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Distributionally Robust Scheduling for Benefit 
Allocation in Regional Integrated Energy 

System with Multiple Stakeholders
Qinglin Meng, Xiaolong Jin, Fengzhang Luo, Zhongguan Wang, and Sheharyar Hussain

Abstract——A distributionally robust scheduling strategy is pro‐
posed to address the complex benefit allocation problem in re‐
gional integrated energy systems (RIESs) with multiple stake‐
holders. A two-level Stackelberg game model is established, 
with the RIES operator as the leader and the users as the fol‐
lowers. It considers the interests of the RIES operator and de‐
mand response users in energy trading. The leader optimizes 
time-of-use (TOU) energy prices to minimize costs while users 
formulate response plans based on prices. A two-stage distribu‐
tionally robust game model with comprehensive norm con‐
straints, which encompasses the two-level Stackelberg game 
model in the day-ahead scheduling stage, is constructed to man‐
age wind power uncertainty. Karush-Kuhn-Tucker (KKT) con‐
ditions transform the two-level Stackelberg game model into a 
single-level robust optimization model, which is then solved us‐
ing column and constraint generation (C&CG). Numerical re‐
sults demonstrate the effectiveness of the proposed strategy in 
balancing stakeholders’ interests and mitigating wind power 
risks.

Index Terms——Regional integrated energy system (RIES), dis‐
tributionally robust, Stackelberg game, uncertainty, demand re‐
sponse.

I. INTRODUCTION 

DRIVEN by the continuous advancement of Energy In‐
ternet policies, there has been a notable rise in integrat‐

ed energy systems coupled with other networks, particularly 

the natural gas network, centered around the power grid, pav‐
ing the way for a fresh development trend [1] - [3]. The re‐
gional integrated energy systems (RIESs) serve as a platform 
for amalgamating diverse user loads, energy conversion 
equipment, energy storage units, and distributed power sourc‐
es. Its main objective is to accomplish harmonized planning, 
optimized operations, collaborative management, interactive 
response, and synergistic integration among various heteroge‐
neous energy subsystems [4]-[6]. Concurrently, the evolution 
of energy markets has transformed users into active market 
participants, fostering intense competition and forming dis‐
tinct interest groups. This emerging scenario has brought at‐
tention to the concept of source-load cooperation within the 
RIES, aiming to achieve optimal operations tailored to the 
preferences of different interest groups.

Numerous studies have been dedicated to optimizing the 
operation of RIESs. For instance, [7] proposed an economic 
scheduling model that considers power exchange among 
combined cooling heating and power (CCHP)-type multi-mi‐
crogrids, improving system efficiency. Meanwhile, [8] em‐
ployed a non-dominated sorting genetic algorithm-II for 
multi-objective optimization of a solar-compressed air ener‐
gy storage-based combined heat and power (CHP) system, 
considering investment cost and energy efficiency. These 
studies, however, primarily emphasized supply-side optimiza‐
tion and overlooked the autonomous demand-side response 
behaviors and the interactions between stakeholders. To ad‐
dress this, Stackelberg’s theory is utilized to coordinate mul‐
tiple stakeholders’ interests by balancing decision variables 
between upper-level and lower-level decision-makers. For in‐
stance, [9] introduced a comprehensive demand response 
(CDR) scheme for smart energy hubs, employing a Stackel‐
berg game to reduce RIES operating costs. In the microgrid 
(MG) system with CHP generation, [10] used the Stackel‐
berg game model to simulate the trading process between 
MG operators and users, thereby achieving optimized energy 
management in the system. Additionally, [11] introduced an 
energy management framework for a multi-energy industrial 
park based on the Stackelberg game, which considers the in‐
teractive mechanism between supply and demand. In this ap‐
proach, the power supply side is considered as the leader, 
while the users are considered as the followers. It aims to 
achieve the coordinated interaction between supply and de‐
mand while maximizing the interests of both parties. Howev‐
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er, these studies did not account for the impact of wind pow‐
er output uncertainty on formulating Stackelberg strategies.

Given the significant impact of intermittent and stochastic 
renewable energy output on stable RIES operation, address‐
ing uncertainty in RIES scheduling has become increasingly 
vital. Currently, robust optimization and stochastic program‐
ming are two commonly used methods for modeling uncer‐
tainties. On the one hand, Robust optimization aims to find 
optimal solutions by considering worst-case scenarios but of‐
ten exhibits inherent conservatism [12] - [14]. On the other 
hand, stochastic programming relies on accurate probability 
density distributions of uncertain variables, which can be 
challenging to obtain [15] - [17]. To overcome these limita‐
tions and leverage the advantages of both methods, distribu‐
tionally robust optimization has emerged as a novel method 
gaining widespread attention. Reference [18] utilized 1-norm 
and ∞ -norm constraints on fuzzy sets of scene probability 
distributions to effectively avoid issues, including non-deter‐
ministic polynomials, in the process of identifying the opti‐
mal decision variables under the most adverse probabilistic 
conditions within discrete scenarios. Reference [19] devel‐
oped a fuzzy set for wind power uncertainty based on the 
Wasserstein distance. Building on this, a data-driven RIES 
scheduling model was proposed to ensure that the schedul‐
ing outcomes are insensitive and robust to probability densi‐
ty function perturbations. Furthermore, [20] improved this 
method by integrating the Wasserstein distance with kernel 
density estimation, resulting in a more compact and reliable 
fuzzy set. This integration more effectively balances econom‐
ic efficiency and robustness. Although distributionally robust 
optimization has been employed in RIES scheduling, the 
combination of Stackelberg game theory with distributional‐
ly robust optimization remains a relatively unexplored area 
with a paucity of studies.

