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Exact Box-constrained Economic Operating 
Region for Power Grids Considering 

Renewable Energy Sources
Huating Xu, Bin Feng, Chutong Wang, Chuangxin Guo, Jian Qiu, and Mingyang Sun

Abstract——The growing integration of renewable energy gener‐
ation manifests as an effective strategy for reducing carbon 
emissions. This paper strives to efficiently approximate the set 
of optimal scheduling plans (OSPs) to enhance the performance 
of the steady-state adaptive cruise method (SACM) of power 
grid, improving the ability of dealing with operational uncer‐
tainties. Initially, we provide a mathematical definition of the 
exact box-constrained economic operating region (EBC-EOR) 
for the power grid and its dispatchable components. Following 
this, we introduce an EBC-EOR formulation algorithm and the 
corresponding bi-level optimization models designed to explore 
the economic operating boundaries. In addition, we propose an 
enhanced big-M method to expedite the computation of the 
EBC-EOR. Finally, the effectiveness of the EBC-EOR formula‐
tion, its economic attributes, correlation with the scheduling 
plan underpinned by model predictive control, and the signifi‐
cant improvement in computational efficiency (over twelvefold) 
are verified through case studies conducted on two test systems..

Index Terms——Exact box-constrained economic operating re‐
gion (EBC-EOR), big-M method, intelligent scheduling, steady-
state adaptive cruise, uncertainty, renewable energy source.

NOMENCLATURE

A. Indices and Sets

τ Constraint index of optimization model
Ψ BCcom

it Exact box-constrained economic operating re‐
gion (EBC-EOR) of power grid components

Ψ BCgri
t EBC-EOR of power grid

i Index of dispatchable components or genera‐
tors

j Index of wind power generation

k Index of wind power generation scenarios

l Index of transmission lines
min, max The minimum and maximum values
r Index of load
St Economic operating region of power grid
t Time step index
Ut Uncertainty set of ut

B. Parameters and Constants

π G
li π

W
lj  π

D
lr Power transfer distribution factors of genera‐

tors, wind farms, and loads
ai, bi, ci Cost coefficients of generators
f max

l Transmission capacity of tie lines

H Time period of model predictive control
M A large enough constant
Mτ Individually evaluated M value for the τth con‐

straint
m1m2m3 Preset parameters for enhanced big-M method
NG NW ND Number of dispatchable generators, wind 

farms, and loads
NT NS Number of scheduling time periods and wind 

power generation scenarios
pD

rt Demand of load r at time step t

pGmin
i pGmax

i The minimum and maximum active power 
outputs of generator i

RDiRUi Ramp-rate limits of generator i

-W jt
-
W jt The lower and upper bounds of wind genera‐

tion j at time step t
1 Column vector whose elements are all equal 

to 1

C. Variables and Optimization Models

θ Vector of binary variables, θ ==[θτ ], "τ
λ Vector of dual variables, λ ==[λτ ], "τ
diag(λ) Diagonal matrix whose diagonal elements are 

λ
ft Basic optimal scheduling model correspond‐

ing to ut

PG Vector of active power output of generators, 
PG =[pG

it ]"i"t

pgri
t Total power generation of power grid

PW Vector of wind power generation, PW =[pW
jt ], 
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"j, "t

PWcur Vector of wind power curtailment, PWcur =
[pWcur

jt ], "j,"t

ut Vector of uncertainty variables of power grid
x t Vector of optimal output of a power grid dis‐

patchable component, x t =[xit ], "i

I. INTRODUCTION 

IN recent years, the pursuit of a cleaner, low-carbon, and 
sustainable future energy system [1]-[3] has resulted in a 

significant increase in the proportion of power generated by 
renewable energy sources (RESs) [4]. However, unlike tradi‐
tional generators (which provide better regulation perfor‐
mances) and conventional loads (which can be forecasted 
with higher accuracy), the RES output is highly variable and 
challenging to forecast with high precision [5]. In order to 
ensure the safe operation of the power grid, the dispatchers 
often develop day-ahead scheduling plans based on conserva‐
tive estimates of RES outputs, which makes it challenging to 
track the optimal operating point of power grid in real time. 
As a result, the curtailment of RESs frequently transpires [6].

Researchers engaged in power grid dispatching have inves‐
tigated a variety of strategies to mitigate RES curtailment 
[7]-[11]. During the day-ahead stage, numerous methods in‐
cluding two-stage robust optimization [7], two-stage stochas‐
tic optimization [9], distributionally robust optimization [11], 
multi-stage robust optimization [12], among others, are stud‐
ied. These aim to deliver a robust and cost-effective day-
ahead scheduling plan for the power grid, equipped to man‐
age any unforeseen RES generation that might arise within 
the subsequent scheduling cycle. Nonetheless, these methods 
often produce day-ahead scheduling plans optimized for spe‐
cific extreme scenarios, consequently becoming overly con‐
servative for the majority of conventional operational condi‐
tions. During the intra-day stage, with the intention of adapt‐
ing to the rapid fluctuations in the optimal operating point of 
power grid due to RES integration, [13] and [14] implement 
offline training and online application strategies to provide 
near-real-time scheduling plans. However, the extensive na‐
ture of the action space that must be explored makes the 
training process time-intensive.

