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Abstract——Reactive power optimization of distribution net‐
works is traditionally addressed by physical model based meth‐
ods, which often lead to locally optimal solutions and require 
heavy online inference time consumption. To improve the qual‐
ity of the solution and reduce the inference time burden, this 
paper proposes a new graph attention networks based method 
to directly map the complex nonlinear relationship between 
graphs (topology and power loads) and reactive power schedul‐
ing schemes of distribution networks, from a data-driven per‐
spective. The graph attention network is tailored specifically to 
this problem and incorporates several innovative features such 
as a self-loop in the adjacency matrix, a customized loss func‐
tion, and the use of max-pooling layers. Additionally, a rule-
based strategy is proposed to adjust infeasible solutions that vio‐
late constraints. Simulation results on multiple distribution net‐
works demonstrate that the proposed method outperforms 
other machine learning based methods in terms of the solution 
quality and robustness to varying load conditions. Moreover, its 
online inference time is significantly faster than traditional 
physical model based methods, particularly for large-scale dis‐
tribution networks.

Index Terms——Reactive power optimization, graph neural net‐
work, distribution network, machine learning, data-driven.

I. INTRODUCTION 

REACTIVE power optimization (RPO) plays an impor‐
tant role in distribution networks to reduce power flow 

along the distribution lines and maintain the desired voltage 
profile under various demand loads [1]. The scheduling of re‐

active power minimizes active power losses in distribution 
networks through the optimal adjustment of various control 
devices such as capacitor banks (CBs), transformer taps, stat‐
ic var compensator (SVC).

Normally, the optimal scheduling of these control devices 
can be considered as a combinatorial optimization problem 
subjected to different nonlinear operational constraints. Earli‐
er, a large number of heuristic algorithms were applied to 
solve the RPO model of distribution networks. For example, 
the work in [2] combines a roulette wheel selection and a ge‐
netic algorithm (GA) to optimize reactive power compensa‐
tors, while the model in [3] employs a wolf pack algorithm 
to optimize reactive power sources and generator terminal 
voltages. In [4], an artificial bee colony algorithm is de‐
signed to formulate the day-ahead plans of distributed gener‐
ations, on-load tap changer (OLTC), and CBs. Other com‐
monly used heuristic algorithms in RPO involve ant colony 
algorithm, simulated annealing, imperial competition algo‐
rithm, wolf pack algorithm, etc. [5]. Generally, a major draw‐
back of these heuristic algorithms is that most of them yield 
locally optimal solutions rather than global optima [6]. Also, 
numerous iterations inside these algorithms result in heavy 
online inference time consumption, especially for large-scale 
distribution networks. In contrast, this paper aims to address 
this problem by designing a machine learning based model 
that treats the RPO problem as a functional mapping be‐
tween operational states of the distribution networks and so‐
lutions of the RPO problem, from a data-driven perspective.

There is a substantial body of publications on developing 
machine learning technologies for the RPO problem. Most 
of these previous works may be divided into two groups: ① 
similarity-based algorithms; ② model-based algorithms.

Specifically, the similarity-based algorithms calculate the 
distance between the current case and historical cases to find 
the historical case closest to the current one, and then assign 
the historical solution to the current case. For instance, the 
case-based reasoning (CBR) and principal component analy‐
sis are integrated to screen historical cases for the RPO prob‐
lem in [7]. The work in [8] applies the Apriori algorithm to 
search for the most suitable scheduling solution for the cur‐
rent case from the historical data based on the association 
rule learning and frequent itemset mining. In [9], the voltage 
control strategies are determined by a ranking of the similari‐
ty between the historical voltage profile modes. In fact, the 
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current load may dramatically differ from the historical load 
due to a variety of reasons such as changes in electricity con‐
sumption patterns. In light of this, the solutions of similarity-
based algorithms have limited accuracy for highly volatile 
load conditions, since they directly assign historical schedul‐
ing schemes to the current case without changes.

In contrast, the model-based algorithms show stronger 
adaptability for these highly volatile load conditions, since 
they aim to create a new scheduling scheme by inputting 
loads to a supervised learning model that maps the nonlinear 
relationship between loads and reactive power scheduling 
schemes. For example, a three-layer multi-layer perception 
(MLP) is presented to obtain the optimal adjustment of dif‐
ferent control devices in [10]. To avoid solving complex 
physical models, [11] employs the stacked extreme learning 
machine to project the nonlinear mapping between reactive 
power strategies and high-dimension statistic features. In 
[12], an improved convolutional neural network (CNN) is 
generalized from the computer vision into the RPO problem. 
In [13] and [14], deep reinforcement learning techniques are 
designed to obtain the optimal voltage control strategies. 
Similarly, [15] presents a safe deep reinforcement learning to 
solve the optimal operation problem of distribution networks 
considering battery storage systems, voltage regulators, and 
distributed generators. One of the great challenges for above-
mentioned models is the neglect of topology information of 
distribution networks. The voltage profile and active power 
loss of distribution networks depend mainly on the topology 
and load conditions, but these models have difficulty in con‐
sidering the topology information of nodes.

Graph neural networks (GNNs) are extensions of tradition‐
al neural networks from the Euclidean domain to the graph 
domain. Compared with the traditional neural networks, the 
inputs of GNNs include both feature matrices and adjacency 
matrices. This unique characteristic makes the GNNs ideal 
candidates for the RPO in distribution networks. So far, the 
application of GNNs in RPO has been relatively limited. In 
[16] and [17], the graph convolutional network (GCN) is em‐
ployed to determine the power generation of generators for 
the optimal power flow task. To protect distribution lines 
from being overloaded under line contingency, a two-layer 
GCN is utilized to predict an optimal load-shedding ratio by 
supervised learning [18]. However, the way GCN aggregates 
neighboring nodes is structure-dependent, which always lim‐
its its generalizability and performance [19].