This paper aims to address the limitations of previous 
studies by proposing a novel strategy that combines distribu‐
tionally robust optimization and Stackelberg game theory for 
optimal scheduling in RIESs. First, a two-level leader-follow‐
er game model is established, in which RIES operators and 
CDR users are viewed as the leaders and followers, with 
time-of-use (TOU) energy pricing serving as the linkage be‐
tween them. The objective of the leader is to minimize oper‐
ational costs by determining optimal time-varying electricity 
prices, while the users formulate demand response plans 
based on these prices and their aggregated utility functions. 
Secondly, decision-making models for each gaming entity 
are constructed, incorporating a two-stage distributionally ro‐
bust game model (TSDRGM) to address the uncertainty in‐
herent in wind energy. Furthermore, a comprehensive norm 
constraint is introduced to mitigate the shortcomings of con‐
servative robust optimization and the poor resistance of sto‐
chastic optimization. The follower model is treated as an 
equilibrium constraint to simplify the resolution process and 
is incorporated into the decision-making model of the leader 
using the Karush-Kuhn-Tucker (KKT) condition. This modi‐
fication transforms the original two-level Stackelberg game 
model into a single-level sub-Brue-bar optimization model, 
which can be solved iteratively using the column and con‐
straint generation (C&CG) algorithm. Finally, the effective‐

ness of the two-level Stackelberg game model is validated 
through simulation examples, providing evidence of its effi‐
cacy in addressing the challenges of optimal scheduling in 
RIESs.

II. STRUCTURE AND MATHEMATICAL MODEL OF RIES 

A. Structure of RIES

RIES serves as a pivotal enabler for implementing con‐
cepts like multi-energy complementarity and optimizing ener‐
gy efficiency. In the RIES framework described within this 
study, the electricity demand of the load is met by the main 
grid, wind turbines (WTs), and gas turbines (GTs). Gas boil‐
ers (GBs) and GTs also cater to the heat demand. A portion 
of the gas supplied by the gas network is directed towards 
the GT, while another portion is allocated to the GB. Cloud 
energy storage systems (CESSs) are utilized as energy buf‐
fers to augment the stability and flexibility of the system, en‐
compassing both the cloud electrical storage (CES) and 
cloud thermal storage (CTS). These systems play a critical 
role in balancing and managing energy resources dynamical‐
ly, enhancing the system stability and flexibility. On the load 
side, CDR is considered, allowing for load time-shifting and 
interruption capabilities. The specific energy coupling config‐
uration is visually represented in Fig. 1.

B. Electric-thermal Cogeneration Model

1) GT generates both electricity and heat through the com‐
bustion of natural gas. The constraints and outputs associat‐
ed with GTs are as follows:
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P t
GT = ηGTGt

GT

H t
GT = ηGTh( )1 - ηGT Gt

GT

U t
GT P tmin

GT £P t
GT £U t

GT P tmax
GT

U t
GT H tmin

GT £H t
GT £U t

GT H tmax
GT

(1)

where P t
GT and H t

GT are the power generation and heating 
power of GT at time t, respectively; Gt

GT is the gas consump‐
tion of GT at time t; ηGT and ηGTh are the power generation 
efficiency and heating efficiency of GT, respectively; P tmax

GT  
and P tmin

GT  are the maximum and minimum power generation 
values of GT at time t, respectively; H tmax

GT  and H tmin
GT  are the 

maximum and minimum heating power values of GT at time 
t, respectively; and U t

GT is a binary variable of GT indicating 
the on/off state.

2) The GB produces heat by burning natural gas. The heat‐
ing power output and constraints associated with the GB are 

Main grid

Distribution network

Heat network

Gas network

Electricity energy flow

RIES

CESS

Electricity load

Heat load
WT GBGT

CES CTS
Heating energy flow

Gas energy flow

Fig. 1.　Specific energy coupling configuration.
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as follows:

ì
í
î

ïïH t
GB = ηGBGt

GB

H tmin
GB £H t

GB £H tmax
GB

(2)

where H t
GB is the heating power of GB at time t; Gt

GB is the 
gas consumption of GB at time t; ηGB is the heating efficien‐
cy of GB; and H tmax

GB  and H tmin
GB  are the upper and lower lim‐

its of the heating power of GB, respectively.

C. CESS

The CESS leverages energy storage resources from numer‐
ous small- and medium-sized users. It employs a “shared en‐
ergy storage” approach, which maximizes the complementa‐
ry nature and economies of scale in energy storage behavior. 
This approach helps avoid charging and discharging disorder‐
liness while reducing costs for users. The CESS described in 
this study primarily comprises two types of energy storage: 
CES and CHS. The pertinent constraints for CESS can be 
outlined as follows:
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(3)

where E t
CESS is the capacity of CESS at time t; ECESS is the 

rented energy storage capacity of CESS; α1 and α2 are the 
upper and lower limits of the charging state of CESS, respec‐
tively; E max

CESS is the maximum capacity of CESS that can be 
rented; P tch

CESS and P tdis
CESS are the charging and discharging 

power of CESS at time t, respectively; P ch
CESS and P dis

CESS are 
the charging and discharging power limits for rented CESS, 
respectively; utch

CESS and utdis
CESS are the binary variables indicat‐

ing the charging or discharging state of CESS, respectively; 
P chmax

CESS  and P dismax
CESS  are the upper limits of charging and dis‐

charging power for rented CESS, respectively; ηc
CESS and 

ηd
CESS are the charging and discharging efficiencies of CESS, 

respectively; and δCESS is the self-loss coefficient of CESS.

D. CDR

In this study, the electricity load is categorized into two 
main types: fixed load and flexible load. The flexible load is 
further subdivided into two distinct types based on their de‐
mand response characteristics: shiftable load (SL) and inter‐
ruptible load (IL).

SL: it refers to a type of electricity consumption where 
the total amount of electricity remains constant, but the tim‐
ing of consumption can be flexibly adjusted [21]. The char‐
acteristics of SL can be described as:

ì
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ïïïï

P tSLmin
load0 £P tSL

load0 £P tSLmax
load0     (μ1lbμ1ub )

∑
t = 1

T

P tSL
load0 = 0     (λ1 )

(4)

where P tSL
load0 is the time-shifted electricity load of RIES at 

time t; P tSLmax
load0  and P tSLmin

load0  are the maximum and minimum  
limits of the time-shifted electricity load of RIES at time t, re‐
spectively; and μ1lb, μ1ub, and λ1 are the allocated Lagrange 
multipliers.

