic Analysis Based on PAM and 
Damping Reconstruction Method

In this subsection, the complete closed-loop transfer func‐
tion block diagram of the system is derived. The damping 
path and the disturbance transfer path are defined, and each 
path is discussed in detail. Then, the internal damping char‐
acteristic of SG and the interaction damping characteristic 
among subsystems are separated based on the damping de‐
composition method.
1)　Damping Path and Disturbance Transfer Path Analysis

In Fig. 3, the output power of PMSG is:

DPe =Pe1(s)DUdc +Pe2(s) é
ë
êêêê ù

û
úúúúDurx

Dury

(33)

where Pe1( )s  is the transfer function from DUdc to DPe; and 
Pe2( )s  is the transfer function matrix from Dur to DPe.

The open-loop transfer function block diagram of PMSG 
with input variable ΔPin and output variable Δi1 is shown in 
Fig. 3. The transfer function block diagram of LCC-HVDC 
system with input variable Δur and output variable Δir is il‐
lustrated in Fig. 5. The transfer function block diagram of 
SG with input variable ΔPm and output variable Δis1 is ob‐
tained based on (24), (28), and (30).
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These three subsystems are interconnected by PCC, and 
the closed-loop transfer function block diagram of the wind-
thermal-bundled power transmission by the LCC-HVDC sys‐
tem is shown in Fig. 7.

For the SG-dominated oscillation, the damping path is de‐
fined as the closed loop passing the rotor speed Δω in the 
closed-loop transfer function block diagram. As shown in 
Fig. 7, there are two damping loops in the system, which are 
marked as closed loop 1 and closed loop 2. The arrow de‐
notes the direction of disturbance transfer.

Closed loop 1 reflects the internal damping characteristic 
of SG. Closed loop 2 can reflect the damping characteristic 
of subsystem interactions. Δis1 is related to the power angle 
Δδ and the PCC voltage Δur. When the PCC voltage Δur is 
disturbed, the output current of PMSG Δi1, the rectifier cur‐
rent of LCC-HVDC system Δir, and the grid current of SG 
Δis1 are disturbed. Meanwhile, Δi1, Δir, and Δis1 affect the 

PCC voltage Δur. In this process, the parameters of each 
subsystem affect the disturbance transfer. Thus, the interac‐
tion among subsystems can be represented as a process of 
current disturbance and voltage disturbance driving each oth‐
er at the PCC. The transmission channels of the oscillation 
disturbance in the path of the closed-loop transfer function 
block diagram are defined as the disturbance transfer paths, 
which reveal the disturbance transfer process and the cou‐
pling relationship among subsystems.

2)　Theoretical Derivation of Damping Decomposition
Based on the results of the path analysis, the total damp‐

ing of SG is determined by the internal characteristic of SG 
and the interaction characteristic among subsystems. It is es‐
sential to decompose the total damping of SG.

In this part, based on the damping decomposition method, 
the transfer function for each damping path is obtained and 
the damping coefficients corresponding to different damping 
characteristics are calculated. The detailed analysis is as fol‐
lows.

Step 1: the MSC and GSC of PMSG are decoupled 
through the DC capacitance. The WT and MSC can be 
equivalent to a steady power source, i.e., ΔPin = 0. By com‐
bining (1) and (33), (34) and Fig. 8(a) are obtained.

DUdc =
-Hdc( )s Pe2( )s

1 +Hdc( )s Pe1( )s
Dur =Gd - ur(s)Dur (34)

Step 2: paths related to the PMSG and LCC-HVDC sys‐
tem are expressed by transfer function matrices Ga( )s  and 
Gb( )s , respectively, which are shown in (35) and Fig. 8(b).

ì
í
î

ïï
ïï

Ga( )s =GPM( )s ( )YP1( )s Gd - ur( )s +YP2( )s

Gb( )s =GLCC( )s YLCC( )s
(35)

Step 3: in Fig. 8(b), the relationship between the SG out‐
put current Δis1 and the PCC voltage Δur is expressed by:

Dis1 =G -1
SG(s) ( I -Ga(s) -Gb(s) )Dur =Gc(s)Dur (36)

By combining (28) and (36), (37) and Fig. 8(c) are ob‐
tained.