The traditional scheduling plan, deduced via the above‐
mentioned methods, fundamentally serves as a base operat‐
ing point. It only provides localized operational information 
for a power grid under uncertainties, rendering it arduous to 
accurately track the optimal operating point of power grid. 
In order to augment the economic operation of the power 
grid and enhance the accommodation of RESs, alterations in 
future power grid characteristics and new dispatching tech‐
nology requirements are meticulously analyzed in [15] and 
[16]. Following this, [17] and [18] introduce the steady-state 
adaptive cruise method (SACM) for future intelligent dis‐
patching, which is encapsulated in two primary stages. Ini‐
tially, in the offline stage, the uncertainties in the power grid 
are predicted, and a corresponding set of optimal scheduling 
plans (OSPs) for a predefined future timescale is crafted. 

This stage contributes global (not merely localized) opera‐
tional information for the power grid. Subsequently, in the 
online stage, an appropriate OSP is swiftly selected from the 
pre-formulated set, facilitating intelligent real-time dispatch 
of the power grid (i.e., from the global operational informa‐
tion of power grid back to the optimal local operational in‐
formation). This sequence enables the power grid to nimbly 
follow the optimal operating point with elevated temporal 
resolution.

Extensive research has been undertaken to delineate the 
operating region of the power grid (i. e., the set of feasible 
operating points). Studies like [5] and [6] focus on formulat‐
ing the dispatchable region of wind power generation. These 
investigations, however, primarily outline the wind power 
generation accommodation boundary and neglect the set of 
dispatching plans. In [19] - [26], security regions are crafted 
for distribution systems, integrated energy systems, tie lines, 
among others. The principal focus of these security regions, 
though, lies on the security of the power grid, with scant at‐
tention paid to economic factors. As a result, most schedul‐
ing plans within the security region fail to qualify as OSPs. 
Taking economics into account, [27] computes the set of 
OSPs for multi-objective dispatching preferences. Regretta‐
bly, this approach merely reserves a fixed capacity to miti‐
gate operational uncertainty, thus failing to provide global 
operational information for the power grid. References [28] 
and [29] propose delineating the operating region using box 
constraints of power grid, yet it still fails to encompass all 
OSPs under uncertainties due to the requisite that all bound‐
ary operating points adhere to the ramp-rate limits of genera‐
tors. Reference [30] mathematically defines the set of OSPs 
under uncertainties as the economic operating region (EOR) 
of power grid, proposing a bi-level iteration method to calcu‐
late the convex hull of the power grid EOR, factoring in 
RES uncertainty. However, this method bears two primary 
shortcomings. Firstly, as the number of dispatchable genera‐
tors escalates, so does the number of the convex hull verti‐
ces that require individual calculation, leading to a signifi‐
cant computational burden. Secondly, when the generator 
count surpasses three, it relies on dimension reduction tech‐
nology to visualize the convex hull of EOR.

This paper aims to address the economic and computation‐
al complexity challenges in [28]-[30]. We propose the defini‐
tion and formulation of an exact box-constrained economic 
operating region (EBC-EOR), along with a relevant solution 
method. The key contributions of our study are highlighted 
as follows.

1) To thoroughly encompass the OSPs under uncertainties 
and provide global operational information, the easy-to-visu‐
alize EBC-EOR is mathematically defined for the power 
grid and its dispatchable components.

2) Bi-level optimization models and a progressive bound‐
ary-searching algorithm are proposed to determine the EBC-
EOR.

3) An acceleration strategy (enhanced big-M method) is 
proposed to refine the traditional big-M method, which facili‐
tates an increase of more than twelvefold in the computation‐
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al efficiency of the EBC-EOR.
The rest of this paper is structured as follows. In Section 

II, we present a brief introduction to the SACM, the mathe‐
matical definitions of the EBC-EOR, and the bi-level optimi‐
zation models that relate to the EBC-EOR. Section III 
delves into the calculation method for the EBC-EOR and the 
associated acceleration strategy. In Section IV, we present 
case studies illustrating the visualization, economic implica‐
tions, connection to model predictive control (MPC), and 
computational efficiency of the EBC-EOR. We conclude this 
paper in Section V.

II. DEFINITION AND FORMULATION 

A. Brief Introduction of SACM

Figure 1 showcases one of the technical routes to support 
the SACM, a novel scheduling technique devised to bolster 
the capacity of power grid to track its optimal operating 
point under uncertainties and reduce RES curtailment [16], 
[17]. The SACM, operationalized on the scheduling plat‐
form, comprises two stages − offline and online. It supervis‐
es the operating state of power grid and dispatches the pow‐
er grid flexibly and intelligently. In the offline stage, uncer‐
tainty sets pertaining to RESs, loads, and other variables are 
predicted for the power grid. Then, the multi-period EOR of 
power grid for the forthcoming scheduling cycle is periodi‐
cally calculated, grounded in these uncertainty sets. The 
EOR encompasses the global economic operational informa‐
tion (a collection of all the OSPs under uncertainties) of 
power grid. This contrasts with the local economic operation‐
al information rendered by the conventional single OSP. In 
the online stage, the OSP from the EOR is swiftly matched 
and evaluated based on real-time loads and RES generation. 
According to the evaluation outcomes, power grid dispatch‐
ers have the latitude to modify the scheduling objective of 
EOR. Finally, the real-time scheduling of power grid is exe‐
cuted based on the matched OSP and source-load coopera‐
tive control [18].

