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Abstract——To reduce the difficulty and enhance the enthusi‐
asm of private-owned electric vehicles (EVs) to participate in 
frequency regulation ancillary service market (FRASM), a deci‐
sion aid model (DAM) is proposed. This paper presents three 
options for EV participating in FRASM, i. e., the base mode 
(BM), unidirectional charging mode (UCM), and bidirectional 
charging/discharging mode (BCDM), based on a reasonable sim‐
plification of users’  participating willingness. In BM, individual 
EVs will not be involved in FRASM, and DAM will assist users 
to set the optimal charging schemes based on travel plans un‐
der the time-of-use (TOU) price. UCM and BCDM are two 
modes in which EVs can take part in FRASM. DAM can assist 
EV users to create their quotation plan, which includes hourly 
upper and lower reserve capabilities and regulation market 
mileage prices. In UCM and BCDM, the difference is that only 
the charging rate can be adjusted in the UCM, and the EVs in 
BCDM can not only charge but also discharge if necessary. 
DAM can estimate the expected revenue of all three modes, and 
EV users can make the final decision based on their preferenc‐
es. Simulation results indicate that all the three modes of DAM 
can reduce the cost, while BCDM can get the maximum expect‐
ed revenue.

Index Terms——Electric vehicle (EV), frequency regulation, de‐
cision aid model (DAM), utility maximization, battery wear cost.

NOMENCLATURE

 A. Parameters and Variables

ρmin The minimum performance score requirement

γ Relative regulation capacity in hours

η Battery charging/discharging efficiency

β Coefficient of battery wear model

θtj Clearing probability of wMrep
tj

μsig
t Average value of historical frequency regula‐

tion signal in hour t
μR

t μ
M
t Average values of historical regulation market 

capability clearing price (RMCCP) and histori‐
cal regulation market performance clearing 
price (RMPCP) in hour t

C up
t C dn

t Upper and lower reserve capacities in hour t 
(MW)

C chexp
it Expected charging cost of mode i in hour t

C ageexp
it Expected battery wear cost of mode i in hour t

dtjstj Upper and lower boundaries of index j during 
isometric intervals

e0
t Battery energy at the start of hour t (MWh)

eit Battery energy of mode i in hour t (MWh)
E Battery energy storage capacity (MWh)
-
E -E Upper and lower energy limits for battery en‐

ergy (MWh)
i Index of regulation modes, i = 123 
j Index of regulation market mileage quotation

k Index of regulation signal interval
M up

tk M
dn

tk Upper and lower mileages
N Number of isometric intervals
Pmax The maximum charging/discharging power
P base

t Base power in hour t (MW)
R Battery cell replacement price (¥)
SoC start Initial state of charge (SoC)
SoCoff Expected SoC by users
sig up

tk sig dn
tk Upper and lower frequency regulation signals

sig uphis
tk sig dnhis

tk Historical upper and lower frequency regula‐
tion signals in interval k of hour t

t Index of time (hour)
t starttoff On-grid and off-grid time of electric vehicle 

(EV)
Dt Time scale of submission scheme (1 hour)
T Total time spent online (hour), T = toff - t start

ut Battery cycle depth in hour t
u*

t Optimal battery cycle depth in hour t
U max exp

im  The maximum expected revenue of mode i 
U max exp

im + 1 when iterating m and m + 1 times
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wR
t RMCCP in hour t (¥/MWh)

wM
t RMPCP in hour t (¥/MWh)

wTOU
t Time-of-use (TOU) price in hour t (¥/MWh)

wMrep
tj Mileage quotation of index j in hour t 

Y Rexp
it Expected RMCCP credit of mode i in hour t

Y Mexp
itj Expected RMPCP credit of mode i in hour t

 B. Functions

f (·) Probability density function of RMPCP

ϕ(·) Battery wear cost function

φ(·) Derivative of ϕ(·)

I. INTRODUCTION 

THE large-scale integration of renewable energy brings 
more challenges in power system frequency regulation 