Further, a new supervised learning framework, called 
graph attention network (GAT), has been proposed to ad‐
dress this problem by introducing attention mechanisms to 
assign larger weights to more important nodes in computer 
vision [20]. Compared with GCN, GAT has shown stronger 
performance in a wide variety of graph inference tasks [21] 
such as node classification, link prediction, and social recom‐
mendation. Therefore, GAT should have the potential to opti‐
mize control devices for the RPO problem. However, many 
challenges remain on how to migrate the GAT to RPO prob‐
lem. For example, how to model the load and topology into 
a graph as inputs? How to design the structure and loss func‐
tion of GAT? What should be done if the solution of GAT is 
not feasible?

In this context, this paper specifically tailors a new meth‐
od called RPOGAT for the RPO of distribution networks by 
using GAT. Compared with traditional physical model based 
methods, the proposed RPOGAT has the following benefits.

1) The heavy online inference time burden due to itera‐
tions of power flow calculations can be avoided, since the 
physical model is replaced by the direct mapping.

2) The proposed RPOGAT addresses the RPO problem 
from a data-driven perspective, and does not require the con‐
struction of complex physical models based on expert knowl‐
edge.

The key contributions of this paper are listed as follows.
1) Distinguished from most machine learning based meth‐

ods that handle RPO problem in the Euclidean domain, the 
proposed RPOGAT discusses it from a new perspective in 
graph domain.

2) The power load, power output of generators, and topol‐
ogy information are modeled as a graph to take into account 
the strong correlation between nodes in distribution net‐
works, which is usually ignored in most machine learning 
based methods.

3) The proposed RPOGAT is tailored specifically to the 
RPO problem and incorporates several innovative features 
such as a self-loop in the adjacency matrix, a customized 
loss function, and the use of max-pooling layers. Additional‐
ly, a rule-based strategy is proposed to adjust infeasible solu‐
tions that violate constraints.

The rest of this paper is organized as follows. Section II 
briefly introduces the RPO of distribution networks. Section 
III presents the details of the proposed RPOGAT. Section IV 
performs and analyzes simulation results. The conclusion 
and future works are given in Section V.

II. RPO OF DISTRIBUTION NETWORKS 

A. RPO Model

Normally, the goal of the RPO problem is to reduce pow‐
er losses and maintain the desired voltage profile. This goal 
can be achieved by regulating the state of various control de‐
vices such as CBs, transformer taps, and SVCs. Therefore, 
the state of the control devices is considered as the variable 
to be optimized, and the objective function can be defined as 
the minimization of active power loss PL:

min PL =∑
i = 1

n

Gij( )U 2
i +U 2

j - 2UiUj cos ( )θ i - θj (1)

where n is the number of branches in distribution networks; 
Gij is the mutual conductance of the branch between the ith 
node and the j th node; Ui is the voltage magnitude at the ith 
node; and θi is the phase angle of the voltage at the ith node.

Furthermore, the power flow equations and some opera‐
tional constraints should be considered [12], [22].

1) Power flow equations

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Pi -Ui∑
j = 1

m

Uj( )Gij cos θij +Bij sin θij = 0

Qi -QSVCi -QCBi -Ui∑
j = 1

m

Uj( )Gij sin θij -Bij cos θij = 0
    (2)

where m is the number of nodes; θij is the phase angle differ‐
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ence between the ith node and the j th node; Bij is the mutual 
susceptance of the branch between the ith node and the j th 
node; Pi is the active power load of the ith node; QSVC,i is the 
reactive power at the ith SVC, which can be leading or lag‐
ging power; QCB,i is the reactive power at the ith shunt CB; 
and Qi is the reactive power load of the ith node.

2) Voltage constraints

U min
i £Ui £U max

i     i = 12...m (3)

where U min
i  is the lower bound of voltage magnitude at the 

ith node; and U max
i  is the upper bound of voltage magnitude 

at the ith node.
3) Current constraints

Ii £ I max
i     i = 12...n (4)

where Ii is the current at the ith branch; and I max
i  is the upper 

bound of current at the ith branch.
4) Transformer tap constraints

T min
i £ Ti £ T max

i     i = 12...nT (5)

where Ti is the tap position at the ith transformer; T min
i  is the 

lower bound of tap position at the ith transformer; T max
i  is the 

upper bound of tap position at the ith transformer; and nT is 
the number of transformers.

5) Reactive power constraints of SVC
Qmin

SVC i £QSVC i £Qmax
SVC i    i = 12...nS (6)

where Qmin
SVC i is the lower bound of reactive power at the ith 

SVC; Qmax
SVC i is the upper bound of reactive power at the ith 

SVC; and nS is the number of SVCs.
6) CB constraints

0 £QCBi £Qmax
CBi    i = 12...nC (7)

where Qmax
CBi is the upper bound of reactive power at the ith 

shunt CB; and nC is the number of shunt CBs.
Note that only the active power loss is treated as the ob‐

jective function, which is essential for day-ahead planning 
and scheduling of distribution networks in practice [23]. 
This is because this paper focuses on the performance of the 
proposed RPOGAT to map the nonlinear relationship be‐
tween inputs (i.e., load conditions, power outputs of genera‐
tors, and topology information) and outputs (scheduling 
schemes of control devices) for the RPO problem (the frame‐
work is shown in Fig. 1), rather than exploring the balance 
between multiple objectives (e.g., the cost of control device 
regulation), which can also be easily added in future work.

Topology

and load

Solutions

Tap position of

transformers

Operational

number of shunt

CBs

Reactive power

provided by

SVCs

Distribution

network

RPOGAT

model

Scheduling

schemes

~

Fig. 1.　Framework of proposed RPOGAT.

Given that the focus of this paper is to map the nonlinear 
relationship between inputs and outputs for the RPO prob‐
lem, the widely-used SVC, shunt CBs, and on-load regulator 

transformers are also considered as control devices, as in pre‐
vious publications [1] - [4]. The integration of other control 
devices can be considered in the extension work. For exam‐
ple, the static synchronous condensers, energy storage devic‐
es, heat pumps, and distributed generators (i.e., active power 
dispatching) are not considered here, but their mathematical 
models are similar to (6).