B. Definition of Proposed EBC-EOR

1)　EOR
In [30], the EOR of power grid is defined as:

St ={x t|x t = ft (ut )"utÎUt } (1)

where ut can be either continuous or discrete, representing 
any uncertainties of the power grid including RES genera‐
tion, load demand, equipment outage, natural disasters, hu‐
man factor risk, etc.; the objective of ft can be a single- or 
multi-combination of the lowest operating cost, the lowest 
carbon emission, and the lowest operating risk, etc.; and x t 
is essentially the OSP of dispatchable components [30]. 
EOR is essentially the set of OSPs of power grid under un‐
certainties.
2)　EBC-EOR

Usually, St is a nonconvex set [30] that is notoriously hard 
to handle. To trade off the computational complexity, engi‐
neering practicality, and economic problems in [28]-[30], we 
propose to formulate the EBC-EOR to approximate the exact 
EOR. Essentially, the EBC-EOR provides a box-type cover‐
age of an OSP set, outlining the potential range of the OSP 
set. For the convenience of dispatchers, we define the EBC-
EORs of dispatchable components and the power grid as fol‐
lows.

1) Definition 1: the EBC-EOR of dispatchable component 
i at time step t is defined as Ψ BCcom

it ={xit| x
min
it £ xit £ xmax

it }, 
where xmin

it = min
xtÎ St

 xit, and xmax
it = max

xtÎ St

xit.

2) Definition 2: the EBC-EOR of the power grid at time 
step t is defined as Ψ BCgri

t ={pgri
t | pgrimin

t £ pgri
t £ pgrimax

t }, where 
pgrimin

t = min
xtÎ St

 1T x t and pgrimax
t = max

xtÎ St

 1T x t.

It should be noted that, in this paper, the EBC-EOR of 
power grid is exclusively associated with the range of total 
active power output (i. e., x t in Definition 2 is confined to 
the active power of dispatchable components). Definition 1 
and Definition 2 clarify that the remaining task in formulat‐
ing the EBC-EORs of dispatchable components and power 
grid involves determining xmin

it , xmax
it , pgrimin

t , and pgrimax
t .

C. Basic Optimal Scheduling Model

As outlined in Section II-B, the EBC-EOR relates to the 
uncertainty set Ut (represented by box constraints in Section 
II-D) and the basic optimal scheduling model (OSM) ft. In 
this study, we investigate the EBC-EOR under wind power 
generation uncertainty. Here, the dispatchable components 
solely comprise generators, with the unit commitment pre‐
sumed to be known. The corresponding basic OSM, which 
seeks to maximize the wind power accommodation at the 
minimum cost, is formulated as:

min∑
t = 1

NT∑
i = 1

NG

(ai (pG
it )

2 + bi pG
it + ci ) (2)

s.t.
                   pGmin

i £ pG
it £ pGmax

i     "i"t (3)

-RDi £ pG
it + 1 - pG

it £RUi     "i"t (4)

0 £ pWcur
jt £ pW

jt    "j"t (5)

-f max
l £∑

i = 1

NG

π G
li pG

it +∑
j = 1

NW

πW
lj (pW

jt - pWcur
jt ) -∑

r = 1

ND

π D
lr pD

rt £ f max
l

"l"t      (6)

∑
i = 1

NG

pG
it +∑

j = 1

NW

(pW
jt - pWcur

jt ) -∑
r = 1

ND

pD
rt = 0    "t (7)

Power grid

Scheduling platform

Monitoring data Control instructions

Online

OSP

Predict uncertainty sets
of power grid

Offline

Uncertainty sets

Multi-period EOR

Scheduling objective
adjustment

Fast match and evaluate
the OSP online

Generate EOR of
power grid

Perform source-load
cooperative control

Fig. 1.　Brief flow chart of SACM.
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Constraint (3) limits the output range of generators. Con‐
straint (4) defines the ramp limit of generators. Constraint 
(5) denotes the range of wind curtailment. Constraint (6) lim‐
its the transmission capacity of line power flow based on the 
power transfer distribution factors [5], [6]. Constraint (7) is 
the power balance condition. The basic OSM is constructed 
based on a DC power flow model, which is widely accepted 
in economic dispatching problems [31]. For the convenience 
of the subsequent expression, we write the compact form, 
which is a common representation [6], [31], [32], of (2)-(7) 
as:

min(P T
G APG +BT PG + 1TC) (8)

s.t.
                 EPG +FPW +KPWcur +G £ 0 (9)

where matrices AEFK and vectors BCG correspond to 
the coefficients in (2)-(7). The formulation of coefficient ma‐
trices and vectors is shown in Appendix A.