IL: it is a form of electricity consumption where users can 
interrupt a portion of their load during periods of inadequate 
power supply or high electricity prices to alleviate pressure 
on the power grid [22]. The characteristics of IL can be de‐
scribed as:

P tILmin
load0 £P tIL

load0 £P tILmax
load0     (μ2lbμ2ub ) (5)

where P tILmax
load0  and P tILmin

load0  are the maximum and minimum 
limits of interruptible electricity load for RIES at time t, re‐
spectively; and μ2lb and μ2ub are the allocated Lagrange mul‐
tipliers.

The motivation for demand response for heating is the 
fact that users have a certain degree of tolerance or fuzzi‐
ness in their perception of temperature. Furthermore, minor 
temperature adjustments within a specific range do not sig‐
nificantly impact the user’s comfort experience [23]. This 
demand response behavior can be described as:

0 £H tIL
load0 £H tILmax

load0     (μ3lbμ3ub ) (6)

where H tIL
load0 is the shiftable load at time t; H tILmax

load0  is the 
maximum value of shiftable load at time t; and μ3lb and μ3ub 
are the allocated Lagrange multipliers.

RIES incorporates various types of electricity and heat 
loads. To comprehensively evaluate the impact of CDR im‐
plementation in the RIES on user experience, we introduce 
f (E t

en ) as the user utility function, representing the overall 
satisfaction derived from purchasing electricity and heat. Ad‐
ditionally, when users deviate from the most suitable baseline 
load E t

B during each time period, their satisfaction is reduced 
to a certain extent, which is expressed as a function f (E t

B ).
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en ( )αen E t
en -

βen

2
(E t

en )2

f (E t
B )= ∑

enÎE
( )1

2
λen || E t

en -E t
B

2
+ θen || E t

en -E t
B

(7)

where en represents the energy type; E is the set of energy 
types for user consumption; E t

en is the actual load of energy 
en in the MG at time t; αen and βen are the preference coeffi‐
cients for RIES users’ energy consumption, which are relat‐
ed to the energy type; and λen and θen are the satisfaction 
loss parameters for energy en.

The specific representation of the actual response quantity 
E t

en for the user can be expressed as:

ì
í
î

ïï
ïï

P t
load =P t

load0 +P tSL
load0 -P tIL

load0    (λ2 )

H t
load =H t

load0 -H tIL
load0    (λ3 )

(8)

where P t
load0 and H t

load0 are the initial values of electricity and 
heat load, respectively; P t

load and H t
load are the magnitudes of 

electricity and heat loads after CDR, respectively; and λ2 and 
λ3 are the allocated Lagrange multipliers.

In conclusion, the benefit demands of RIES on the load 
side can be expressed by the maximization of a comprehen‐
sive utility function, which is denoted as:

1633



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 5, September 2024

max US =∑
t = 1

24 ( )f (E t
en )- f (E t

B )- ∑
enÎE

E t
enwen (9)

where US is the comprehensive utility function of the user; 
and wen is the electricity price set by the RIES.

III. TSDRGM CONSIDERING WIND POWER UNCERTAINTY 

A. Objective Function

A TSDRGM is proposed for the daily and real-time opera‐
tion of RIES operators. The first stage involves day-ahead 
scheduling, implemented as a Stackelberg game. The upper-
level MG serves as the leader, while the lower-level users 
act as the followers. Using day-ahead forecasted wind power 
information, the upper-level MG determines energy prices 
and unit schedule plans, which are then communicated to the 
lower-level users. The lower-level users adjust their load de‐
mands through CDR, considering the upper-level informa‐
tion and providing feedback to the upper level. The day-
ahead decision-making process is independent of wind pow‐
er uncertainty. The second stage is the real-time reschedul‐
ing, which builds upon the decisions made in the day-ahead 
scheduling stage x. In this stage, flexible adjustments are 
made to the unit output to achieve optimal rescheduling 
costs bT y under different scheduling decisions. To facilitate 
explanation, the entire process is simplified and represented 
in matrix form, described by (10)-(12).

min
x

ì
í
î

ü
ý
þ

-aT x + max
dÎD

ì
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ü
ý
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∑
k = 1

K

Pk min
yÎΩ(xd)

bT y (10)

Cx £ g (11)

Ω(xd)={y:Ey £ eAy +Bd = cEx +Fy £ h} (12)

where x is the vector of decision variables in the day-ahead 
stage; y is the vector of decision variables in the real-time 
stage; aT x is the revenue from energy sale of RIES operator 
in the day-ahead stage; bT y is the system operating cost of 
RIES after adjustments in the real-time stage, which is influ‐
enced by uncertain parameter d; K is the total number of 
clustering scenarios; Pk is the probability of an individual clus‐
tering scenario; A, B, C, E, and F are the matrices correspond‐
ing to relevant parameters; a and b are the column vectors of 
parameters in the objective function; and c, e, g, and h are the 
column vectors of parameters under constraint conditions.
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CTSu
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CTSP
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CTSu

tdis
CTSU

t
Grid
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loadH

t
loadP

tSL
load0P

tIL
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tIL
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y =[P t
WTP͂

tup
GT P͂

tdown
GT H͂ tup

GB H͂ tdown
GB P͂ tbuy

Grid P͂
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Grid E

t
CES

      P͂ ch
CESP͂
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CESE

t
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ch
CTSP͂

dis
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(13)

where E t
CES and E t

CTS are the capacities of CES and CTS at 
time t, respectively; ECES and ECTS are the rented energy stor‐
age capacities of CES and CTS, respectively; E max

CES and E max
CTS 

are the maximum rented energy capacities of CES and CTS, 
respectively; P ch

CES and P dis
CES are the charging and discharging 

power limits for rented CES, respectively; P ch
CTS and P dis

CTS are 
the charging and discharging power limits for rented CTS, 

respectively; utch
CES and utdis

CES are the binary variables indicating 
the charging or discharging state of CES, respectively; utch

CTS 
and utdis

CTS are the binary variables indicating the charging or 
discharging state of CTS, respectively; P͂ tbuy

Grid  and P͂ tsell
Grid  are 

the power adjustments for purchasing and selling electricity 
from/to the main grid at time t, respectively; P͂ tup