Further, the constrained optimization model is transformed 
into an unconstrained one by adding penalty functions to op‐
erational constraints, since it is difficult for neural networks 
to consider constraints directly.

min F =PL + α∑
i = 1

m

[ ]ε ( )U min
i -Ui + ε ( )Ui -U max

i +

β∑
i = 1

n

ε ( )Ii - I max
i (8)

where F is the new form of the objective function; α and β 
are the penalty coefficients; and ε is the step function.

If the voltage and current are within the constraints, the 
objective function F is equal to the active network loss PL; 
otherwise, F is much larger than PL. The constraints of dif‐
ferent control devices are considered by a value coding meth‐
od in the following subsection.

B. Value Coding Method to Control Devices

To summarize the above discussion, the objective function 
is (8), and the variables to be optimized include the tap posi‐
tion of transformers, the operational number of shunt CBs, 
and the reactive power provided by SVCs. The first two are 
discrete variables, while the third is a continuous one. Con‐
sidering the difficulty of the binary coding method to handle 
continuous variables accurately, this paper employs the value 
coding method to encode and decode the variables to be opti‐
mized.

Given a discrete variable with N positions, the ith position 
can be encoded into a value Xe ranging from 0 to 1:

Xe =
2i - 1
2N

    i = 12...N (9)

In the same way, the value predicted by the RPOGAT X̂e 
can be decoded into an integer Xd ranging from 0 to N:

Xd =

ì

í

î

ïïïï

ï
ïï
ï

1 0 £ X̂e £
1
N

i  
i - 1
N

< X̂e £
i
N
i = 23...N

(10)

For a continuous variable, the reactive power provided by 
control devices Qd also can be encoded into a value Xce rang‐
ing from 0 to 1:

Xce =
Qd -Qmin

d

Qmax
d -Qmin

d

(11)

where Qmin
d  and Qmax

d  are the lower bound and upper bound 
of reactive power provided by control devices, respectively.

Further, the value predicted by RPOGAT X̂ce can be decod‐
ed into a real number Xcd ranging from Qmin

d  to Qmax
d :

Xcd = X̂ce(Qmax
d -Qmin

d ) +Qmin
d (12)

Up to this point, the states of control devices have been 
bijectively related to real numbers from 0 to 1. Also, the val‐
ue encoding methods mentioned above can ensure that the 
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variables to be optimized are within the constraints.

III. RPOGATS 

The RPOGAT takes topology, power outputs of genera‐
tors, and load conditions as inputs and returns scheduling 
schemes of control devices as output. In this section, the 
power load, power output of generators, and topology infor‐
mation are modeled as graphs, which are fed to the RPO‐
GAT. Then, the suitable structure of the RPOGAT is tailored 
specifically to the RPO problem and incorporates several in‐
novative features, such as a self-loop in the adjacency ma‐
trix, a customized loss function, and the use of max-pooling 
layers. Finally, a rule-based strategy is proposed to adjust in‐
feasible solutions that violate constraints.

A. Raw Data to Graphs

To consider the correlation between nodes in distribution 
networks, the raw data (i.e., the power load, power output of 
generators, and topology information) are modeled as the 
graph, as shown in Fig. 2.

Specifically, the graph consists of a feature matrix and an 
adjacency matrix of nodes. The feature matrix can be de‐
fined as a concatenation between the active power load and 
reactive power load of nodes:

XF =

é

ë

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

ú( )P1Q1

( )P2Q2



( )PmQm

(13)

where XF is the feature matrix of nodes with m rows and 
two columns.

If the nodes contain generators, the reactive power output 
and active power output of generators should also be taken 
into account in the feature matrix:

XF =

é

ë

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

ú

ú( )P1 -P1gQ1 -Q1g

( )P2 -P2gQ2 -Q2g



( )Pm -PmgQm -Qmg

(14)

where Pi,g is the active power output of the generator at the 

ith node; and Qi,g is the reactive power output of the genera‐
tor at the ith node.

In addition, this paper only considers distribution net‐
works with constant topology. In fact, when distribution net‐
works are installed with a large number of soft open points 
instead of tie switches [24], the topology of the distribution 
network is fixed for each sample. For distribution networks 
with network reconfiguration, the model must be retrained. 
One of the ways to solve the RPO model with dynamic to‐
pology is to construct the adjacency matrix for each sample, 
but this brings on heavy computational burden, which will 
be discussed in future work. Here, the adjacency matrix A is 
constructed as:

Aij = {1 there is a branch between node i and node j

0 otherwise
(15)

As one of the innovative points, to avoid exploding gradi‐
ents and numerical instabilities in original GAT [19], this pa‐
per generalizes the self-loop mechanism from the GCN [18] 
to obtain the new form of adjacency matrix for the GAT: Â =
D͂-1/2 A͂D͂-1/2, with A͂ =A + I and D͂ii =∑

j

A͂ij, where I is the 

unit matrix.
Moreover, there are two possible ways to address the dy‐

namics of the topology (i.e., reconfiguration) in future works.
1) Extension 1: a separate model is trained for each topol‐

ogy. This is suitable for cases where the topology does not 
change much.

2) Extension 2: the adjacency matrix is dynamically 
changing. In other words, the adjacency matrix included in 
each sample may vary. However, this way requires the sam‐
ples in the training set to include different topologies, lead‐
ing to difficulties in obtaining the training samples.

B. Network Architecture

As shown in Fig. 3, the RPOGAT is proposed to predict 
scheduling schemes of control devices given a graph with ad‐
jacency matrix Â and feature matrix XF as inputs, whereas 
traditional models (e.g., MLP) use only the feature matrix XF 
as inputs and ignore the topology.

The suitable structure of the RPOGAT is tailored specifi‐
cally to the RPO problem and incorporates several innova‐
tive features, such as a self-loop in the adjacency matrix, a 
customized loss function, and the use of max-pooling layers.