[1], and new regulation resources are urgently needed for the 
operation of a modern electricity network [2]. With the in‐
crease of the ownership of pure electric vehicles (EVs) and 
more advanced vehicle-to-grid (V2G) technology [3], [4], 
EVs can provide peak shaving and frequency regulation an‐
cillary services [5], [6], supply reactive power compensation 
[7], improve the consumption capacity of renewable energy, 
and reduce power grid investment, operation, and mainte‐
nance costs [8], [9], which have broad applications. EV us‐
ers can make an extra profit by providing frequency regula‐
tion services [10] - [13]. According to the performance-based 
regulation mechanism, [14] proposed a charging scheduling 
model for EVs to participate in the frequency regulation an‐
cillary service market (FRASM), and a mixed-integer linear 
programming (MILP) model was established to guarantee 
economic revenue for users. Reference [15] proposed non-co‐
operative and cooperative game theoretic approaches to en‐
courage EV users to provide frequency regulation ancillary 
services. It focused on the interaction of EVs and EV aggre‐
gators and it was more practical. Reference [16] proposed an 
EV aggregator model and an individual EV model. It used 
the state-space method to simplify EV aggregator model and 
reduced the communication requirement in the individual 
EV model. It could improve the efficiency of EV aggrega‐
tors in managing multiple EVs. Reference [17] established 
an EV aggregator model to evaluate reserve capacity and im‐
plement optimal power control for EVs. Reference [18] pro‐
posed the frequency regulation policy for decentralized V2G, 
which not only considered the charging demands of EV us‐
ers but also presented two kinds of participating patterns.

While the rapid and flexible response capacity makes EVs 
a good candidate to smooth frequency variations [10], fre‐
quent charging or discharging can lead to battery failure 
[19]. Reference [20] designed an operation and economic 
model based on reinforcement learning algorithm for battery 
swap stations, which could provide a high-quality solution to 
the economic analysis considering the battery degradation. 
Reference [21] proposed a grouping-converting strategy to 
avoid frequent charging and discharging. Based on ambient 
temperature, cycle index, current, and charging/discharging 
depth, [22] proposed a cycle life model of EV batteries. It 

was concluded that the frequency stability of the power grid 
could be improved when EVs and generator sets cooperated. 
According to the Australian National Electricity Market, [23] 
proposed a battery market operation model of EVs and estab‐
lished a battery wear cost estimator to maximize the revenue.

Private EV owners are more interested in the benefits of 
participating in FRASM and the additional battery degrada‐
tion while following the frequency regulation signals. They 
may not react fully to respond to frequency regulation sig‐
nals to obtain more revenue [24]. Therefore, there are two 
major problems for EVs to participate in FRASM. First, the 
quotation mechanism for expressing the users’  preferences 
is not friendly to EV users. They are difficult to accomplish 
quotation independently. Second, the private EV owners 
should take into account the cost of the batteries. They lack 
the professional knowledge and skills to make a good esti‐
mate of possible revenue and cost.

This paper proposes a decision aid model (DAM), which 
can facilitate private EV owners to participate in FRASM. 
EV users’  participating preferences are simplified to three 
options: ① not participating, i.e., base mode (BM); ② only 
charging, but the charging rate can be adjusted according 
to frequency regulation signals, i. e., unidirectional charging 
mode (UCM); ③ not only charging but also discharging 
if necessary, i. e., bidirectional charging/discharging mode 
(BCDM). An optimal charging scheme will be generated 
based on EV user’s departure hour and state of charge 
(SoC) requirement for the next journey in all three modes. 
DAM will assist EV users to generate hourly upper and low‐
er reserve capabilities and regulation market mileage prices 
for UCM and BCDM only. Battery wear cost is considered 
in both UCM and BCDM. DAM can estimate the expected 
revenue of all three modes, and EV users can make a final 
decision based on their preferences. By making a choice 
among different participating modes, they can easily partici‐
pate in FRASM.

The main contributions of this paper are as follows.
1) DAM is proposed in this paper. By setting simple par‐

ticipating modes, the users’  preferences are taken into ac‐
count. It will facilitate the participation of private EV users 
in FRASM.

2) An optimal bidding method is proposed in this paper, 
which can achieve the maximum expected revenue based on 
historical information in each participating mode.