The basic OSM determines the scheduling objective of 
EOR. It can be designed and modified according to the re‐
quirements of grid dispatchers (introduced in Section II-A). 
Thus, the EBC-EOR can also be explored based on other ba‐
sic OSMs, even containing energy storage [33].

D. Searching Boundary of EBC-EOR

To delineate the boundaries of the EBC-EOR, we formu‐
late the bi-level optimization problems (10) - (12) and (13) -
(15), pertaining to the EBC-EOR of generator and the EBC-
EOR of power grid, respectively.

min (max)  pG
it (10)

s.t.
                    -W jt £ pW

jt £
-
W jt    "j"t (11)

[PG ]Î arg{(8)s.t. (9)} (12)

min (max)  pgri
t (13)

s.t.

                                  pgri
t =∑

i = 1

NG

pG
it (14)

(11) (12) (15)

The operator “min(max)” in (10) and (13) means solving 
the minimum (maximum) values of objective function, 
which are equivalent to two independent optimization prob‐
lems for searching the lower and upper boundaries of EBC-
EOR (i.e., (10)-(12) and (13)-(15) represent four independent 
optimization models); box constraint (11) represents the 
wind power generation uncertainty range and is embedded in 
the upper-level optimization; and constraint (12) guarantees 
P G

it in the EOR of each time step.
By solving (10) - (12), we can derive the minimum poptmin

it  
and maximum poptmax

it  output power of generators in the 
EOR. Analogously, the minimum pgrimin

t  and maximum 
pgrimax

t  output power of power grid in the EOR can be pro‐
cured by solving (13)-(15).

Since this paper primarily centers on the definition and 
calculation of the EBC-EOR, uncertainty set prediction is 

not our main research focus. Consequently, we apply typical 
box constraints to depict wind power generation uncertainty 
[34]. The uncertainty set may be altered to other convex 
forms [31], preserving the identical compact form and solu‐
tion process. Exploring the calculation of the EBC-EOR 
based on various types of uncertainty sets forms part of the 
future research agenda.

III. METHODOLOGY 

A. Overall Algorithm

This subsection presents the overall process for calculat‐
ing the EBC-EOR, as shown in Algorithm 1. In line 1, the 
EBC-EOR of generator Ψ BCgen

it  and the EBC-EOR of power 
grid Ψ BCgri

t  are initialized as empty sets. Then, the loops 
starting from lines 2 and 3 progressively determine the EBC-
EORs of generators and power grid. Specifically, in line 4, 
the upper and lower box boundaries of the EOR of genera‐
tors are obtained by solving (10) - (12). The EBC-EOR of 
generators is updated in line 5. Similarly, the upper and low‐
er box boundaries of the EOR of power grid are obtained by 
solving (13)-(15) in line 7, and the EBC-EOR of power grid 
is updated in line 8. Finally, when the loops terminate, the 
EBC-EORs of generators and power grid are output as the 
sets of Ψ BCgen

it  and Ψ BCgri
t , respectively.

It is worth mentioning that the bi-level optimization mod‐
els ((10)-(12) and (13)-(15)) proposed in this paper for EBC-
EOR formulation share a conceptual resemblance with the 
subproblem for generating extreme scenarios in two-stage ro‐
bust optimization. Despite this similarity, they diverge sub‐
stantially in their overall algorithm. Typically, the objective 
functions of the upper-level and lower-level optimization in 
the subproblem of two-stage robust optimization are identi‐
cal. In contrast, the objective functions differ in the pro‐
posed bi-level optimization models. Moreover, the two-stage 
robust optimization is typically solved through an iterative 
procedure between the master problem and subproblem, 
while Algorithm 1 incrementally establishes the EBC-EOR 
boundaries by progressively solving a set of independent bi-
level optimization problems.

It becomes apparent that all optimization problems ((10) -
(12) and (13)-(15)) in Algorithm 1 can be resolved indepen‐
dently. Thus, the proposed algorithm lends itself well to par‐

Algorithm 1: calculating EBC-EOR

Input: total scheduling time steps NT

Output: Ψ BCgen
it , Ψ BCgri

t , "t, "i
1. Initialize Ψ BCgen

it =Æ, Ψ BCgri
t =Æ, "t,"i

2. for t = 1:NT do
3.   for i = 1:NG do
4.    Solve (10)-(12) to obtain poptmin

it  and poptmax
it  (which is discussed in   

       Section III-B)
5.    Update Ψ BCgen

it ={pG
it | p

optmin
it £ pG

it £ poptmax
it }

6.   end
7.   Solve (13)-(15) to obtain pgrimin

t  and pgrimax
t  (which is discussed in     

      Section III-B)
8.   Update Ψ BCgri

t ={pgri
t  | pgrimin

t £ pgri
t £ pgrimax

t }
9. end
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allel computation, which can significantly enhance the com‐
putational efficiency.

B. Formulating Single-level Optimization

Since the bi-level optimization problems ((10) - (12) and 
(13) - (15)) are not straightforward to most of off-the-shelf 
solvers [5], we propose reformulating their equivalent single-
level form.