In particular, the graph attentional layer is used to capture 
latent features of inputs and correlations between nodes. The 
role of the max-pooling layer is to reduce the complexity of 
neural works by down-sampling latent features. Finally, the 
dense layer outputs the scheduling scheme for the RPO prob‐
lem.
1)　Graph Attentional Layer

Unlike most other GNNs (e. g., GCN) that explicitly as‐
sign non-parametric weights to neighbors based on the struc‐
tural properties of graphs, the GAT employs attention mecha‐
nisms, which assign larger weights to the more important 
nodes implicitly. This choice is not without motivation, since 
the attention mechanism has previously achieved state-of-the-
art-level results on various machine translation tasks.

Raw data

Modeling as graph

Feature matrix

Adjacency matrix

Dynamics of topology

Adjacency matrix is

dynamically changing

Separate model is trained

for each topology

Self-loop mechanism

Extension 2Extension 1

Fig. 2.　Strategy of transforming raw data into graphs.
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Specifically, graph attentional layers are performed by in‐
dependently replicating K multi-head attention (each replica 
with different parameters), and outputs are feature-wise ag‐
gregated:

H 'GAT i = ||
k = 1

K

σELU( )∑
jÎN ( )i

αk
ijWGATk HGATi (16)

where || denotes the concatenating operation; HGATi denotes 
the input features of the ith node; H 'GATi denotes the output 
features of the ith node; N ( )i  is a set of nodes connected 
with the ith node; σELU( )·  is the function of the exponential 
linear unit (ELU); WGAT,k is the weight matrix specifying the 
linear transformation for the kth replica; and αk

ij is the atten‐
tion coefficient of the jth node to the ith node derived by the 
kth replica. The detail of attention mechanism in GAT is 
shown in Fig. 4.

These attention coefficients are typically normalized using 
the softmax function, in order to be comparable across differ‐
ent neighborhoods:

αij =
exp ( )eij∑

kÎN ( )i
exp ( )eik

(17)

eij =G (HGATiHGATj ) (18)

where G is a simple single-layer neural network.
With the previous settings, this fully specifies a graph at‐

tentional layer.
2)　Max-pooling Layer

The main advantage of GATs is that they can learn the im‐
portance of each neighbor adaptively. However, the computa‐
tional cost and memory consumption of previous GATs in‐
crease rapidly because the attention weights between each 
pair of neighbors must be computed.

To accelerate training process and reduce training time, 
this paper employs a max-pooling layer to down sample the 
features from the previous graph attentional layer, which is 
one of the innovative points.

H 'P = σELU(max
ijÎR (HPij ) ) (19)

where HPij is the input feature of max-pooling layers; H 'P is 
the output feature of max-pooling layers; and R is the max-
pooling region.
3)　Dense Layer

As one of the most commonly used layers in GNNs, the 
dense layer is generally located at the top of the neural net‐
work. In the RPOGAT, a dense layer is used to connect the 
features output by the max-pooling layer and another dense 
layer is employed to output the results (i. e., scheduling 
schemes of control devices):

H 'D = σS(WD HD +BD ) (20)

where HD is the input feature of dense layers; WD is the 
weight vector of dense layers; BD is the bias vector of dense 
layers; σS is the sigmoid function; and H 'D is the output fea‐
ture of dense layers. Note that the output feature of the sec‐
ond dense layer is the scheduling schemes of control devices.
4)　Loss Function

The previous GAT is generally used for node classifica‐
tion tasks, which employs cross-entropy as a loss function, 
which is not applicable to RPO problem.

In this paper, the RPOGAT directly maps nonlinear rela‐
tionships between the graphs and scheduling schemes of con‐
trol devices. Therefore, the RPOGAT can be considered as a 
complex regression model, in which a simple yet robust 
mean absolute error (MAE) is employed as the customized 
loss functions for the RPOGAT:

MAE =
1
M∑i = 1

M

( )yi - ŷi (21)

where M is the total number of predicted points; yi is the pre‐
dicted value; and ŷi is the real value.

C. A Rule-based Strategy to Adjust Infeasible Solutions

In this subsection, a rule-based strategy is proposed to ad‐
just infeasible solutions that violate constraints.

As shown in Fig. 5, to check the feasibility of solutions 
for the distribution network state, the power flow analysis is 
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…
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ELU ELU
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layer
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…
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ELU ELU
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ˆ
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(b)

Fig. 3.　Sample architectures of RPOGAT and traditional MLP. (a) RPO‐
GAT. (b) MLP.
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Fig. 4.　Attention mechanism in GAT.
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performed to detect if constraints are violated. If all con‐
straints are satisfied, the solutions are implemented as real-
time RPO control. Relatively, if the constraints are defined, 
these solutions should be adjusted based on a rule-based 
strategy. Normally, the solution obtained by the RPOGAT 
can be used as an initial point for a rule-based strategy (e.g., 
linear programming, nonlinear programming, and heuristic al‐
gorithm) to speed up the convergence.

The GA is used as an example to illustrate how to adjust 
solutions. Other rule-based strategies can be treated in a sim‐
ilar way. Traditional GA uses random noises to initialize the 
chromosomes and their initial fitness functions are inferior. 
To improve the initial fitness functions, the solution obtained 
by RPOGAT is employed to initialize chromosomes. Also, in 
order to increase the diversity of chromosomes in the popula‐
tion, the initial chromosomes need to be mutated. In other 
words, one or more elements of each chromosome are re‐
placed using random noises. The subsequent iterative pro‐
cess is consistent with the traditional GA. Overall, the chro‐
mosome of GA is initialized by the solution of RPOGAT to 
obtain a high-quality initial population, which can also accel‐
erate the convergence of GA.