Dur = (Gc(s) -Gs1(s) ) -1
Gs2(s)Dδ =Gd(s)Dδ (37)
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The internal damping characteristic of SG and the interac‐
tion damping characteristic among subsystems are denoted 
by Kd1( )s  and Kd2( )s , respectively; and Kd( )s  is defined as 
the sum of the damping characteristics, as shown in (38).
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ïï
ï

Kd1( )s =Hpδ( )s

Kd2( )s =Hpxy( )s Gc( )s Gd( )s

Kd( )s =Kd1( )s +Kd2( )s

(38)

Based on the definition of the damping coefficient [30] 
and transfer functions in (38), the internal damping coeffi‐
cient Z1 and the interaction damping coefficient Z2 can be ob‐
tained for SG. The total damping of SG is Z = Z1 + Z2.

B. Damping Characteristic Analysis Based on Eigenvalue 
Analysis Method

In this subsection, the small-signal model for the wind-
thermal-bundled power transmission by the LCC-HVDC sys‐
tem is derived and the eigenvalue analysis results are pre‐

sented.
1)　Small-signal Model

The state equations for PMSG, SG, and LCC-HVDC sub‐
systems have been extensively studied, and are not the focus 
of this paper. The detailed modeling processes of these sub‐
systems can be found in [38], [39]. The state equation of the 
system with 22 state variables and 3 input variables is:
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dDxsim

dt
=AsimDxsim +BsimDusim

xsim = [δωis1d2is1q2x1xaθpllrIdcrurxury

]           Udcx2x3x4xbθplligdigqugdugqi1di1q

usim = [ ]Udcref    Igqref    Idcref

(39)

where xsim is the state-variable vector; Asim is the state matrix; 
Bsim is the input matrix; and usim is the input vector. In xsim,
dx1 /dt = Idcref - Idcrm; dxa /dt = ur; dxb /dt = ugq; dθpllr /dt =ω0 +
kpPLLur + kiPLL xa, and kpPLL and kiPLL are the proportional and 
integral coefficients of the PLL in the LCC-HVDC rectifier, 
respectively; dx2 /dt =Udc -Udcref; dx3 /dt = igdref - igd; dx4 /dt =
igqref - igq; and dθpll /dt =ω0 + kppllugq + kipll xb.
2)　Eigenvalue Analysis Results

Based on the small-signal model (39) and parameters in 
Table SAI in Supplementary Material A, the main oscillation 
modes of the system are shown in Table I.

As shown in Table I, there are three oscillation modes, in‐
cluding one SSO mode λ1,2, one low-frequency oscillation 
(LFO) mode λ3,4, and one medium-frequency oscillation 
mode λ5,6. Based on the participation factor analysis, the 
mode λ3,4 is related to the rotor speed of SG. And the mode 
λ3,4 is closest to the imaginary axis and plays a dominant 
role in the stability, so the mode λ3,4 is selected to analyze 
the damping characteristic of the system. The frequency 
range of the oscillation mode λ3,4 is consistent with that of 
the damping reconstruction method.

Eigenvalue analysis can provide the variables associated 
with the oscillation modes, but the disturbance transfer path 
cannot be reflected by these variables. The PAM based on 
the closed-loop transfer function block diagram has the ad‐
vantage of demonstrating the disturbance transfer process. 
Besides, the MIMO transfer function matrix is transformed 
into an SISO transfer function by damping reconstruction, 
and the damping of oscillation modes is evaluated. There‐
fore, PAM is more suitable for the interaction mechanisms 
analysis and damping characteristic analysis.
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Fig. 8.　Theoretical derivation of damping decomposition. (a) Introduction 
of Gd - ur( )s . (b) Introduction of Ga( )s  and Gb( )s . (c) Introduction of Gc( )s  
and Gd( )s .

TABLE I
OSCILLATION MODES OF WIND-THERMAL-BUNDLED POWER TRANSMISSION 

BY LCC-HVDC SYSTEM

Oscillation mode

λ1,2

λ3,4

λ5,6

Eigenvalue

-78.33 ± j245.69

-3.14 ± j12.79

-80.25 ± j601.62

Oscillation 
frequency (Hz)

39.1022

2.0365

95.7506

Damping ratio

0.3038

0.2383

0.1322
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IV. EFFECT OF CONTROL PARAMETERS ON DAMPING 
CHARACTERISTICS 

In this section, the effect of the control parameters on the 
damping characteristics is investigated and the conclusions 
are verified by time-domain simulation results.