The rest of this paper is organized as follows. Section II 
describes the frame of FRASM with the participating pro‐
cess of EV. Section III introduces DAM with its construc‐
tion. Section IV describes and discusses the simulation re‐
sults. Section V concludes this paper.

II. FRAME OF FRASM 

Based on mainstream domestic and international FRASMs 
[25] - [31], the basic process of EV participating in FRASM 
through providing secondary control is illustrated in Fig. 1.

On day-ahead quotation day (day D - 1), the dispatching 
center firstly issues market-related information, including the 
lower and upper limits of regulation market mileage price, i.e.,
wMmin = 6 ¥/MWh, wMmax = 15 ¥/MWh, respectively. EV us‐
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ers will submit their hourly upper and lower reserve capaci‐
ties and regulation market mileage price of the next day 
with the assistance of DAM. DAM will estimate the expect‐
ed revenue of three participating modes for users to select, 
along with the corresponding submission schemes. The dis‐
patching center converts the submitted regulation market 
mileage price into mileage ranking price, and the trading 
center completes the pre-clearing.

On centralized and unified clearing day (day D), the dis‐
patching center issues frequency regulation signals according 
to the pre-clearing result and frequency regulation require‐
ment, where the resolution of the frequency regulation signal 
is 2 s. EVs adjust their power rates according to the received 
frequency regulation signals and the adopted response con‐
trol policy in DAM. EVs do not always respond to 100% of 
the received frequency regulation signals, and the provided 
regulation mileage may be less than the required one.

On regulation clearing price credit settlement day (day D+
n), the bid-winning EV users can get regulation market capa‐
bility clearing price (RMCCP) credit and regulation market 
performance clearing price (RMPCP) credit based on clear‐
ing result and their performances. The RMCCP credit is cal‐
culated using RMCCP, which is determined by the trading 
center, and the formula is expressed as:∑

t

wR
t (C up

t +C dn
t ) (1)

Each EV should perform well when providing frequency 
regulation ancillary services; otherwise, RMPCP credit will 
be reduced, or the eligibility of participating in FRASM will 
be lost. ρ t is the performance score of EV in hour t, which is 
used to evaluate its performance. The calculation method is 
expressed as:

ρ t =
∑
k = 1

K

(M up
tk +M dn

tk )

C up
t ∑

k = 1

K

|| sig up
tk +C dn

t ∑
k = 1

K

|| sig dn
tk

(2)

For any EV, its RMPCP credit settlement formula is:

∑
t

é

ë
ê
êê
ê ù

û
ú
úú
úwM

t

K
ρ t∑

k = 1

K

(M up
tk +M dn

tk ) (3)

where sig up
tk Î[-10], sig dn

tk Î[01], and they cannot be non-ze‐
ro concurrently; 1 £ k £K, and K = 1800; and ρmin £ ρ t £ 1 and 
FRASM generally uses ρmin = 0.7.

III. DAM 

A. DAM Framework

The structure of DAM is shown in Fig. 2. When EVs are 
connected to the grid, users are required to input their next 
departure time and the necessary SoC level of the battery.

DAM firstly calculates base power with the lowest charg‐
ing cost based on time-of-use (TOU) price and input. The 
base power is used as the charging scheme of BM, and also 
as the initial value of UCM and BCDM. Then, DAM calcu‐
lates the submission schemes of UCM and BCDM. DAM de‐
termines regulation market mileage price list based on histor‐
ical RMPCP and bidding policy, and estimates the optimal 
regulation mileage of EV based on historical frequency regu‐
lation signals and response control policy. The subgradient 
method is employed to iteratively optimize the base power 
over time until convergence is satisfied. Finally, DAM out‐
puts the charging scheme of BM and the maximum expected 
revenues together with respective hourly upper and lower re‐
serve capabilities and regulation market mileage prices of 
UCM and BCDM. DAM is applicable to all types of private 
EVs, and is located at the EV owner end.