GT  and P͂ tdown
GT  

are the upward and downward adjustments of electric power 
for GT at time t, respectively; H͂ tup

GB  and H͂ tdown
GB  are the up‐

ward and downward adjustments of heating power for GB at 
time t, respectively; P͂ ch

CES and P͂ dis
CES are the power adjustments 

for charging and discharging of CES at time t, respectively; 
and P͂ ch

CTS and P͂ dis
CTS are the power adjustments for charging 

and discharging of CHS at time t, respectively.
Moreover, given the challenge of acquiring the probability 

density function of actual wind power scenarios, this study 
utilizes historical wind power data. It implements the K-
means clustering algorithm to identify representative discrete 
scenarios. The information of the initial scenario probability 
density Pk0 is obtained, aiming to maximize the expected op‐
erating cost for the worst-case distribution among these typi‐
cal scenarios. The values of {Pk } is chosen regarding the 
benchmark fluctuations of Pk0. According to [24], {Pk } is 
subject to the following confidence constraints:
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∑
k = 1

K

|| Pk -Pk0 ⩽θ1 ³ 1 - 2Ke-2Vθ1 /K

Pr{ }max
1 £ k £K

|| Pk -Pk0 ⩽θ¥ ³ 1 - 2Ke-2Vθ¥

(14)

where θ1 and θ¥ are the allowable deviation values for the 1-
norm and ∞ -norm probabilities, respectively; and V is the 
historical data sample. Additionally, we set the right-hand 
side of (14) to a given confidence level, denoted as δ1 and δ¥.
1)　Day-ahead Objective Function C t

Day - ahead

In the day-ahead stage, it is necessary to ensure the reli‐
able supply of wind power consumption and load safety. The 
objective function of the day-ahead scheduling includes the 
US objective function, gas purchasing cost of RIES Cg, oper‐
ating cost of WT CWT, operating cost of CESS CCESS, carbon 
trading cost CCC, and cost of interaction power with the 
main grid CGrid.
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24
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WT

CGrid =∑
t = 1
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Grid c

tbuy
Grid -P tsell

Grid ctsell
Grid )
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∑
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24

[γGT P t
GT + γGB H t

GB + γGrid (P tbuy
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Grid )]

CCESS = ∑
iÎΩCESS
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24

[(λE E t
i + λP P tch
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(15)

where ctbuy
g  is the gas purchasing price at time t; Gtbuy is the 
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quantity of gas purchased at time t; cWT is the actual power 
output of WT at time t; P tbuy

Grid  and P tsell
Grid  are the power interac‐

tions between the MG and the main grid at time t; ctbuy
Grid  and 

ctsell
Grid  are the prices of power interaction between the MG and 

the main grid at time t; Cco2
 is the carbon tax price; γGT and 

γGB are the carbon emission coefficients corresponding to the 
unit power output of GT and GB, respectively; γGrid is the 
carbon emission coefficient for electricity generation from 
the grid; P t

GT is the electric power output of GT at time t; 
H t

GB is the heating power output of GB at time t; ΩCESS is 
the collection of CESSs; E t

i is the capacity of CSEE i at 
time t; P tch

i  and P tdis
i  are the charging and discharging power 

of CSEE, respectively; λE and λP are the leasing costs per 
unit capacity and per unit power for CESS, respectively; and 
λon is a coefficient representing operating and maintenance 
costs for charging/discharging operations of CESS.
2)　Real-time Objective Function C t

Real - time 

Real-time adjustments are implemented in the day-ahead 
schedule to manage wind power forecasting errors effective‐
ly. Methods such as rescheduling and wind curtailment are 
employed to address these errors. It is important to highlight 
that in RIES, load demand response is guided in the preced‐
ing stage by establishing peak/off-peak TOU energy prices, 
which helps form rational load plans. However, CDR from 
the load side necessitates pre-signed contracts. As a result, 
the load side determines its response plan in the prior stage, 
and this response remains unchanged in the real-time stage. 
The objective function of the rescheduling includes the main 
grid interaction rescheduling cost DGrid, wind curtailment pen‐
alty cost Dcut, and generator power adjustment cost DUC.
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C t
Real - time =DGrid +Dcut +DUC

DGrid =∑
t = 1

24

(d tbuy
Grid P͂ tbuy

Grid + ctbuy
g G͂tbuy - d tsell

Grid P͂ tsell
Grid )

Dcut =∑
t = 1

24

cqf P͂
tcut
WT

DUC =∑
t = 1

24

(d tup
GT P͂ tup

GT + d tdown
GT P͂ tdown

GT )+

            ∑
t = 1

24

(d tup
GB H͂ tup

GB + d tdown
GB H͂ tdown

GB )

(16)

where d tbuy
Grid  and d tsell

Grid  are the real-time prices at which the 
MG purchases or sells electricity from/to the main grid, re‐
spectively; cqf is the wind curtailment penalty coefficient; 
P͂ tcut

WT  is the wind power adjustment in the MG at time t; d tup
GT  

and d tdown
GT  are the upward and downward penalty coeffi‐

cients for the power adjustment of GT in the MG, respective‐
ly; and d tup

GB  and d tdown
GB  are the upward and downward penal‐

ty coefficients for the power adjustment of GB in the MG, 
respectively.