A. GSC Outer-loop Proportional Coefficient Kpdc

The effect of Kpdc on the damping characteristic is ana‐
lyzed. The frequency characteristic curves of the interaction 
damping Z2 with varying Kpdc are shown in Fig. 9(a) and the 
damping ratios of the oscillation mode λ3,4 with varying Kpdc 
are shown in Fig. 9(b), where the arrows indicate the damp‐
ing trends as Kpdc increases.

In Fig. 9, the frequency characteristic curves of the inter‐
action damping Z2 move downward and the damping ratio 
decreases with the increase of Kpdc, corresponding to a de‐
crease in damping.

A three-phase short-circuit fault occurs at the high voltage 
(HV) bus of the PMSG at t = 0.4 s and lasts for 0.01 s. The 
response curves of the SG active power with varying Kpdc 
are shown in Fig. 10.

In Fig. 10, the amplitude of the power oscillation increas‐
es and the system stability decreases as the Kpdc increases, 
verifying the correctness of the damping characteristic analy‐
sis.

B. GSC Outer-loop Integral Coefficient Kidc

The effect of Kidc on the damping is analyzed.

The frequency characteristic curves of the interaction 
damping Z2 with varying Kidc are shown in Fig. 11(a) and 
the damping ratios of the oscillation mode λ3,4 with varying 
Kidc are shown in Fig. 11(b), where the arrows represent the 
damping trends as Kidc increases.

In Fig. 11, the frequency characteristic curves of the inter‐
action damping Z2 move downward and the damping ratio 
decreases with the increase of Kidc, corresponding to a de‐
crease in damping.

With the same short-circuit fault in Section IV-A, Fig. 12 
shows the response curves of the SG active power with vary‐
ing Kidc. In Fig. 12, the amplitude of the power oscillation in‐
creases and the system stability decreases when Kidc increas‐
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es, which is consistent with the damping characteristic analy‐
sis results.

C. Proportional Coefficient of LCC-HVDC Constant Current 
Control Kpr

The effect of Kpr on the damping characteristic is ana‐
lyzed. The frequency characteristic curves of the interaction 
damping Z2 with varying Kpr are shown in Fig. 13(a) and the 
damping ratios of the oscillation mode λ3,4 with varying Kpr 
are shown in Fig. 13(b), where the arrows represent the 
damping trends as Kpr increases.

In Fig. 13, the frequency characteristic curves of the inter‐
action damping Z2 move downward and the damping ratio 
decreases with the increase of Kpr, corresponding to a de‐

crease in damping.
With the same short-circuit fault in Section IV-A, Fig. 14 

shows the response curves of the SG active power with vary‐
ing Kpr.

In Fig. 14, the amplitude of the power oscillation increas‐
es and the system stability decreases when Kpr increases, 
which is consistent with the damping characteristic analysis 
results.

D. Integral Coefficient of LCC-HVDC Constant Current 
Control Kir

The effect of Kir on the damping characteristic is ana‐
lyzed. The frequency characteristic curves of the interaction 
damping Z2 with varying Kir are shown in Fig. 15(a) and the 
damping ratios of the oscillation mode λ3,4 with varying Kir 
are shown in Fig. 15(b), where the arrows indicate the damp‐
ing trend as Kir increases.
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Fig. 15.　Damping characteristic analysis results with varying Kir. (a) Damp‐
ing coefficient calculated by PAM. (b) Damping ratio calculated by eigenval‐
ue analysis.
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Fig. 12.　Response curves of SG active power with varying Kidc.
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Fig. 13.　 Damping characteristic analysis results with varying Kpr. (a) 
Damping coefficient calculated by PAM. (b) Damping ratio calculated by ei‐
genvalue analysis.
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In Fig. 15, the damping characteristic curves of the inter‐
action damping Z2 move downward and the damping ratio 
decreases with the increase of Kir, corresponding to a de‐
crease in damping.

With the same short-circuit fault in Section IV-A, Fig. 16 
shows the response curves of the SG active power with vary‐
ing Kir.

In Fig. 16, the amplitude of the power oscillation in‐
creases and the system stability decreases when Kir increas‐
es, verifying the correctness of the damping characteristic 
analysis.

V. OPTIMIZATION STRATEGY BASED ON MONTE CARLO 
METHOD 

In this section, first, the objective function is constructed 
based on the penalty functions of the oscillation modes and 
decay modes. Then, the feasible optimization regions of the 
control parameters are obtained to ensure the small-signal 
stability of the system. Finally, the optimization problem is 
solved by Monte Carlo method and the effectiveness of the 
proposed strategy is verified by time-domain simulations.