B. Three Participating Modes

To make it easier for EV users to participate in FRASM, 
this paper simplifies three possible participating modes ac‐
cording to the electric energy flow direction and the prefer‐
ence of EV users.
1)　BM

In this mode, EV will not respond to the frequency regula‐
tion signals from the dispatching center, and DAM will gen‐
erate a charging scheme with the lowest cost based on TOU 
price and input. The charging scheme is represented by the 
base power of each hour P base

1t , where “1” represents that the 
frequency regulation participating mode is BM. P base

1t  will al‐
so be used as the initial values for the following modes, 
whose physical meaning is the baseline for power adjust‐
ment.
2)　UCM

In this mode, EV will be partially involved in FRASM by 
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modifying its charging power rate to respond to the upper 
and lower frequency regulation signals. DAM will generate 
a submission scheme with the maximum expected revenue 
based on the TOU price, input, and historical information of 
FRASM. The submission scheme will be obtained based on 
iterative optimization of the base power in BM.
3)　BCDM

In this mode, EVs can provide a larger reserve capacity 
by discharging if necessary. DAM will produce a submission 
scheme of BCDM with the maximum expected revenue us‐
ing the same approach and steps as UCM.

Table I lists the range of the upper and lower reserve ca‐
pacities of a single EV in hour t in three modes.

C. Optimization Model

1)　The Lowest Charging Cost Model
In BM, EVs do not participate in FRASM, and the objec‐

tive function only includes the charging cost. Users expect 
to keep the cost of charging as low as possible, denoted as 
U min

1 . The expression is as follows and its decision variables 
are base power for T hours.

U min
1 =min∑

t

wTOU
t P base

1t Dt (4)

To complete the next travel schedule, the base power 
should meet the charging demand constraint, which is shown 
as:

∑
t = tstart

toff - 1 P base
1t ηDt

E
³ SoCoff - SoC start (5)

The upper and lower limits of the base power are ex‐
pressed as:

0 £P base
1t £Pmax    "t (6)

The change constraint of the battery energy in BM is 
shown as:

e1t = e1t - 1 +P base
1t ηDt (7)

where e1tstart = SoC start·E. 

And the upper and lower limits of the battery energy stor‐
age are expressed as:

-
E £ e1t £ -E     "t (8)

The optimization formula of BM is expressed as:

ì
í
î

ïï

ïïïï

U min
1 =min∑

t

wTOU
t P base

1t Dt

s.t. (5)-(8)
(9)

Formula (9) is a constrained linear programming (LP) 
problem, which can be solved directly by Gurobi optimiza‐
tion software. Optimized P base

1t  for T hours will be the charg‐
ing scheme of BM and also be used as the initial value of 
UCM and BCDM.
2)　Data Preparation of UCM and BCDM

When calculating the expected revenue of EV participat‐
ing in FRASM, we need to know the RMPCP, response 
costs, and the performance of participating period.

RMPCP can only be predicted, and whether the quotation 
can be cleared will depend on the actual situation of day D. 
DAM can only predict RMPCP of day D with historical da‐
ta. So, we adopt the bidding policy to firstly split 
[wMminwMmax ] and estimate the clearing probability of each 
segment. All quotations and their clearing probabilities form 
the regulation market mileage price list.

The bidding policy considers that RMPCP of day D is 
subject to normal distribution. The historical RMPCP of the 
same period (PCPt) is the mean value. The interval 
[wMminwMmax ] is divided into N isometric intervals, and N 
can be determined by the users. The geometric mean wMrep

tj  
of each interval is selected as the regulation market mileage 
quotation. The solution diagram of the regulation market 
mileage quotation is shown in Fig. 3 and the calculation is 
expressed as:

wMrep
tj = f -1

æ

è

ç

ç

ç

ç
ççç
ç

ç

ç
ö

ø

÷

÷

÷

÷
÷÷÷
÷

÷

÷∫
stj

dtj

f (x)dx

dtj - stj
(10)

Concurrently, the clearing probability θtj of wMrep
tj  is:

θtj = 1 -
∫

wMmin

wMrep
tj

f (x)dx

∫
wMmin

wMmax

f (x)dx
(11)

where f (x)=
1

2π σ
e
-

(x -PCPt )2

2σ , and σ =
wMmax -wMmin

6
.