Firstly, transform (8) and (9) with the corresponding Ka‐
rush-Kuhn-Tucker (KKT) conditions, which are sufficient 
and necessary [32].

{EPG +FPW +KPWcur +G £ 0

 λ ³ 0
(16)

diag(λ)(EPG +FPW +KPWcur +G)= 0 (17)

ì
í
î

2APG +B +ET λ = 0

K T λ = 0
(18)

Constraint (16) guarantees the primal and dual feasible; 
constraint (17) is the complementary slackness condition; 
and constraint (18) represents the stationary condition [32].

Then, linearize the nonconvex and nonlinear constraint 
(18) with the big-M method [5], shown as:

-Mθ £EPG +FPW +KPWcur +G £ 0 (19)

0 £ λ £M (1 - θ) (20)

Finally, we can rewrite the bi-level optimization problems 
((10)-(12), (13) and (15)) in the following equivalent single-
level form.

ì
í
î

min (max)  pG
it

s.t.  (11) (16) (18)-(20)
(21)

ì
í
î

min (max)  pgrid
t

s.t.  (11) (14) (16) (18)-(20)
(22)

Therefore, we can solve the single-level optimization prob‐
lems ((21) and (22)) with off-the-shelf solvers instead of the 
previous hard-to-directly-solve bi-level optimization problem.

C. Acceleration Strategy

As introduced in Section II-B, the complementary slack‐
ness condition (17) is linearized by introducing a large con‐
stant M and binary variable θτ for each constraint. This trans‐
formation converts the bi-level optimization problems ((10)-
(12) and (13)-(15)) into the single-level mixed-integer linear 
programming (MILP) problems ((21) and (22)). However, de‐
termining a suitable and safe value of the constant M for the 
traditional big-M method often requires considerable effort 
[5]. Moreover, an excessively large M usually makes the 
node relaxation over-loose, resulting in a larger number of 
nodes to be examined in the MILP solution process. To ad‐
dress these issues, we propose an enhanced big-M method in 
this subsection to enhance the computational efficiency of 
the MILP problem with the large constant M (i.e., (21) and 
(22)). The main idea involves independently evaluating a rel‐
atively tight Mτ for each constraint and replacing the tradi‐
tional single safe M.

Firstly, randomly generate NS wind power generation sce‐
narios P k

W (k = 12NS ) in the corresponding uncertainty 
set, based on which (8) and (9) are solved for the related pri‐
mal optimal solutions {P optk

G P optk
Wcur } (k = 12NS ). Then, 

formulate and solve the following linear optimization prob‐
lem for each wind power generation scenario.

min 1T λk (23)

s.t.
                                      λk ³ 0 (24)

diag(λk )(EP optk
G +FP k

W +KP optk
Wcur +G)= 0 (25)

ì
í
î

2AP optk
G +B +ET λk = 0

K T λk = 0
(26)

Constraints (24) and (25) guarantee the dual feasible and 
complementary slackness condition; and constraint (26) is 
the stationary condition. Since {P optk

G P optk
Wcur } is primal feasi‐

ble, the solution λoptk is dual optimal for P k
W.

Then, calculate λmax
τ  and μmax

τ  as:

λmax
τ =max λoptk

τ     "k (27)

μmax
τ =max |EτP

optk
G +FτP

k
W +KτP

optk
Wcur +Gτ|    "k (28)

where Eτ, Fτ, Kτ, and Gτ denote the τth rows of E, F, K, and 
G, respectviely.

Finally, we determine an Mτ for the τth constraint as:

Mτ =min{max{λmax
τ μmax

τ }×m1 +m2m3 } (30)

where m1 is the reliability coefficient, which linearly enlarg‐
es max{λmax

τ μmax
τ } and usually takes 1.1-1.5; m2 provides an 

offset, especially when max{λmax
τ μmax

τ } is 0, and usually 
takes multiples of the per-unit value, such as 10; and m3 lim‐
its the maximum value of Mτ, which aims to prevent Mτ 
from being assigned an over-enlarged value and usually 
takes 105 - 106. By calculating Mτ as presented above, most 
of Mτ will be much smaller than the traditional safe M. 
When solving (21) and (22), we replace M with Mτ in the τth 
constraint, which tightens the node relaxation in the MILP 
solving process. This improvement can significantly improve 
the computational efficiency of EBC-EOR, which is detailed‐
ly verified in Section IV-E. It is worth mentioning that m1, 
m2, and m3 cannot be set over-large, especially m1. Other‐
wise, the computational efficiency will decline, even close to 
the traditional big-M method in the worst case. We suggest a 
parameter-setting strategy: try to increase the number of sam‐
pling scenarios NS, and on this basis, choose relatively small‐
er values for m1 and m2, and a larger value for m3 (usually 
the same as the safe M in the traditional big-M method).

IV. ILLUSTRATIVE EXAMPLE 

In this section, we conduct case studies on the modified 
IEEE 9-bus and IEEE 57-bus test systems. All the case stud‐
ies are conducted on a computer equipped with a 2.80 GHz 
CPU and 16 GB RAM, utilizing Gurobi 10.0.1 under a Free 
Academic License.