The reason for using GA here is to adjust infeasible solu‐
tions that do not satisfy the constraints to ensure the feasibili‐
ty of the solution. GA is used as an example because it is a 
commonly used rule-based optimization algorithm for the 
RPO problem. However, it is also recognized that the deci‐
sion to use GA may require consideration of computational 
time constraints, especially in online environments. In prac‐
tice, depending on computational resources and time require‐
ments, other rule-based optimization algorithms (e. g., linear 
programming) may be considered, which are more suitable 
for online scenarios.

IV. CASE STUDY 

A. Simulation Setup

To compare the performance of the proposed RPOGAT 
and the popular benchmarks, simulations and analyses are 
performed on an IEEE 33-bus distribution network, whose 

parameters can be found in [25]. Further, various control de‐
vices (e. g., CBs, transformer, and SVCs) are added to the 
feeders, as shown in the Fig. 6.

In particular, the voltage base value is 12.66 kV. The trans‐
former tap includes 17 ratios, which vary from -8×1.25% to 
8×1.25%. Various control devices are generally decentralized 
and located at the end of feeders to reduce power loss and 
boost voltage. Therefore, this paper makes the following as‐
sumptions about the location and capacity of SVCs and 
CBs: SVCs are added to the 9th node, 21st node, and 24th 
node. The reactive power provided by each SVC ranges 
from -500 kvar to 500 kvar. Two groups of CBs are added 
to the 17th node and 32nd node, respectively. Each group has 
7 CBs. The reactive power provided by each CB is 100 
kvar. The voltage limits at all nodes are 0.9-1.1 p.u..

The original IEEE 33-bus distribution network only in‐
cludes one moment of loads, which cannot be used to train 
and test the performance of each model. To construct the da‐
taset, this paper assumes that the load of each node is multi‐
plied by a noise from a truncated Gaussian distribution. This 
is because the load level is considered to obey the truncated 
Gaussian distribution according to previous publications 
[12]. The standard deviation is 0.85 p.u., and the mean value 
is 1.12 p.u.. The upper boundary for all noise is 2 p.u. and 
the lower boundary is 0.25 p.u.. In this case, this paper ran‐
domly generates 4000 training samples, 500 validation sam‐
ples, and 500 test samples. To obtain the labels of the train‐
ing set and validation set, GA is run 30 times, and then the 
optimal solution is used as the label of these samples.

To illustrate the superiority of the proposed RPOGAT, sim‐
ulations are analyzed in comparison with CNN [12], MLP 
[10], GA, CBR [7], support vector machine (SVM), random 
forest (RF), and more recent and advanced GCN [17]. Note 
that node 0 is a slack node, so it is not considered as an in‐
put to the model. For GNNs (e.g., GCN and RPOGAT), the 
inputs include a 32×32 adjacency matrix (i.e., the connection 
relationship among the 1st node to 32nd node) and a 32×2 fea‐
ture matrix (i.e., the active power and reactive power of the 
1st node to 32nd node). For CNN, MLP, SVM, and RF, their 
inputs only include the feature matrix, since they cannot han‐
dle the adjacency matrix. Further, the determination of hyper 
parameters is a challenge of deep learning models. The con‐
trol variable method in [12] and Bayesian optimization in 
[26] are employed to determine parameters and structures of 
each model after many experiments in the training set and 
validation set.

1) RPOGAT: this model consists of two graph attentional 
layers, a max-pooling layer, and two dense layers. In each 
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Fig. 5.　Framework of rule-based strategy.
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graph attentional layer, the number of output channels is 8, 
and the number of attention heads is 4. The pooling size is 2 
in the max-pooling layer. The numbers of neurons in the two 
dense layers are 64 and 6, respectively.

2) GCN: this model has the same structure and parameters 
as RPOGAT, except that graph convolutional layers are used 
to graph attentional layers. In each graph convolutional lay‐
er, the number of output channels is 8.

3) CNN: this model has the same structure and parameters 
as RPOGAT, except that traditional convolutional layers are 
used to graph attentional layers. The numbers of filters in 
two convolutional layers are 8 and 16, respectively. The size 
of the convolutional kernel is 2.

4) GA: the population includes 50 chromosomes. The 
probability of chromosomal crossover is 0.7, and the proba‐
bility of gene mutation is 0.2. The maximum number of iter‐
ations is 100.

5) CBR: this model utilizes similarity to filter historical 
cases and directly assigns the historical scheduling scheme 
to the current case without any changes. The specific frame‐
work can be found in [6].

6) SVM: this model is implemented for regression. The 
kernel type is linear, and the cache size is 300.

7) RF: this model improves the predictive accuracy by fit‐
ting a large number of decision trees. The number of deci‐
sion trees is 200, and the minimum number of samples re‐
quired to split an internal node is 2.

In addition, the neural networks mentioned above have 
the following parameters in common. The activation func‐
tion of the output layer is the sigmoid function, and the acti‐
vation function of the other layers is the ELU function. The 
train epoch is 200, and batch size is 32. The optimizer is the 
adaptive moment estimation (Adam) algorithm.

All models are implemented using the Python library, in‐
cluding Spektral 1.0 and Tensorflow 2.0. After obtaining the 
scheduling scheme, the forward and backward substitution al‐
gorithms are performed to analyze power flows, power loss‐
es, and voltages in MATLAB 2018a. The key parameters of 
computer are as follows: 1.80 GHz processor base frequen‐
cy, Intel Core i5-8265U, and 8 GB memory size.

B. Comparative Analysis with Popular Benchmarks

Each model is independently trained 30 times to obtain 
the solution of the test set, as shown in Table I.

1) High-quality solutions. Comparing the mean, maxi‐
mum, and minimum power losses of each model, it is found 
that the GNNs including RPOGAT and GCN, which empha‐
size the importance of modeling both the topology informa‐
tion and feature of nodes, generally have better performance 
than other popular benchmarks (CNN, MLP, RF, SVM, and 
CBR). This is mainly due to models such as the CNN, MLP, 
RF, and SVM that only process the feature matrix of the 
nodes and ignore the topology information. The performance 
of CBR is the worst, since it uses similarity to filter histori‐
cal cases and assign historical scheduling schemes directly 
to current cases without making any changes. In other 
words, CBR is difficult to adapt to various load conditions. 
Note that the labels of the training and validation sets are 
generated by GA, while RPOGAT outperforms GA, which 
indicates that RPOGAT does not simply copy the labels gen‐
erated by GA, but can adaptively generate suitable schedul‐
ing schemes according to different load conditions.