When calculating the expected revenue at a given price, 
the regulation clearing price credits (RMCCP credit and RM‐
PCP credit), charging cost, and battery wear cost should be 
considered simultaneously. The full response is not always 

TABLE I
RANGE OF UPPER AND LOWER RESERVE CAPACITIES OF A SINGLE EV IN 

HOUR t IN THREE MODES

Mode

BM (i = 1)

UCM (i = 2)

BCDM (i = 3)

Upper reserve capacity C up
t  

(MW)

0

min
ì
í
î

ü
ý
þ

P base
it 

-
E - e0

it

γ

min
ì
í
î

ü
ý
þ

Pmax +P base
it 

-
E - -E
γ

Lower reserve capacity C dn
t  

(MW)

0

min
ì
í
î

ü
ý
þ

Pmax -P base
it 

-
E - e0

it

γ

min
ì
í
î

ü
ý
þ

Pmax -P base
it 

-
E - e0

it

γ

Note: when ρmin = 0.7, γ = 0.08 [32].

wM,min wM,maxwM,rept, j
PCPt

Probabity

Interval

Fig.3.　Solution diagram of regulation market mileage quotation.
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able to obtain the maximum expected revenue. When we 
know the regulation market mileage price list, we should al‐
so know the best mileage under each quotation. In this pa‐
per, the optimal mileage at every moment is determined by 
response control policy. M up

itk and M dn
itk at each regulation in‐

terval are described by base power P base
it . The response con‐

trol policy obtains the optimal battery cycle depth u* by bal‐
ancing the regulation clearing price credit and battery wear 
cost and limits the power adjustment range of the EV.

Frequent charging/discharging will accelerate the aging of 
EV battery, shorten its service life, and damage the profit of 
users. The battery wear cost of the EV is related to battery 
cycle depth ut caused by frequent charging/discharging per 
hour. The deeper the cycle depth, the shorter the life, and 
the higher the cost of the battery [32]. In this paper, the cost 
of battery aging caused by the battery cycle depth is approxi‐
mately expressed as (12) [33], which enables this electro‐
chemically accurate model to be used in various battery opti‐
mization problems and guarantees the solution quality.∑

t

ERβu2
t (12)

where R = ¥21000; and β = 0.097.
According to [32], the regulation clearing price credit per 

hour is a linear incremental function of the battery cycle 
depth. According to (12), the battery wear cost is a non-lin‐
ear incremental function of ut. The distributions of u are 
shown in Fig. 4. The abscissa corresponding to the maxi‐
mum difference between regulation clearing price credit and 
battery wear cost is u*. When u < u*, the difference increases 
with the increase of u; when u > u*, the difference decreases 
with the increase of u. Therefore, when u = u*, the difference 
is the largest.

To determine the optimal mileage range of each regulation 
interval in hour t, u*

t  should be calculated. According to the 
geometrical relation in Fig. 4, when the tangent line of the 
curve is parallel to the line, the difference between the verti‐
cal coordinate of the line and the curve is the largest. There‐
fore, u*

t  is solved as:

u*
t = φ

-1 (λt ) (13)

φ(μu
t )=

dϕ(μu
t )

dμu
t

= λt (14)

where ϕ(μu
t )= β(μu

t )2; and λt =
η2 + 1
ηRDt

2μR
t + μ

M
t μ

sig
t

μsig
t

. Because 

the FRASM of day D is unknown, this problem is solved 
with historical data.

The upper and lower energy limits are enforced by the re‐
sponse control policy in interval k of hour t as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

-
E

g
itk =min{

-
E min{emin

itk - 1eitk }+ u*
t E/K}

-E
g
itk =min{-E max{emax

itk - 1eitk }- u*
t E/K}

emax
itk =max{emax

itk - 1eitk }

emin
itk =min{emin

itk - 1eitk }

(15)

The regulation mileage of EVs in the lower frequency reg‐
ulation section, the upper frequency regulation section with 
reducing charging rate, and the upper frequency regulation 
with increasing discharging rate section are calculated as:

M dn
itk =min{ }1

ηDk
(
-
E

g
itk - 1 - eitk - 1 )-P base

it C dn
it ·sig his

tk (16)

M up
itk =min{ }1

ηDk
(
-
E

g
itk - 1 - eitk - 1 )-P base

it C up
it ·sig his

tk (17)

M up
itk =min{ }P base

it -
η
Dk

(-E
g
itk - 1 - eitk - 1 )-C up

it ·sig his
tk (18)

where the initial value of the energy storage limit is emax
itstart1 =

emin
itstart1 = SoC start·E; and sig his

tk = sig uphis
tk + sig dnhis

tk .