B. Day-ahead Scheduling Constraints

1) Energy Price Constraints
To ensure the coordination of user interests, the average 

value of TOU energy prices set by the operator should not 
surpass the initial selling price of energy. This constraint can 
be expressed as (taking electricity price as an example):

ì

í

î

ïïïï

ïïïï

wmin
e ⩽wt

e⩽wmax
e

∑
t = 1

T

wt
e⩽Twin

e

(17)

where T is the scheduling period; wt
e is the energy price; wmax

e  
and wmin

e  are the maximum and minimum values of the set elec‐
tricity price, respectively; and win

e  is the initially set electricity 
price. The process of setting heat prices follows a similar ap‐
proach and will not be further detailed in this context.
2) Operational Constraints of Main Grid

ì
í
î

ïï0 £P tbuy
Grid £U t

Grid P tbuymax
Grid

0 £P tsell
Grid £(1 -U t

Grid )P tsellmax
Grid

(18)

where P tbuymax
Grid  and P tsellmax

Grid  are the maximum values of elec‐
tricity purchasing from and selling to the main grid by the 
MG, respectively; and U t

Grid is the status that represents the 
electricity purchasing from or selling to the main grid by the 
MG at time t.
3) Operational Constraints of Natural Gas Network

0 £Gtbuy £Gtbuymax (19)

where Gtbuymax is the maximum value of the gas purchased 
for the MG.
4) Wind Power Output Constraints

0 £P t
WT £P tpre

WT (20)

where P tpre
WT  is the predicted value of WT output power at 

time t.
5) Power Balance Constraints

ì
í
î

ïï
ïï

P t
GT +P t

WT +P tdis
CES +P tbuy 

Grid =P t
load +P tch

CES +P tsell 
Grid 

H t
GT +H t

GB +P tdis
CTS =H t

load +P tch
CTS

(21)

where P tch
CES and P tdis

CES are the charging and discharging power 
of CES at time t, respectively; and P tch

CTS and P tdis
CTS are the 

charging and discharging power of CTS at time t, respectively.
In addition to the above-mentioned constraints (17) - (21), 

the day-ahead scheduling stage also includes additional con‐
straints related to the thermal-coupled supply system, CESS, 
and CDR constraints. These constraints are described in (1)-
(6), which will not be reiterated here.

C. Real-time Rescheduling Constraints

Based on the day-ahead scheduling, RIES undergoes real-
time rescheduling to make adjustments. It is important to en‐
sure that the adjusted output of each device satisfies its re‐
spective operational constraints and system power balance 
constraints. Specifically, the real-time rescheduling con‐
straints are modified by altering the day-ahead scheduling de‐
cision variables in (1) - (3), (18), and (21). As an example, 
the constraint for GB in (2) can be modified as:

ì

í

î

ïïïï

ï
ïï
ï

H tmin
GB £H t

GB + H͂ tup
GB - H͂ tdown

GB £H tmax
GB

H͂ tupmin
GB £ H͂ tup

GB £ H͂ tupmax
GB

H͂ tdownmin
GB £ H͂ tdown

GB £ H͂ tdownmax
GB

(22)

where H͂ tupmin
GB  and H͂ tupmax

GB  are the minimum and maximum 
up adjustable power of GB at time t, respectively; and 
H͂ tdownmin

GB  and H͂ tdownmax
GB  are the minimum and maximum 

downward adjustable power of GB at time t, respectively.
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IV. UNIQUENESS OF GAME EQUILIBRIUM SOLUTION AND 
MODEL SOLVING 

A. Proof of Uniqueness of Game Equilibrium Solution

In the Stackelberg game, the RIES operator serves as the 
leader, while the users on the RIES side act as followers. 
When the game between the RIES operator and its users 
reaches a Nash equilibrium (NE), which maximizes their re‐
spective interests, no party can unilaterally change the NE to 
obtain greater benefits. The Stackelberg game model exhibits 
a unique NE when the following conditions are met: the objec‐
tive functions of all participants are non-empty and continuous 
functions with respect to their respective strategy sets. The ob‐
jective function of each follower is a continuous convex or 
concave function with respect to their own strategy set.

Proof: in the game, the leader is the RIES operator, and 
its objective function is given by (15), which is non-empty 
and continuous. The followers are the users on the RIES 
side, and their objective function is the time-dependent pow‐
er consumption, represented by (17), which has a non-empty 
and continuous decision set. The utility function of the game-
following user is differentiated to obtain the second-order 
partial derivatives concerning its decision variables in the 
game. The value of this derivative is -(βen + λen ), where βen 
and λen are the positive real numbers, and -(βen + λen )< 0. 
Therefore, the US is a continuous convex function concern‐
ing its strategy set. Based on these observations, it can be 
concluded that the described Stackelberg game model has a 
unique NE.

B. Equivalence Between KKT Conditions and Linearization 
of Bilinear Terms

The TSDRGM constructed in this study encompasses a 
two-level Stackelberg game model in the day-ahead schedul‐
ing stage. The coupling between the upper-level and lower-
level models poses difficulties in direct solution. The La‐
grangian function of the lower-level model is formulated to 
address this challenge, and the KKT complementary relax‐
ation conditions [25] are applied based on the lower-level 
model. This transformation enables the lower-level model to 
be represented as a constraint for the upper-level model. Sub‐
sequently, the resulting transformed model, now a single-lev‐
el nonlinear model, can be linearized using the big-M meth‐
od [26]. This linearization process facilitates the formulation 
of a mixed-integer linear programming problem. Additional‐

ly, since the revenue ∑
t = 1

24 ∑
iÎΩenergy

wt
i P

tsell
i  from energy sales by 

the RIES operator involves bilinear terms that cannot be di‐
rectly solved, linear equivalence can be obtained using de‐
rived KKT equations. wt

i  is the price of energy; P tsell
i  is the 

power sold by energy; and Ωenergy is the energy type collec‐
tion. The transformation process mentioned above is detailed 
in the Supplementary Material A.

C. Reconstruction of Distributionally Robust Optimization 
Mode

Upon applying the KKT equivalent transformation, (10) is 
transformed into a three-level optimization problem in the 
form of min-max-min. The optimization variables in the day-

ahead and real-time stages are interconnected, making direct 
solutions unattainable. To overcome this challenge, the 
C&CG algorithm decomposes the model into a master prob‐
lem (MP) and sub-problems (SPs). The solution process us‐
ing C&CG algorithm is shown in Fig. 2, where P0 is the ini‐
tial probability distribution; p0

k is the specific probability val‐
ue; x* denotes the results of the day-ahead scheduling vari‐
able solutions; (d l )* denotes the worst-case uncertainty pa‐
rameters for the l th iteration; γ is the auxiliary variable; and ε 
is the convergence coefficient.
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Fig. 2.　Diagram of solution process using C&CG algorithm.
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This decomposition efficiently converts the three-level op‐
timization model into a more manageable structure. For de‐
tailed solution procedures, please refer to [27].