2) Stable solutions. SVM is a statistical model, while the 
results of CBR depend only on the search strategy and his‐
torical cases, so they have a standard deviation of 0. In other 
words, the parameters of independently trained SVMs or 
CBRs are consistent. In contrast, other models (e. g., RPO‐
GAT, GCN, CNN, MLP, RF, and GA) need to initialize 
weights or populations with random noise, resulting in differ‐
ent performances for each trained model. To analyze the ef‐
fect of random noise on model performance, Table I shows 
the standard deviation of the test set for each model. Except 
SVM and CBR, the RPOGAT has the best stability, as it has 
the smallest standard deviation than GCN, CNN, MLP, RF, 
and GA.

3) Low cross-constraint ratio. After obtaining the schedul‐
ing schemes for the test set, the power flow analysis is per‐
formed to detect if constraints are violated. From the 6th col‐
umn of Table I, all constraints are satisfied, and solutions of 
each model can be implemented as real-time RPO control.

Further, Table II shows the mean off-line training time 
and online inference time of each model. Specifically, GA 
and CBR do not need to pre-train their models, so their off-
line training time is 0 s. Neural network and decision tree 
based models (RPOGAT, GCN, CNN, MLP, and RF) take 
longer time to train models off-line than statistical models 
(e.g., SVM), because the former have thousands of parame‐
ters to be optimized.

TABLE I
RESULTS OF DIFFERENT MODELS IN IEEE 33-BUS DISTRIBUTION NETWORK

Model

RPOGAT

GCN

CNN

MLP

RF

GA

SVM

CBR

Power loss (kW)

Mean

235.230

235.942

236.349

236.386

236.397

236.924

237.666

240.075

Maximum

235.256

235.956

236.397

236.394

236.465

236.942

237.666

240.075

Minimum

235.213

235.913

236.319

236.379

236.337

236.902

237.666

240.075

Standard 
deviation (kW)

0.037

0.047

0.095

0.050

0.090

0.262

0

0

Cross-constraint 
ratio (%)

0

0

0

0

0

0

0

0

TABLE II
MEAN OFF-LINE TRAINING TIME AND ONLINE INFERENCE TIME OF 

DIFFERENT MODELS IN IEEE 33-BUS DISTRIBUTION NETWORK

Model

RPOGAT

GCN

CNN

MLP

RF

GA

SVM

CBR

Off-line training time (s)

588.17

45.29

38.14

20.04

110.31

0

0.25

0

Online inference time (s)

0.57

0.09

0.04

0.02

0.12

22.18

0.01

3.21
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The main limitation of RPOGAT is that its mean off-line 
training time is longer than that of other models, but a few 
hours of training time is acceptable in practical engineering. 
Compared with the traditional physical model based algo‐
rithms (e.g., GA), the online inference time of the neural net‐
works is shorter, which is also one of the advantages of the 
proposed RPOGAT.

C. Sensitivity Analysis of Training Set Size

When applying machine learning based models under real‐
istic conditions, the historical data in each region vary over 
a wide range, which may affect the quality of scheduling 
schemes for RPO. In this subsection, an attempt is made to 
analyze the sensitivity of each model to the training set size.

First, 11 different cases are set to vary the training set 
size, i.e., the number of samples in the training set, as shown 
in Table III. The samples of each case are randomly sampled 
from the original training set. Note that the test set and the 
validation set are kept constant. Then, each machine learning 
based model is independently trained 30 times to obtain the 
mean power loss of the test set and mean off-line training 
time, as shown in Fig. 7.

On one hand, the performance of each model for the test 
set does not change significantly as the number of training 
samples decreases, indicating that these machine learning 
based models are not sensitive to the size of the training set 
size. For example, the power loss of the proposed RPOGAT 
in case 11 is only 0.15% higher than that in case 1. In addi‐
tion, a small training set size can significantly reduce the 
mean off-line training time without affecting the perfor‐
mance of models, so machine learning based models do not 
require a large training set size, which is one of the advan‐
tages of the proposed RPOGAT.

On the other hand, the power loss of the proposed RPO‐
GAT is smaller than other models regardless of how the 
training set size varies, indicating that the proposed RPO‐
GAT has better adaptability to different training set sizes.

D. Robustness Analysis of Extreme Load Conditions

In fact, the consumption habits or market-based behavior 
of users may change the load profiles, causing the current 
load distributions to differ dramatically from the historical 
one. For example, very rare light loads or heavy loads may 
occur at some time in theory. In this subsection, the robust‐
ness of each model to extreme loading conditions is tested.

Firstly, only common load conditions (i.e., medium loads) 
are used to construct the 4000 training samples and 500 vali‐
dation samples. To obtain these samples, the raw power load 
of each node is multiplied by a Gaussian noise ranging from 
0.75 p.u. to 1.75 p.u..

Secondly, extreme load conditions (i. e., light loads and 
heavy loads) are used to construct the test set, which in‐
cludes 250 light load conditions and 250 heavy load condi‐
tions. To obtain the sample of light loads, the raw power 
load of each node is multiplied by a Gaussian noise ranging 
from 0.25 p. u. to 0.5 p. u.. To obtain the sample of heavy 
loads, the raw power load of each node is multiplied by a 
Gaussian noise ranging from 2 p.u. to 2.5 p.u..

Finally, each model is independently trained 30 times to 
obtain the results, as shown in Table IV and Table V. Note 
that the proposed strategy is not used here, and it will be 
considered in Section IV-E.