3) Construction of UCM and BCDM
The objective function in UCM or BCDM consists of 

RMCCP credit, RMPCP credit, charging cost, and battery 
wear cost caused by participating in FRASM.

Since the market situation of day D is not known, this pa‐
per calculates the expected revenue by using historical data. 
The objective function is the maximum expected revenue, 
expressed as:

U max exp
i =∑

t

max
j

(Y Rexp
it + Y Mexp

itj -C chexp
it -C ageexp

it ) (19)

Y Rexp
it =wR

t (C up
it +C dn

it ) (20)

Y Mexp
itj =

wMrep
tj θ tj

é

ë
ê
êê
ê ù

û
ú
úú
ú∑

k = 1

K

(M up
itk +M dn

itk )

2

C up
it∑

k = 1

K

|| sig uphis
tk +C dn

it∑
k = 1

K

|| sig dnhis
tk

(21)

C chexp
it =wTOU

t P base
it Dt (22)

C ageexp
it =ERβ ( )∑

k = 1

K

uitk

2

(23)

uitk =
ì
í
î

ïï
ïï

(M dn
itk +M up

itk )ηDk/E      M up
itk £P base

it

(M dn
itk +M up

itk )Dk/η/E    M up
itk >P base

it

(24)

To satisfy the travel demand, the UCM and BCDM should 
satisfy the charging demand constraints too. We assume that 
frequency regulation signals are energy zero-mean (including 
efficiency losses). The changes of the amount of battery cre‐
ated by the upper and lower frequency regulation signals can 
counteract each other over an extended time. Therefore, the 

0

Regulation clearing

price credit

Battery

wear cost

u
*

u

Revenue or

cost (¥)

Fig. 4.　Illustration of optimal cycle depth.

625



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 2, March 2024

UCM and BCDM only need to consider the changes of the 
amount of battery created by base power. It can be ex‐
pressed as:

∑
t = tstart

toff - 1 P base
it ηDt

E
³ SoCoff - SoC start    i = 23 (25)

The upper and lower limits of the charging base power in 
the UCM and BCDM are expressed as:

0 £P base
it £Pmax    i = 23"t (26)

The change constraint of the battery energy in UCM is:

e2tk = e2tk - 1 + (P base
2t +M dn

2tk -M up
2tk )ηDk (27)

And the upper and lower limits of the battery energy stor‐
age in UCM are illustrated as:

-E £ e2tk £
-
E     "t"k (28)

In BCDM, the change constraint of the battery energy 
should be differentiated between charging and discharging in‐
tervals. Equations (29) and (30) represent the change con‐
straints in the charging and discharging intervals, respective‐
ly.

e3tk = e3tk - 1 + (P base
3t +M dn

3tk -M up
3tk )ηDk (29)

e3tk = e3tk - 1 + (P base
3t +M dn

3tk -M up
3tk )Dk/η (30)

And the upper and lower limits of the battery energy stor‐
age in BCDM are expressed as:

-E £ e3tk £
-
E     "t"k (31)

where Dk = 2 s; and the initial battery energy of the EV is 
e2tstart1 = e3tstart1 = SoC start·E.