A. System Description

To facilitate example design, we consistently set the total 
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scheduling time periods NT to be 24 hours and assume that 
the load demand at each bus fluctuates proportionally. Ap‐
pendix B presents the total load demand of the test systems 
at each time step. For the IEEE 9-bus test system, two wind 
farms are connected to buses 7 and 9, respectively, with 
their predicted output power indicated in Appendix B. The 
maximum and minimum output power of all generators is 
modified as 100 MW and 30 MW, respectively. The ramp-
down/ramp-up limit of generators is set as 30 MW/h, and 
the rated transmission power of each branch is provided in 
Appendix C. For the IEEE 57-bus test system, two wind 
farms are connected to buses 8 and 12, respectively, with 
their corresponding predicted output power listed in Appen‐
dix A. The minimum output power of all generators is modi‐
fied as 30% of their rated power, and the ramp-down/ramp-
up limit is set as 100 MW/h. The rated transmission power 
of all branches is set as 200 MW.

B. Illustration Analysis of EBC-EOR

In this subsection, we visually compare the EBC-EOR, as 
defined in this paper, with the box-constrained operating re‐
gion (BC-OR) formulated based on the two-stage robust opti‐
mization algorithm [29]. The BC-OR, as introduced in [29], 
involves setting the upper and lower bounds of the operating 
range of generators as decision variables in the master prob‐
lem. In the subproblem, the upper and lower bounds of the 
operating range of generators are taken as known parame‐
ters, based on which the extreme scenario corresponding to 
the highest generation cost is solved. Subsequently, the ex‐
treme scenario is added to the master problem, and the mas‐
ter problem is solved again to update the upper and lower 
bounds. This iterative process continues until the termination 
condition is met, resulting in the final BC-OR.

For convenience, we assume the wind power generation 
uncertainty to be ±60% of the predicted value, based on 
which the BC-ORs and EBC-EORs of the generators and the 
power grid are calculated.

In Fig. 2, we visually compare the EBC-EOR with the 
BC-OR. The dark blue lines in Fig. 2(b) represent the OSP 
of generators adapted to the specific wind power generation 
scenario in Fig. 2(a). In Fig. 2(c), the dark blue line repre‐
sents the corresponding OSP of power grid (sum of optimal 
output of all generators, not simply the sum of EBC-EORs 
of generators).

From Fig. 2(b) and (c), it is evident that the BC-OR fails 
to encompass the OSP corresponding to the output scenarios 
depicted in Fig. 2(a). However, this limitation is overcome 
by the EBC-EOR calculated using the proposed algorithm. 
The reason behind this disparity lies in the formulation of 
the BC-OR, which necessitates all operating points within 
the operating region of each adjacent time step to comply 
with the ramp-rate limits of generators [29], resulting in an 
inability to cover all the OSPs and exhibiting a conservative 
nature to a certain extent. In contrast, the EBC-EOR calculat‐
ed using the proposed algorithm accurately delineates the 
economic operating boundary, encompassing all the OSPs 
and exhibiting superior economic performance.

Besides, it is noticeable that the proposed EBC-EOR can 
be easily visualized regardless of the number of generators.

C. Economics Comparison of EBC-EOR

The visual analysis in the preceding section demonstrates 
that a specific wind power generation scenario can result in 
a corresponding OSP that falls outside the BC-OR but with‐
in the EBC-EOR. In this subsection, we further investigate 
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EORs of power grid.
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and compare the economics of the BC-OR and the EBC-
EOR. First, we consider three kinds of wind power genera‐
tion uncertainties: ±20%, ±40%, and ±60% of the predicted 
power, respectively. Next, we randomly generate 500 wind 
power generation scenarios from each uncertainty set. Final‐

ly, we calculate the general OSPs, the OSPs within the BC-
OR, and the OSPs within the EBC-EOR based on the corre‐
sponding scenarios. The calculation results are presented in 
Table I.

When the wind power generation uncertainty is ±20% of 
the predicted power, the average optimal operation cost with‐
in the BC-OR is 0.52% higher than that of the correspond‐
ing general OSPs. 54.2% of the scheduling plans in the BC-
OR are not general OSPs, and the maximum ratio of the op‐
eration cost within the BC-OR to the related general OSP is 
1.0098. As the wind power generation uncertainty increases 
to ±40% of the predicted power, the average optimal opera‐
tion cost within the BC-OR is 1.69% higher than that of the 
corresponding general OSPs. Notably, 99.6% of the schedul‐
ing plans within the BC-OR are not general OSPs, and the 
maximum ratio of the operation cost within the BC-OR to 
the related general OSP is 1.0342. Furthermore, when the 
wind power generation uncertainty expands to ±60% of the 
predicted power, the average optimal operation cost within 
the BC-OR experiences a further increase to 4.21% higher 
than that of the corresponding general OSPs. In this case, 
none of the scheduling plans within the BC-OR align with 
the general OSPs, and the maximum ratio of the operation 
cost within the BC-OR to the related general OSP reaches 
1.0754. The high proportion of scheduling plans within the 
BC-OR that do not match the general OSPs can be attribut‐
ed to the requirement that the operating points within the 
BC-OR of adjacent time steps must satisfy the ramp-rate lim‐
its of generators. As a result, the scheduling plans within the 
BC-OR often fail to fully utilize the ramping ability of gen‐
erators. This limitation becomes more pronounced as the 
wind power generation uncertainty increases, leading to a 
greater economic impact.