TABLE III
TRAINING SET SIZE IN DIFFERENT CASES IN IEEE 33-BUS DISTRIBUTION 

NETWORK

Case 
No.

1

2

3

4

Number of 
training samples

4000

3500

3000

2500

Case 
No.

5

6

7

8

Number of 
training samples

2000

1500

1000

500

Case 
No.

9

10

11

Number of 
training samples

300

100

50

1 2 3 4 5 6 7 8 9 10 11

Case No.

234

236

238

240

242

1 2 3 4 5 6 7 8 9 10 11

Case No.

0

100

200

300

400

500
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Fig. 7.　Mean results of different cases. (a) Power losses. (b) Off-line train‐
ing time.

TABLE IV
RESULTS OF DIFFERENT MODELS FOR LIGHT LOADS IN IEEE 33-BUS 

DISTRIBUTION NETWORK

Model

RPOGAT

GCN

CNN

MLP

RF

GA

SVM

CBR

Power loss (kW)

Mean

28.482

29.292

30.058

29.987

31.568

25.876

31.471

31.863

Maximum

28.725

30.820

32.348

30.209

32.153

25.883

31.471

31.863

Minimum

28.231

28.008

28.870

29.850

28.967

25.868

31.471

31.863

Standard 
deviation (kW)

0.162

1.216

1.588

0.102

1.065

0.064

0

0

Cross-constraint 
ratio (%)

10.76

14.20

20.88

17.32

22.80

0

28.40

22.80

TABLE V
RESULTS OF DIFFERENT MODELS FOR HEAVY LOADS IN IEEE 33-BUS 

DISTRIBUTION NETWORK

Model

RPOGAT

GCN

CNN

MLP

RF

GA

SVM

CBR

Power loss (kW)

Mean

717.277

718.061

718.876

719.155

719.026

716.712

720.887

729.740

Maximum

717.503

718.245

721.119

719.493

719.158

717.972

720.887

728.360

Minimum

716.697

717.880

718.123

718.960

718.910

716.629

720.887

728.360

Standard 
deviation (kW)

0.335

0.185

1.199

0.153

0.093

1.051

0

0

Cross-constraint 
ratio (%)

0

0

0

0

0

0

0

0
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Whether it is a light load condition or a heavy load condi‐
tion, the proposed RPOGAT outperforms other machine 
learning based models, including GCN, CNN, MLP, RF, 
SVM, and CBR, because the mean power loss of RPOGAT 
is the lowest.

On the other side, the partial solutions of all machine 
learning based models do not satisfy the constraints for light 
load conditions. This is because the light load conditions are 
significantly different from common load conditions. These 
scheduling schemes from these machine learning based mod‐
els provide too much reactive power, causing the voltage to 
exceed the upper limit. Therefore, these bad solutions cannot 
be implemented as real-time RPO control, and they should 
be adjusted based on a rule-based strategy.

For example, the bad solutions from RPOGAT account for 
10.76% of the light load conditions in the test set. They are 
reduced by approximately 3.44%, 10.12%, 6.56%, 12.04%, 
17.64%, and 12.04% compared with the GCN, CNN, MLP, 
RF, SVM, and CBR, respectively.

E. Performance Analysis of Rule-based Strategy to Adjust In‐
feasible Solutions

The previous subsections have shown that the proposed 
RPOGAT and other machine learning based models may 
yield infeasible solutions for extreme load conditions (e. g., 
light load conditions). This subsection will analyze whether 
the proposed strategy can adjust infeasible solutions.

The solutions obtained by RPOGAT are utilized to initial‐
ize chromosomes on GA. Also, one element of each chromo‐
some is replaced using random noises to increase the diversi‐
ty of chromosomes in the population. Figure 8 shows the it‐
erative processes of two populations initialized with random 
noise and the solutions obtained by RPOGAT.

Although the bad solution obtained by RPOGAT cannot 
be used directly for real-time RPO control, it can be used as 

the initial population of GA, which accelerates the conver‐
gence speed of GA. After initializing the population using 
solution obtained by RPOGAT, the mean number to GA con‐
vergence is 38 iterations, while that of the original GA is 55 
iterations. In other words, the solutions of RPOGAT can re‐
duce the online inference time of GA by 30.91%.

Generally, the proposed strategy ensures that the con‐
straints are satisfied, and the solution derived from RPOGAT 
as a starting point can speed up convergence.

F. Comparison of Dynamic RPO

The previous subsections have verified the effectiveness 
of the proposed RPOGAT for static RPO, and dynamic RPO 
can be simplified into multiple static ones. It can be inferred 
that the proposed RPOGAT is also applicable to dynamic 
RPO.

To confirm above inference, the raw loads are extended in‐
to a typical daily load curve in [6], including commercial, 
domestic, and industrial loads. One day is divided into five 
time intervals as a simple example, and models are trained 
30 times at each interval to obtain mean results, as shown in 
Table VI.

After dividing the day into multiple time intervals, the pro‐
posed RPOGAT has less power losses in each interval than 
other machine learning based models, which indicates that 
above inference is correct, i. e., RPOGAT also outperforms 
popular benchmarks for dynamic RPO.

G. Performance Comparison of Large-scale Distribution 
Networks

To valid the effectiveness of the proposed RPOGAT for 
large-scale distribution network, simulations and analyses are 

performed on the IEEE 69-bus distribution network and a 
118-bus distribution network, whose parameters can be 
found in [27], [28]. Further, various control devices (e. g., 
CBs, transformers, and SVCs) are added to the feeders, as 
shown in the Fig. 9 and Fig. 10. Other parameters (e.g., volt‐
age base value, types of transformers, and capacities of 
SVCs and CBs) are the same as those in the IEEE 33-bus 
distribution network.
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Fig. 8.　Iterative process of two populations.