V. CASE ANALYSIS

To evaluate the effectiveness of the proposed strategy for 
RIES, an actual RIES in north China was chosen for simula‐
tion analysis. The optimization problem was solved using 
MATLAB R2018b software with the YALMIP plugin and 
the Cplex solver. The computer configuration comprised an 
Intel Core i7 processor with a clock frequency of 1.8 GHz 
and 16 GB of memory. For the case study, typical daily data 
from a specific region in north China were chosen as the 
background. The initial load curve and wind power forecast‐
ing curve are presented in Fig. 3, and the main parameters 
are listed in Table I, where λECES and λECTS are the price co‐
efficients of CSE and CTS capacities, respectively; λPCES  
and λPCTS are the price coefficients of CES and CTS power, 
respectively; λonCES and λonCTS are the price coefficients of 
charging and discharging during CES and CTS operation, re‐
spectively; αe, βe, αh, and βh are the utility coefficients of en‐
ergy; P͂ chmax

CESS  and P͂ dismax
CESS  are the maximum values of charging 

and discharging adjustment power of CESS, respectively. 
The interactive electricity price between the RIES and the 
main grid is listed in Fig. 4. These data are used to validate 
and demonstrate the performance of the proposed strategy in 
optimizing RIES operations.

A. Iteration Results

In order to validate the feasibility of the proposed strate‐
gy, this subsection conducts an analysis using ten sets of typ‐
ical scenarios from various historical data. The relationship 
among the total operating cost of the RIES, the computation‐
al time of the program, and the number of scenarios is exam‐
ined. The results of this analysis are visually presented in 
Fig. 5.

It can be observed from Fig. 4 that when the amount of 
historical data is small, the distribution of the total operating 
cost exhibits a higher variance and divergence. However, as 
the number of scenarios increases, the variance decreases, 
and the distribution stabilizes. This analysis suggests that the 
system is more susceptible to risk disturbances with fewer 
data samples, leading to more varied scheduling decisions in 
robust optimization scheduling under uncertainty. As more 
historical data become available, the exposure of the system 
to risk disturbances decreases, and the solution space of the 
robust game optimization problem converges, resulting in a 
more concentrated cost distribution. 

Moreover, although the computational time of the model 
fluctuates and increases with an increasing number of scenar‐
ios, it remains within acceptable limits for day-ahead sched‐
uling, considering the computing hardware conditions men‐
tioned in this study.
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Fig. 3.　Initial load curve and wind power forecast curve.

TABLE I
MAIN PARAMETERS

Parameter

P tbuymax
Grid 

P tsellmax
Grid

P͂ t buy
Grid 

P͂ tsell 
Grid

λECES

λPCES

λonCES

λECTS

λPCTS

λonCTS

P͂ chmax
CESS

P͂ dismax
CESS

Value

2000 kW

2000 kW

500 kW

500 kW

110 CNY/kW

37 CNY/kW

0.01 CNY/kW

30 CNY/kW

10 CNY/kW

0.005 CNY/kW

150 kW

150 kW

Parameter

P chmax
CESS

P dismax
CESS

αe

βe

αh

βh

H tmax
GB

P tmax
GT

H͂ tup
GB

H͂ tdown
GB

P͂ tup
GT

P͂ tdown
GT

Value

150 kW

150 kW

2

0.008

3

0.015

1000 kW

5000 kW

200 kW

200 kW

500 kW

500 kW
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Fig. 4.　Interactive electricity prices between RIES and main grid.
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Additionally, as computing hardware conditions improve, 
computational speed is likely to increase significantly, meet‐
ing the requirement for computational efficiency. Consider‐
ing the relationship among the total operating cost, computa‐
tional time, and number of scenarios, this study selects 5000 
historical data samples and ten discrete scenarios to solve 
the TSDRGM. The determined energy selling prices of 
RIES, as shown in Fig. 6, are reasonable and fall within an 
acceptable range for users when compared with external en‐
ergy prices for MGs.

B. Comparative Analysis

1)　Comparative Analysis of Parameters
Equation (14) shows that different confidence levels corre‐

spond to different bias limits when given a set of V samples. 
This analysis aims to assess how the comprehensive norm 

constraints enforced by the 1-norm and ∞ -norm sets in the 
TSDRGM affect the total operating cost of RIES. In this 
part, 5000 historical data samples are selected to examine 
variations in scheduling costs within the TSDRGM at vary‐
ing confidence levels. Table II illustrates the impact of confi‐
dence levels on the total operating cost of RIES.

Based on Table II, it is evident that when employing com‐
prehensive norm constraints, the total operating cost of RIES 
gradually increases as the combined value of the confidence 
levels δ1 and δ¥ increases. Notable, δ¥ has a more pro‐
nounced impact on the outcomes. This phenomenon can be 
intuitively explained: a higher confidence level indicates a 
greater likelihood of encountering a worst-case scenario in 
the output power of renewable energy sources, indicating an 
increase in the uncertainty covered by the optimization prob‐
lem. In such cases, the RIES adopts a more conservative 

strategy, requiring the allocation of more power output from 
controllable units to cope with the worst-case scenario of 
wind power output. As a result, the electricity sales profit of 
RIES is reduced, the integration of wind and solar energy is 
declined, and the total operating costs of the system are in‐
creased.

The above analysis indicates that by adjusting the com‐
bined value of confidence levels δ1 and δ¥, the robustness 
and economic efficiency of the adaptive balancing schedul‐
ing scheme can be effectively balanced. In the following ex‐
amples, unless otherwise specified, δ1 is set to be 0.50, and 
δ¥ is set to be 0.99.
2)　Comparison of Uncertainty Optimization Strategies

To assess the superiority of the proposed strategy, this 
study conducted a comparison with deterministic optimiza‐
tion (strategy 1), two-stage stochastic optimization (strategy 
2), and two-stage robust optimization (strategy 3).

The impact of different optimization scheduling strategies 
on the costs of RIES is shown in Table III. It is evident that 
strategy 1 results in the lowest total operating cost. This is 
because strategy 1 assumes accurate forecast scenarios of 
wind power output, leading to a heavy reliance on purchas‐
ing electricity from the main grid to compensate for the pow‐
er deficit due to forecast errors. However, this strategy under‐
estimates the uncertainty risk associated with wind power 
and poses significant risks to the safe and stable operation of 
the system.