The optimization formula of UCM is expressed as:
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U maxexp
2 =∑

t

max
j

(Y Rexp
2t + Y Mexp

2tj -C chexp
2t -C ageexp

2t )

s.t. (25)-(28)
(32)

The optimization formula of BCDM is expressed as:

ì
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U maxexp
3 =∑

t

max
j

(Y Rexp
3t + Y Mexp

3tj -C chexp
3t -C ageexp

3t )

s.t. (25) (26) (29)-(31)
(33)

In UCM and BCDM, the objective function and the con‐
straint expression are identical, so the solution method and 
the step are identical. As listed in Table I, C up

it  and C dn
it  are 

the functions of P base
it . The optimization formula of UCM or 

BCDM is the function of P base
it , M up

itk, and M dn
itk. After adopt‐

ing response control policy, M up
itk and M dn

itk can be described 
by P base

it . At this time, the objective function and constraint 
expressions of UCM or BCDM become the non-linear func‐
tion of only P base

it . P base
it  exists many times in the optimization 

formula of UCM or BCDM, and its objective function is 
non-linear, so it is difficult to solve directly.

To solve P base
it  in UCM or BCDM, the subgradient method 

is adopted to iteratively update P base
it  and traverse regulation 

market mileage price list until the convergence condition is 
satisfied. The flow chart of DAM solving in UCM or 
BCDM is shown in Fig. 5. The convergence condition is as 
follows:

U maxexp
im + 1 -U maxexp

im

U maxexp
im

< 1 ´ 10-4 (34)

IV. SIMULATION

A. Data and Setting

The effectiveness of the DAM and the superiority of the 
control policy will be analyzed by taking EV participating in 
FRASM as an example. In this case study, the TOU price, 
RMCCP, and RMPCP refer to the data of the energy market 
and FRASM in Guangdong Province. The form of frequency 
regulation signals adopted in China is similar to PJM. Be‐
cause there is a lack of public data in China, frequency regu‐
lation signals come from PJM in the case examples. Differ‐
ent types of EVs may have slightly different parameters, 
which can be initialized manually when the user first uses 
DAM. In simulations, the following parameters shall be used 
for EVs: Pmax = 0.007, E = 0.03, 

-
E = 0.95E, -E = 0.15E, and η =

0.92 [34]. Among input data, t start and SoC start are automatical‐
ly identified by the DAM, and toff and SoCoff are input by us‐
ers according to their travel plans.

B. Case Study

Based on the above research, case studies will be carried 
out. It is assumed that the EV participating in FRASM will 
not affect the regulation signals, the RMCCPs, or the TOU 
prices.

Mileage price list

N

N

N

Y

Y

Y

Start

End

Base power of T hours
with the lowest charging

cost as initial value

t= tstart

Optimal mileage of
each mileage price

Expected revenue for
each mileage price

Hour t

The maximum expected
revenue and corresponding

mileage price

Is EV on the grid

at t+1?

Sum of the maximum
expected revenue of T hours

t= t+1

Is the convergence

condition met?

Upper and lower capacities
and mileage quotations

of T hours, sum of the
maximum expected revenue

Update of base power of T

hours with subgradient 

Are constraints
satisfied?

Fig. 5.　Flow chart of DAM solving in UCM or BCDM.
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1)　Simulation Results in Three Modes
The input of the DAM is t start = 13, toff = 18, SoC start = 0.35, 

SoCoff = 0.75, and N = 6. In BM, EV does not participate in 
FRASM, and the upper and lower reserve capacities are al‐
ways 0. The regulation market mileage prices are always 
wMmax for T hours. The lowest charging cost for BM is ¥5.93. The SoC level of the battery is 0.75 when EV is off 
the grid.

Figure 6 shows the submission schemes for hours 13-17 in 
UCM and BCDM generated by DAM.

The maximum net revenues of UCM and BCDM are ¥0.98 and ¥1.57, respectively. The off-grid SoC of UCM 
and BCDM are 0.825 and 0.785, respectively. BCDM has a 
larger reserve capacity and a smaller mileage quotation, and 
its clearing probability is higher. It can be observed that EV 
users who choose BCDM are more willing to participate in 
FRASM, which is in line with the actual situation of users. 
The model proposed in this paper is an aid model, which 
aims to reduce the workload of users and enhance their par‐
ticipating enthusiasm. Users will be able to determine which 
one is the most suitable for their actual situations.