TABLE VI
MEAN RESULTS OF DIFFERENT MODELS FOR DYNAMIC RPO

Model

RPOGAT

GCN

CNN

MLP

RF

SVM

CBR

Power loss (kW)

The 1st time interval

131.57

132.75

133.65

140.60

142.78

147.93

158.45

The 2nd time interval

91.51

92.41

93.48

97.09

98.18

98.72

108.39

The 3rd time interval

547.18

547.93

548.72

550.25

550.88

551.41

567.36

The 4th time interval

1589.63

1590.29

1591.25

1592.97

1593.48

1601.32

1597.86

The 5th time interval

566.33

567.07

567.88

569.41

570.06

569.75

573.54

One day

2926.22

2930.43

2934.98

2950.32

2955.38

2969.13

3005.59
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Similarly, to construct 5000 samples (4000 training sam‐
ples, 500 validation samples, and 500 test samples), the load 
of each node is multiplied by a Gaussian noise ranging from 
0.25 p.u. to 1.5 p.u.. The GA is also employed to obtain the 
labels of the training set and validation set. Each model is in‐
dependently trained 30 times to obtain the solution of the 
test set, as shown in Tables VII-X.

The simulation results of large-scale distribution networks 
are similar to those of the IEEE 33-bus distribution net‐
works, i. e., the mean power loss of the proposed RPOGAT 
is smaller than that in other benchmarks, and the proposed 
RPOGAT is more stable than the neural network and deci‐
sion tree based models.

Real-time power systems typically require an appropriate 
dispatching solution within 1 min [29], during which the dis‐
tribution networks acquire metering data and then obtain op‐
timal adjustment for all control devices (e. g., transformers, 
CBs, and SVCs). From the Table IX and Table X, it is found 
that the online inference time of GA rises dramatically with 
the scale of distribution networks, while online inference 
time of proposed RPOGAT is not sensitive to the scale of 

TABLE VIII
RESULTS OF DIFFERENT MODELS IN 118-BUS DISTRIBUTION NETWORK

Model

RPOGAT

GCN

CNN

MLP

RF

GA

SVM

CBR

Power loss (kW)

Mean

569.427

570.465

571.633

571.592

571.222

570.719

571.659

572.422

Maximum

569.453

570.595

571.723

571.598

571.234

570.750

571.659

572.422

Minimum

569.412

570.430

571.547

571.584

571.212

570.688

571.659

572.422

Standard 
deviation 

(kW)

0.031

0.090

0.168

0.072

0.039

0.324

0

0

Cross-constraint 
ratio (%)

0

0

0

0

0

0

0

0

TABLE IX
MEAN OFF-LINE TRAINING TIME AND ONLINE INFERENCE TIME OF 

DIFFERENT MODELS IN IEEE 69-BUS DISTRIBUTION NETWORK

Model

RPOGAT

GCN

CNN

MLP

RF

GA

SVM

CBR

Off-line training time (s)

1111.29

50.67

49.21

21.25

267.45

0

1.40

0

Online inference time (s)

0.59

0.11

0.05

0.02

0.18

67.25

0.04

5.89

TABLE X
MEAN OFF-LINE TRAINING TIME AND ONLINE INFERENCE TIME OF 

DIFFERENT MODELS IN 118-BUS DISTRIBUTION NETWORK

Model

RPOGAT

GCN

CNN

MLP

RF

GA

SVM

CBR

Off-line training time (s)

2173.83

77.73

93.09

21.34

826.61

0

4.18

0

Online inference time (s)

0.69

0.43

0.07

0.02

0.30

287.51

0.13

9.26

TABLE VII
RESULTS OF DIFFERENT MODELS IN IEEE 69-BUS DISTRIBUTION NETWORK

Model

RPOGAT

GCN

CNN

MLP

RF

GA

SVM

CBR

Power loss (kW)

Mean

289.046

289.860

290.097

290.216

290.112

290.128

291.725

291.220

Maximum

289.054

289.866

290.101

290.225

290.127

290.145

291.725

291.220

Minimum

289.036

289.851

290.092

290.205

290.100

290.110

291.725

291.220

Standard 
deviation 

(kW)

0.034

0.051

0.065

0.078

0.074

0.147

0

0

Cross-constraint 
ratio (%)

0

0

0

0

0

0

0

0
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Fig. 9.　Framework of IEEE 69-bus distribution network.
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distribution networks, since the physical model is replaced 
by the direct RPOGAT mapping. In a nutshell, the proposed 
RPOGAT is more suitable than the traditional physical mod‐
el based algorithms (e.g., GA) for real-time RPO control in 
large-scale distribution networks.

V. CONCLUSION

To improve accuracy and reduce online inference time of 
RPO, the GAT is migrated from computer vision into the 
RPO problem. Simulation and analysis of several distribu‐
tion networks lead to the following conclusions.

1) The proposed RPOGAT achieves state-of-the-art perfor‐
mance with high-quality and stable solutions for both static 
and dynamic RPOs. For common load conditions, the sched‐
uling schemes generated by proposed RPOGAT do not vio‐
late the constraints. For extreme load conditions, the pro‐
posed RPOGAT also has a lower cross-constraint ratio than 
other machine learning based models when the proposed 
rule-based strategy is not used.

2) The proposed rule-based strategy ensures that the con‐
straints are satisfied, and the solution derived from the pro‐
posed RPOGAT as a starting point can speed up conver‐
gence.

3) The proposed RPOGAT is not sensitive to the training 
set size, and it has better adaptability than machine learning 
based models regardless of how the training set size varies.

4) The main limitation of the proposed RPOGAT is that 
the off-line training time is longer than other models, but an 
off-line training time of a few hours is acceptable in practi‐
cal engineering. The proposed RPOGAT is more suitable 
than traditional physical model based algorithms (e. g., GA) 
for real-time RPO control in large-scale distribution net‐
works, since its online inference is significantly faster than 
traditional physical model based algorithms.

For future work, the single objective function may be ex‐
tended into multiple ones. Besides, renewable energy sourc‐
es, active power dispatching, energy storage devices, and to‐
pology changes may also be considered [30], [31].
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