In uncertainty optimization, strategy 2 yields the lowest 
day-ahead and real-time scheduling costs. This is because 
strategy 2 models the day-ahead scheduling scenarios of 
wind power based on accurate information about the proba‐
bility density function of uncertain input parameters, thus en‐
hancing economic efficiency and overall performance. In‐
deed, relying solely on precise probability distributions in 
strategy 2 may lead to overly optimistic expectations of real-
time risks, making the system less robust to extreme wind 
power output scenarios and potentially leading to failure.

Strategy 3 has the highest day-ahead and real-time sched‐
uling costs. This is because it relies on predetermined ranges 
for variable fluctuations during day-ahead scheduling, aim‐
ing to ensure results applicable in “worst-case” scenarios 
with a low probability of occurrence. In real-time decision-
making, it prioritizes robustness by primarily increasing ener‐
gy reserves to mitigate risks in real-time scheduling, often at 
the expense of economic efficiency. However, strategy 3 bal‐
ances stochastic and robust optimization, yielding a total op‐

TABLE III
IMPACT OF DIFFERENT OPTIMIZATION SCHEDULING STRATEGIES ON COSTS 

OF RIES

Strategy

1

2

3

Proposed

Total 
operating 

cost (CNY)

92915.01

105780.17

240649.88

137514.22

Day-ahead 
scheduling 
cost (CNY)

92915.01

102888.67

210289.13

128839.69

Real-time 
scheduling 
cost (CNY)

2891.50

30360.75

8674.50

Computational 
efficiency (s)

63.50

66.50

84.20

90.05
TABLE II

IMPACT OF CONFIDENCE LEVELS ON TOTAL OPERATING COST OF RIES

δ¥

0.50

0.70

0.85

0.99

Total operating cost (CNY)

δ1 = 0.3

136600.92

137025.63

137203.20

137321.79

δ1 = 0.5

136909.02

137114.97

137316.51

137514.22

δ1 = 0.7

137345.91

137480.23

137527.74

137656.22

δ1 = 0.99

137388.62

137500.09

137592.13

137682.27
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Fig. 6.　Energy selling prices of RIES.
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erating cost that falls between the two. This strategy utilizes 
the worst-case probability distribution of forecast errors for 
day-ahead scheduling while incorporating probabilistic infor‐
mation from historical data. It achieves a trade-off between 
economic efficiency and robustness, making it a promising 
solution for RIES optimization.
3)　Comparison and Analysis of Game-theoretic Methods

In this part, the effectiveness of the proposed model in the 
strategies for mitigating wind power uncertainty risk is vali‐

dated by comparing it with the deterministic game model 
(model 1). The initial scenario probabilities are identical for 
both models. An error range of 0-40% is considered to ex‐
plore the impact of wind power forecast errors, with a 10% 
increment for each scenario. Simulations are conducted for 
both models, and the results are presented in Table IV, 
which shows the robustness and efficiency of the proposed 
model in handling uncertainties and optimizing the RIES op‐
eration.

When the wind power forecast error is 0, both model 1 
and the proposed model produce the same results. This is be‐
cause the wind power output consistently aligns with the ini‐
tial scenario probability distribution, leaving no room for de‐
viations in either model. As the wind power forecast error 
gradually increases, the overall energy sales revenue of mod‐
el 1 surpasses that of the proposed model. This discrepancy 
arises from the ability of model 1 to accurately predict wind 
power generation during day-ahead scheduling, allowing the 
operator to effectively optimize energy sale revenue while 
ensuring that the load demand is adequately met. The pro‐
posed model, on the other hand, incorporates a conservative 
approach to handle uncertainties, which may lead to slightly 
lower energy sales revenue as a precautionary measure 
against potential deviations in wind power output. During 
the real-time scheduling stage, the proposed model adjusts 
equipment power and energy sales revenue values based on 
real-time wind power scenarios, effectively compensating for 
wind power uncertainty. To mitigate risks, the operator 
adopts a more cautious energy sales strategy, often resorting 
to purchasing electricity from the main grid to ensure an ade‐
quate energy supply.

Consequently, the proposed model reduces the energy 
sales revenue compared with a more aggressive strategy. Up‐
on analyzing Table IV, it becomes apparent that when the 
forecast error remains below 10%, model 1 exhibits lower 
operating costs than the proposed model. This is mainly due 
to the influence of variations in initial forecast errors on en‐
ergy sales costs, with model 1 achieving higher energy sales 
revenue by adopting a more optimistic stance. However, as 
the forecast error surpasses 10%, the adaptability of demand 
response plans of model 1, formulated during day-ahead 

scheduling, significantly diminishes compared with the pro‐
posed model. Consequently, the original scheduling plan 
fails to meet the actual load demands. To compensate for 
these discrepancies, RIES operators rely heavily on controlla‐
ble units to manage the fluctuations in wind power.

Consequently, during situations involving substantial 
changes in wind power forecast errors, model 1 exhibits 
higher curtailment rates and carbon emission costs compared 
with the proposed model. In summary, the proposed model 
fully accounts for forecast errors in wind power generation 
during decision-making, offering enhanced uncertainty-han‐
dling capabilities. It effectively optimizes the power interac‐
tion between the RIES and the main grid, especially in the 
case of significant forecast errors. This optimization reduces 
curtailment rates and carbon emissions, thereby improving 
the operational efficiency and sustainability.

C. CDR Analysis for RIES

The loads with demand response capability mentioned in 
this paper include electricity loads and heat loads, which re‐
spond to their own demand based on the energy trading pric‐
es set by RIES operators.