Table II shows the input data for two different typical sce‐
narios. Table III shows the net revenue and SoC that can be 
obtained in three modes and the above two scenarios when 
EV is off the grid. In Scenario I, the SoC requirement for 
the next travel is small and the TOU price is low. Moreover, 
the lower frequency regulation signals are more in the early 

morning. In this scenario, the majority of users will opt for 
BCDM. They can obtain more net revenue by meeting the 
charging demand. In Scenario II, BCDM may fail to satisfy 
the SoC requirement due to the presence of more upper fre‐
quency regulation signals. Users who are eager to travel or 
pay more attention to SoC tend to choose UCM. Therefore, 
when the same user faces different scenarios, the choice is 
not constant. However, users who do not rush to travel or 
pay more attention to revenue tend to choose BCDM. Al‐
though SoC is not as good as expected, it does not have 
much impact on users. Therefore, different users might make 
different choices when dealing with the same scenario.

2)　Verification of Submission Scheme
To verify the effectiveness of the DAM, we use the fre‐

quency regulation signals of the same time on day D to cal‐
culate the revenue and cost. The comparison results of days 
D and D-1 are shown in Fig. 7. Net income for both days is 
about the same. Therefore, the proposed DAM in this paper 
is feasible.

To verify the optimality of the response control policy, us‐
ing the data of day D, response control policy, and simple 
policy (actual regulation mileages are always equal to the re‐
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Fig. 6.　Submission schemes in UCM and BCDM generated by DAM. (a) 
UCM. (b) BCDM.

TABLE II
INPUT DATA FOR TWO DIFFERENT TYPICAL SCENARIOS

Scenario

I

II

[tstart, toff] (hour)

[0, 6]

[13, 18]

[SoC start, SoCoff]

[0.35, 0.75]

[0.35, 0.85]

TABLE III
NET REVENUE AND SOC IN THREE MODES UNDER TWO SCENARIOS

Scenario

I

II

BM

Net 
revenue 

(¥)

-3.89

-7.41

Off-grid 
SoC

0.75

0.85

UCM

Net 
revenue 

(¥)

1.54

0.65

Off-grid 
SoC

0.867

0.923

BCDM

Net 
revenue 

(¥)

1.930

0.802

Off-grid 
SoC

1.130

0.844
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Fig. 7.　Comparison results of days D and D-1.
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quirements) are used to calculate and compare revenue and 
cost.

As listed in Table IV, EV users using the response control 
policy may receive a higher net income compared to those 
using the simple policy when submitting the same scheme. 
Figure 8 shows that the SoC fluctuation is more moderate 
with response control policy than that with simple policy. 
Simple policy schedules the whole battery to fully respond 
to frequency regulation signals, and the performance score is 
always 1. This is despite the fact that the simple policy pro‐
vides a regulation clearing price credit that is 11.98% higher 
than that of the response control policy. However, the down‐
side is that the battery cycle is deeper, resulting in 62.28% 
higher battery wear costs. Therefore, the net revenue is 
7.64% less. Response control policy in FRASM can improve 
the net revenue for EV users.

V. CONCLUSION 

EVs can be flexible resources that are urgently needed by 
the modern power grid. With the proposed DAM, private 
EV owners can participate in FRASM by inputting basic 
travel information. The following conclusions can be drawn.

1) With the assistance of DAM, including an optimal 
charging scheme, bidding policy, and response control poli‐
cy, EVs can make an extra profit for their owners even bat‐
tery wear cost is considered.

2) When the travel mileage is relatively low, which is 
very common for commuters, EV owners can make more ex‐
tra profits by choosing a more aggressive participating 
mode, i. e., BCDM. In most cases, participating in FRASM 
will not affect planned trips since the mean value of regula‐
tion signals is statistically significant zero.

The proposed DAM fully depends on the operation rules 
of FRASM. For example, the TOU price is assumed fixed in 
this study. If the integration EV number is large enough to 
affect the energy market, real-time electricity price might be 
adopted, so DAM must be modified accordingly. However, 
we believe users’  preference and if it is ease to use (user-
friendly) are still two key issues when building DAM no 
matter what kind of market it is.
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TABLE IV
COMPARISON OF RESPONSE CONTROL AND SIMPLE POLICIES

Policy

Response 
control

Response 
simple
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Charging 
cost (¥)
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Net revenue 
(¥)

1.57

1.45
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