However, when considering the aforementioned three 
types of wind power generation uncertainty, the average op‐
eration cost of the scheduling plans within the EBC-EOR 
aligns with that of the general OSPs. Moreover, the propor‐
tion of OSPs not included in EBC-EOR is 0, indicating that 
the EBC-EOR successfully encompasses all general OSPs. 
By directing the operation of power grid based on EBC-
EOR, superior economic performance can be achieved. 
Therefore, the proposed EBC-EOR is well-suited for the 
SACM.

D. Comparison with MPC

This subsection presents the relationship between the EBC-
EOR of generator and MPC-based dispatching plans. For 

simplicity, we continue to utilize the modified IEEE 9-bus 
test system, employing the EBC-EOR and wind power out‐
put uncertainty sets from Section IV-B. We randomly sample 
1000 wind power generation scenarios and calculate the 
MPC-based dispatching plans for different combinations of 
MPC prediction time periods H and MPC prediction errors. 
The simulation results of the simulations are summarized in 
Table II, where R1 represents the proportion of MPC-based 
dispatching plans falling within EBC-EOR, and R2 denotes 
the proportion of MPC-based dispatching plans resulting in 
load shedding.

As shown in Table II, it is observed that larger H and 
smaller MPC prediction error lead to a higher proportion of 
MPC-based dispatching plans falling within the EBC-EOR 
and a lower occurrence of load shedding. This can be attrib‐
uted to the fact that the EBC-EOR fundamentally provides a 
spectrum of the global optimal dispatching plan set under un‐
certainties. Increasing the MPC prediction time periods and 
reducing the MPC prediction error can bring the MPC-based 
dispatching plan closer to the global optimum, thus increas‐
ing the likelihood of falling within the EBC-EOR. The occur‐
rence of load shedding in the MPC-based dispatching plan is 
attributable to its typically shorter prediction time periods. In 
cases where the wind farm output power experiences signifi‐
cant fluctuations and the available reserve power is insuffi‐
cient, load shedding is likely to occur due to the constraints 
imposed by the ramp-up/ramp-down capabilities of genera‐
tors.

E. Computational Efficiency Comparison

This subsection compares the computational efficiency im‐
provement of the proposed acceleration strategy (enhanced 
big-M method) with the traditional big-M method. We set 

TABLE I
ECONOMICS ANALYSIS

Wind power generation 
uncertainty (%)

±20

±40

±60

Proportion of OSP 
not in BC-OR (%)

54.2

99.6

100.0

Proportion of OSP not 
in EBC-EOR (%)

0

0

0

Average generation cost 
within EBC-EOR (ratio 

to OSPs)

$53561 (1.0000)

$53710 (1.0000)

$53959 (1.0000)

Average generation cost 
within BC-OR
(ratio to OSPs)

$53841 (1.0052)

$54620 (1.0169)

$56231 (1.0421)

The maximum ratio of 
generation cost within BC-

OR to OSP

1.0098

1.0342

1.0754

TABLE II
SIMULATION RESULT WITH DIFFERENT H AND MPC PREDICTION ERRORS

MPC prediction 
error (%)

±20

±15

±10

H = 2

R1 (%)

64.0

70.9

77.9

R2 (%)

2.5

2.0

1.7

H = 4

R1 (%)

65.0

73.1

78.7

R2 (%)

2.3

1.9

1.5
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M = 105 for the traditional big-M method and set NS = 1000, 
m1 = 1.5, m2 = 10, m3 = 105 for the enhanced big-M method. 
Figure 3 shows the frequency counts of Mτ of the IEEE 9-
bus and 57-bus test systems under different wind power gen‐
eration uncertainties evaluated by the proposed acceleration 
strategy (enhanced big-M method). From Fig. 3, we can see 
that when the wind power generation uncertainty is slight, 
the value distribution of Mτ is relatively small. As the wind 
power generation uncertainty increases, the maximum value 
of Mτ also increases. For the IEEE 9-bus and 57-bus test sys‐
tems, when the wind power generation uncertainty is ±60%, 

the maximum values of Mτ are 4532.40 and 19532.79, re‐
spectively. But only a small proportion of Mτ is relatively 
large. For the IEEE 9-bus test system, more than 82% of Mτ 
are within 100. For the IEEE 57-bus test system, more than 
94% of Mτ are within 400. Compared with the traditional 
big-M method, the proposed enhanced big-M method can 
adaptively evaluate Mτ for each constraint and decrease Mτ 
significantly. Thus, the acceleration strategy can alleviate the 
problem of excessive node relaxation in formulating the 
EBC-EOR (solving MILP repeatedly) caused by the tradi‐
tional big-M method.