A. Objective Function for Control Parameter Optimization

Constrained by the small-signal stability of the system, 
the system is assumed to have i complex eigenvalues and j 
real eigenvalues. Complex eigenvalues correspond to oscilla‐
tion modes and their damping ratios reflect the decay rate of 
the oscillation. The real eigenvalues correspond to the decay 
modes. The designed objective function should keep all the 
real eigenvalues in the left half plane and away from the 
imaginary axis, and improve the damping ratios of complex 
eigenvalues.

The desired damping ratio of the oscillation mode and the 
desired value of the decay mode can be predefined. The re‐
dundancy between the desired value and the actual value is 
taken as an objective function. Besides, the weighted method 
is introduced to quantify the effect of different eigenvalues 
on the objective function. The objective function is construct‐
ed as:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

min F =∑
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    k = 12i

      σk < 0    k = 12i + j

(40)

where σk + jωk is the kth eigenvalue of the system; E is an 
identity matrix of the same order as Asim; εk is the damping 
ratio of the kth oscillation mode; αk and βk are the weights of 
the two penalty functions, whose magnitudes are determined 
by the damping ratio and the distance between the eigenval‐
ue and the imaginary axis, respectively; and Pλok and Pλrk are 
the penalty functions of the kth oscillation mode and the kth 
decay mode, respectively. The closer to the imaginary axis 
or the smaller the damping ratio, the larger the weight and 
the larger the penalty are.

The penalty function Pλok for the kth oscillation mode is:

Pλok =
ì
í
î

0             εk £ εd

εd - εk    else
(41)

where εd is the desired damping ratio of the oscillation mode.
The penalty function Pλrk for the kth decay mode is:

Pλrk =
ì
í
î

0              σk £ σd

σd - σk    else
(42)

where σd is the desired value of the decay mode.

B. Feasible Domain of Control Parameter

In the optimization process, the range of the parameters 
needs to be determined for the stability. According to the es‐
tablished small-signal model (39), the feasible optimization 
regions for the control parameters are obtained based on the 
root locus method.

Let the GSC outer-loop proportional coefficient Kpdc gradu‐
ally increase from 1 to 25, whereas the other control parame‐
ters remain unchanged. The trajectory of the oscillation 
mode λ3,4 with varying Kpdc is shown in Fig. 17, where the 
arrows represent the trend of λ3,4 as Kpdc increases.
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Fig. 17.　Trajectory of oscillation mode λ3,4 with varying Kpdc.
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stability of the system. Kpdc = 20 is the critical parameter for 
system stability.

The influence of other control parameters on the oscilla‐
tion mode λ3,4 is analyzed in turn with a similar analysis 
method. The feasible optimization regions for the control pa‐
rameters are shown in Table II, which are the constraints of 
the optimization problem.

C. Optimization of Control Parameters Based on Monte Car‐
lo Method

The Monte Carlo method is a numerical computation 
method based on the theory of random numbers and proba‐
bility statistics. The relationship between the eigenvalues and 
the parameters is difficult to formulate, so the Monte Carlo 
method is more suitable to solve the optimization problem 
of the control parameters. In the optimization process, the 
Monte Carlo method can transform complex multi-group 
control parameter optimization problems into the computa‐
tion of random numbers and their digital characteristics, 
which significantly reduces the computational burden.

The basic idea of the optimization is as follows.
Step 1: calculate the value of the objective function with 

the initial control parameters.
Step 2: a new set of control parameters is randomly gener‐

ated in the feasible optimization region of Table II, and the 
objective function value Fn corresponding to this set of pa‐
rameters is calculated.

Step 3: repeat Step 2.
Step 4: the set of control parameters with the minimum 

value of the objective function is selected as the optimal pa‐
rameters.

Figure 18 shows the flow chart of the optimization strate‐
gy based on the Monte Carlo method, and the steps are as 
follows.

Step 1: initialization. Based on the Monte Carlo method, a 
set of random numbers is generated in the feasible optimiza‐
tion region and the corresponding values are assigned to con‐
trol parameters Kpdc, Kidc, Kpr, and Kir. hi (i = 1234) repre‐
sents the control parameters; n (0 < n < Nmax) is the iteration 
number; Nmax is set to be 10000; and temp is an intermediate 
variable used to compare the value of the objective function 
during the optimization process, with an initial value of 106.