Figures 7 and 8 show the operation plans of electricity 
and heat loads before and after demand response, respective‐
ly. As illustrated in Fig. 6, it can be observed that during the 
10th-18th hours when the electricity price of RIES operator is 
high, the operator significantly reduces the fluctuation of the 
electricity load by interrupting the electricity load and trans‐
ferring it to the period with low electricity prices, achieving 
the effect of peak shaving and valley filling. However, it is 
worth noting that after the demand response, the fluctuation 
of the heat load is not obvious. This is because the heating 

TABLE IV
COMPARISON OF RESULTS UNDER DIFFERENT MODELS

Model

1

Proposed

ρ (%)

0

10

20

30

40

0

10

20

30

40

Total operating cost 
(CNY)

137416.17

137488.19

137782.41

137910.98

138245.13

137416.17

137514.22

137634.16

137758.08

137865.12

Wind power curtailment 
rate (%)

2.62

4.89

5.32

5.84

6.27

2.62

4.91

4.96

5.25

5.78

System carbon emission 
cost (CNY)

-4698.89

-4476.27

-4394.71

-4236.45

-4175.33

-4698.89

-4482.84

-4479.69

-4475.24

-4473.52

Energy sale revenue 
(CNY)

38289.42

38252.39

38231.27

38198.76

38183.81

38289.42

38123.91

38021.76

37848.59

37684.35

Computational efficiency 
(s)

62.60

63.50

64.30

66.20

69.50

83.52

90.05

98.23

105.20

120.20
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price does not vary much during each time period, and re‐
ducing the heat load is not conducive to improving the eco‐
nomic operation of the system.

To further illustrate the rationality and feasibility of the 
proposed CDR scheme in this paper, a comparison is made 
between this scheme and a scheme that does not consider us‐
ers’ CDR behavior (without a master-slave game relation‐
ship), which is denoted as scheme 1.

A comparison of the energy cost and comprehensive bene‐
fits of RIES users under different schemes is shown in Table 
V. It shows that the proposed CDR scheme results in an 
8.99% reduction in energy costs for users while significantly 
increasing their comprehensive benefits by 58.79%. Overall, 
the introduction of CDR in RIES alleviates the energy sup‐
ply pressure during peak periods for RIES operators and ben‐
efits users by providing economically comfortable energy 
use, achieving a win-win situation.

D. Optimal Scheduling Results for RIES

This subsection utilizes a sample of 5000 historical wind 
power generation scenarios from a specific location in Chi‐
na. 

The scenarios are further divided into ten discrete cases 
for analysis. The results of the optimal scheduling from the 
proposed model are displayed in Fig. 9 and Fig. 10.

1) Optimal Electricity Supply Plan for RIES
In the context of optimizing electricity supply, as illustrat‐

ed in Fig. 9, the RIES implements a moderate to low level 
of electricity supply from the 0th-8th hours and 16th-24th 
hours. These time frames are characterized by abundant 
wind power resources with minimal fluctuations, sufficiently 
meeting the majority of the load demand. Furthermore, due 
to the need for heating power, the GT generates surplus elec‐
tricity that exceeds the local consumption. Consequently, this 
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TABLE V
COMPARISON OF ENERGY COST AND COMPREHENSIVE BENEFITS OF RIES 

USERS UNDER DIFFERENT SCHEMES

Scheme

1

Proposed

Energy cost (CNY)

41892.48

38123.91

Comprehensive benefit (CNY)

32674.21

51883.26
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excess electricity is sold to the higher-level grid during these 
periods, generating revenue and reducing carbon emissions 
for the RIES.

Additionally, during these periods, operators actively 
charge the GTs. The stored energy is later discharged and uti‐
lized during high-demand periods. This load-shifting strategy 
effectively manages peaks in electricity consumption, there‐
by contributing to a more balanced and efficient electricity 
supply system.
2) Optimal Heating Supply Plan for RIES

Concerning the optimization of heating supply, the heating 
model in this study incorporates GT and GB. The electricity 
generated by the GT and WT is used to meet the demand re‐
sponse for electricity loads, while the heat produced simulta‐
neously maintains the heat balance of the system. As depict‐
ed in Fig. 10, the heat load supplied by the RIES is lower in 
the evening and at night but increases significantly during 
the day time. During the periods from 0th-5th horus and 16th-
24th hours, the RIES experiences less pressure in the heating 
supply, allowing for the utilization of CHS systems to 
charge heat. This stored heat is then utilized to meet the 
high-demand periods, thereby reducing the constraints im‐
posed by the heat-to-power ratio of GT and improving the 
integration rates of wind power. Consequently, this model ef‐
fectively reduces carbon emissions from the system, promot‐
ing a more sustainable and eco-friendly operation.

VI. CONCLUSION 

This study focuses on the integration of multiple stake‐
holders in the RIES. A TSDRGM based on Stackelberg 
game theory involving RIES operators and CDR users is pro‐
posed. The efficient C&CG algorithm is employed to itera‐
tively solve the master problem and subproblems. The valida‐
tion of the proposed model leads to the following conclu‐
sions.

1) The optimal scheduling strategy presented in this study 
significantly improves the economic efficiency of system op‐
eration through the Stackelberg game process between RIES 
operators and CDR users, effectively handling different lev‐
els of wind power forecast errors. The strategy demonstrates 
its capability to effectively mitigate uncertainties and risks 
associated with wind power forecast.

2) The distributionally robust optimization allows for well-
balanced trade-offs between the economic performance and 
the robustness of scheduling plans. It achieves this by flexi‐
bly adjusting confidence levels, combining the advantages of 
stochastic optimization, which reflects expected risks based 
on historical forecast error data, and strong robustness in ro‐
bust optimization.

3) The CDR scheme proposed in this paper realizes the 
demand response of electricity and heat loads within a rea‐
sonable range, reducing the user’s energy cost by 8.99% 
and significantly increasing the user’s energy satisfaction by 
58.79%. This not only alleviates the energy supply pressure 
of RIES operators during peak periods but also benefits us‐
ers by providing economically comfortable energy use.

4) The proposed model and strategy hold promise for 
achieving optimal scheduling in RIESs considering the inter‐

ests of various stakeholders, and effectively handling uncer‐
tainties in energy generation and demand response.

This paper examines energy pricing through a master-
slave game without addressing the actual pricing mechanism 
for optimal energy pricing. Future research should explore 
more comprehensive optimization configuration schemes to 
promote the coordinated development of RIESs.
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