Table III shows the computational time of the EBC-EOR 
for the IEEE 9-bus and IEEE 57-bus test systems with the 
traditional and enhanced big-M methods. 

The traditional big-M method takes more than 700 s for 
the IEEE 9-bus test system and more than 900 s for the 
IEEE 57-bus test system. However, after applying the pro‐
posed acceleration strategy (enhanced big-M method), it 
takes less than 7 s for the IEEE 9-bus test system and less 
than 75 s for the IEEE 57-bus test system. According to Ta‐

ble III, the proposed big-M method can significantly im‐
prove the efficiency of the traditional big-M method in for‐
mulating the EBC-EOR at least twelvefold.

V. CONCLUSION 

This paper presents a mathematical definition of the EBC-
EOR for both the power grid and its dispatchable compo‐
nents. We introduce bi-level optimization models and a solu‐
tion algorithm to determine the EBC-EOR. Additionally, an 
acceleration strategy (enhanced big-M method) is proposed 
to enhance computational efficiency. Through case studies 
conducted on two test systems, we demonstrate that the 
EBC-EOR can encompass 100% of the general OSPs of 
power grid, and the acceleration strategy can reduce com‐
putaional time by more than twelvefold. The EBC-EOR can 
be formulated offline and implemented online to assess the 
economic operation of the power grid. Moreover, when com‐
bined with the online OSP matching algorithm, it serves as a 
critical technology to support the steady-state adaptive cruise 
of power grid.

In our future work, we plan to extend the EBC-EOR for‐
mulation to consider unit commitment and energy storage 
(both power-side and grid-side). We will develop a corre‐
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Fig. 3.　Frequency counts of Mτ. (a) IEEE 9-bus test system (wind power generation uncertainty is ±20%). (b) IEEE 9-bus test system (wind power genera‐
tion uncertainty is ±40%). (c) IEEE 9-bus test system (wind power generation uncertainty is ±60%). (d) IEEE 57-bus test system (wind power generation 
uncertainty is ±20%). (e) IEEE 57-bus test system (wind power generation uncertainty is ±40%). (f) IEEE 57-bus test system (wind power generation uncer‐
tainty is ±60%).

TABLE III
COMPARISON OF COMPUTATIONAL TIME OF EBC-EOR

Test system

IEEE 9-bus

IEEE 57-bus

Wind power generation 
uncertainty (%)

±20

±40

±60

±20

±40

±60

Computational time (s)

Traditional 
big-M method

755.55

735.45

>900

>900

>900

>900

Enhanced big-M 
method

2.70

3.35

6.64

25.74

37.34

72.60
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sponding online OSP fast-matching algorithm for efficient 
implementation. Additionally, we aim to explore the applica‐
tion of the EBC-EOR in the context of the electricity market.

APPENDIX A 

To help understand the specific elements and connotations 
of the coefficient matrices and vectors in the compact-form 
scheduling model, we take the modified “case4gs” test system 
in Matpower 7.1 [35] as an example and provide the specific 
composition of the relevant coefficient matrices and vectors. 
Let the number of scheduling time periods NT = 2. The maxi‐
mum and minimum output power of generators is set to be 200 
MW and 30 MW, respectively. The ramp-up and ramp-down 
rates of generator are all set to be 60 MW/h. Let a1 = 0.11, b1 =
5, c1 = 150, a2 = 0.085, b2 = 1.2, and c2 = 600. A wind farm is 
connected at bus 2, and the predicted power of the wind farm 
at t = 1 and t = 2 is 66 MW and 75 MW, respectively. The grid 
load at t = 1 and t = 2 is 378.00 MW and 406.35 MW, respec‐
tively.

Since the decision variable vectors influence the coefficient 
matrices and vectors, we first set PG, PW, and PWcur as:

PG =

é
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ê
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êê
ê
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(A1)
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(A2)

PWcur =
é

ë
ê
êê
ê ù

û
ú
úú
úpWcur

11

pWcur
12

(A3)

Then, we calculate the power transfer distribution factor 
(PTDF) matrix of the test system (with bus 1 as the slack bus) 
as follows, which can be conveniently calculated using Mat‐
power [35].

PTDF =

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú0 -0.7325 -0.1975 -0.5350
0 -0.2675 -0.8025 -0.4650
0 0.2675 -0.1975 -0.5350
0 -0.2675 0.1975 -0.4650

(A4)

Finally, construct the coefficient matrices AEFK and the 
coefficient vectors BCG, of which the expressions are given 
in the Supplementary Material. The elements of A, B, and C 
are mainly composed of the cost coefficients of the generators. 
In E, F, K, and G, the first to the fourth rows represent the 
minimum output power constraints of the generators; the 
fourth to the eighth rows represent the maximum output power 
constraints of the generators; the ninth and tenth rows repre‐
sent the ramp-up constraints of the generators; the eleventh 
and twelfth rows represent the ramp-down constraints of the 
generators; the thirteenth to the twenty-eighth rows represent 
the power flow constraints; the twenty-ninth to the thirty-sec‐
ond rows represent the power balance constraints; and the thir‐
ty-third to thirty-sixth rows represent the wind curtailment 
power constraints.
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