Step 2: based on Monte Carlo method, the control parame‐
ters are updated with hi = himin + R(himax - himin), where R is a 
random number between 0 and 1, and himax and himin are the 
upper and lower limits of the control parameters in Table II, 
respectively. After updating the control parameter hi, a new 
set of control parameters is generated. Calculate the value of 

the objective function Fn corresponding to the new parame‐
ter and perform Step 3.

Step 3: determine if Fn is greater than temp. If yes, go to 
Step 4. Otherwise, assign Fn to temp and assign this set of 
control parameters to the optimized control parameters h*

i .
Step 4: determine if the iteration of the four parameters is 

complete, i.e., if i is greater than or equal to 4. If yes, per‐
form Step 2; otherwise, perform Step 3.

Step 5: determine if n is greater than or equal to 10000, 
i.e., if the optimization process is completed, or if the value 
of the objective function Fn is less than 106. If yes, output h*

i  
as the optimized parameter and output temp as the minimum 
value of the objective function F*. Otherwise, perform 
Step 4.

The initial and optimized control parameters are shown in 
Table III by performing the above optimization steps.

D. Verification of Optimized Result

To verify the effectiveness of the proposed strategy, the 
wind-thermal-bundled power transmission by the LCC-
HVDC system before and after optimization is compared. A 
short-circuit fault occurs at the PMSG HV bus at t = 0.4 s 
and lasts for 0.01 s. The dynamic response curves of the 
LCC-HVDC system before and after the optimization are 
shown in Fig. 19.

In Fig. 19, it is shown that the proposed strategy can sig‐
nificantly reduce the oscillation amplitude and shorten the 
settling time.

TABLE II
FEASIBLE OPTIMIZATION REGIONS FOR CONTROL PARAMETERS

Control parameter

Kpdc

Kidc

Kpr

Kir

Feasible optimization region

1 £Kpdc £ 20

50 £Kidc £ 300

0.1 £Kpr £ 5

10 £Kir £ 150

TABLE III
INITIAL AND OPTIMIZED CONTROL PARAMETERS

Value

Initial

Optimized

Kpdc

10.00

8.30

Kidc

125.00

59.89

Kpr

1.00

0.74

Kir

100.00

29.41

Start

End

Y

N

Y

Y

N

N

n=0, temp=106

i=0

i=i+1, n=n+1

hi=himin+R(himax�himin)

Fn≥temp?

n≥Nmax or Fn≤10�6?

Output h*i (i=1,2,3,4), F*=temp

h*i=hi 

temp=Fn

i≥4?

Fig. 18.　Flow chart of optimization strategy based on Monte Carlo method.
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VI. CONCLUSION 

In this paper, the dynamic interaction mechanism of the 
wind-thermal-bundled power transmission by LCC-HVDC 
systems is studied based on PAM, and damping characteris‐
tic analysis of SG-dominated oscillation mode is investigated 
based on the damping reconstruction method and the eigen‐
value analysis, respectively. An optimization strategy based 
on Monte Carlo method is proposed. The main conclusions 
are drawn as follows.

1) The LMs for the PMSG, LCC-HVDC system, and SG 
are established, and the accuracy of the complete dynamic 
model is verified by the ETM in DIgSILENT/PowerFactory.

2) Based on the PAM, the disturbance transfer path and 
coupling relationship among subsystems are revealed intui‐
tively. For SG-dominated oscillation, the dynamic interaction 
among subsystems can be expressed as a dynamic process 
where current disturbance and voltage disturbance at the 
PCC drive each other. Based on the damping reconstruction, 
the total damping is decomposed into the internal damping 
of SG and the interaction damping among subsystems.

3) The small-signal model of the wind-thermal-bundled 
power transmission by LCC-HVDC systems is derived and 
the eigenvalue analysis results are presented.

4) The damping of the SG-dominated oscillation mode is 
negatively correlated with the GSC outer-loop proportional 
and integral coefficients. Meanwhile, the damping is nega‐

tively correlated with the proportional and integral coeffi‐
cients of the LCC-HVDC constant current controller.

5) The penalty functions of oscillation modes and decay 
modes are used to construct the objective function and the 
proposed strategy based on Monte Carlo method can en‐
hance the system stability.
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