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Abstract——As renewable energy is becoming the major re‐
source in future power grids, the weather and climate can have 
a higher impact on grid reliability. Transmission expansion 
planning (TEP) has the potential to reinforce the power trans‐
fer capability of a transmission network for climate-impacted 
power grids. In this paper, we propose a systematic TEP proce‐
dure for renewable-energy-dominated power grids considering 
climate impact (CI). Particularly, this paper develops an im‐
proved model for TEP considering climate impact (TEP-CI) 
and evaluates the reliability of power grid with the obtained 
transmission investment plan. Firstly, we create climate-impact‐
ed spatio-temporal future power grid data to facilitate the 
study of TEP-CI, which include the future climate-dependent re‐
newable power generation as well as the dynamic line rating 
profiles of the Texas 123-bus backbone transmission (TX-
123BT) system. Secondly, the TEP-CI model is proposed, which 
considers the variation in renewable power generation and dy‐
namic line rating, and the investment plan for future TX-
123BT system is obtained. Thirdly, a customized security-con‐
strained unit commitment (SCUC) is presented specifically for 
climate-impacted power grids. The reliability of future power 
grid in various investment scenarios is analyzed based on the 
daily operation conditions from SCUC simulations. The whole 
procedure presented in this paper enables numerical studies on 
power grid planning considering climate impact. It can also 
serve as a benchmark for other studies of the TEP-CI model 
and its performance evaluation.

Index Terms——Generation investment, power grid, renewable 
energy, reliability, climate, transmission expansion planning.
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Set of generators including operating new genera‐
tors in future period p
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Set of future time periods studied in transmission 
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Set of renewable power plants in power grid
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Set of renewable energy sources located on bus n
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Construction cost of line k
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Number of periods in TEP study

Number of years in each future period

Number of typical days in each year

Number of weekdays in a quarter

Number of weekends in a quarter

Number of buses in power grid

Number of shedding hours on bus n in typical day 
d in future period p

The minimum output power for generator g

The maximum output power for generator g

The minimum output power limit for new generator 
g in future period p

The maximum output power limit for new genera‐
tor g in future period p

The minimum output power for renewable power 
plant r

Available power output for renewable power plant r 
at time interval t in typical day d in future period p

The minimum output power for new renewable 
power plant r

Available power output for new renewable power 
plant r at time interval t in typical day d in future 
period p

Active power rating of line k at time interval t

Active power rating of line k at time interval t in 
typical day d in future period p

Active power rating of candidate new line k at time 
interval t in typical day d in future period p

Load on bus n at time interval t in typical day d in 
future period p

Load shedding of bus n at time interval t in typical 
day d in future period p

Load demand on bus n at time interval t in typical 
day d in future period p

Load demand on bus n at time interval t

Output power of renewable power plant r at time 
interval t

Reserve ramping rate of generator g in 10 min

Ramping rate of generator g

Ratio of maintenance cost to construction cost of a 
transmission line

Reference value of apparent power used for normal‐
izing power quantities in per-unit system calcula‐
tions

Wind speed at 10 m height
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Wind speed at 80 m height

Reactance of candidate new line k

Surface roughness length for wind power genera‐
tion calculation

C. Variables
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Phase angle difference of two terminal buses of 
line k at time interval t

Phase angle at from-bus of line k at time interval t 
in typical day d in future period p

Phase angle at to-bus of line k at time interval t in 
typical day d in future period p

Total operation cost of power grid in future periods

Total capital cost of power grid in future periods

Active power output of generator g at time inter‐
val t in typical day d in future period p

Active power output of new generator g at time in‐
terval t in typical day d in future period p

Active power flow on line j at time interval t in 
typical day d in future period p

Active power flow on new line j at time interval t 
in typical day d in future period p

Active power output of renewable power plant r at 
time interval t in typical day d in future period p

Active power output of new renewable power 
plant r at time interval t in typical day d in future 
period p

Load shedding on bus n at time interval t

Renewable curtailment on bus n at time interval t

Output power of generator g at time interval t

Active power flow on line k at time interval t

Reserve of generator g at time interval t

Binary variable equal to 1 when generator g is on‐
line at time interval t and 0 otherwise 

Binary variable equal to 1 when candidate new 
line k is operating in future period p and 0 other‐
wise

Binary variable equal to 1 when generator g transi‐
tions from offline to online at time interval t and 0 
otherwise

Binary variable equal to 1 when candidate new 
line k is constructed in future period p and 0 other‐
wise

I. INTRODUCTION

DURING the operation of modern power grid, various 
economic and technical factors are considered to 

achieve both cost efficiency and physical reliability [1] - [3]. 
Economic dispatch and unit commitment minimize the total 
generation cost while considering the power flows, generator 
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production limits, and other constraints [4]-[6]. They rely on 
the collection or prediction of various data such as load de‐
mand, renewable power generation, and transmission net‐
work status [7]-[10]. Power grids need to be expanded to ac‐
commodate the rising demands and possess the necessary 
transmission capability for reliable operation. New invest‐
ments or upgrades in transmission and generation need to be 
well planned to maintain the reliability of the power grids. 
The transmission expansion planning (TEP) typically looks 
several decades ahead due to the long construction time of 
transmission lines and the necessity to account for long-term 
shifts in load demand and generation. Generally, the TEP 
considers multiple scenarios of the future power grids for 
the planning period, and the associated daily operation condi‐
tions in these scenarios are estimated and evaluated. There‐
fore, successful TEP relies on detailed and accurate predic‐
tions of load demand and generation of the future power 
grids at the nodal or facility level. The load demands are 
complicated and hard to be predicted precisely in the long 
term due to various factors including weather and climate, 
socio-economics, and electrification in transportation and oth‐
er industry sectors [11], [12]. The generation expansion in‐
cluding the locations and new types of generation is often a 
prerequisite for TEP. However, predicting the future genera‐
tion investments at facility level is also complicated. Taking 
the U.S. as an example, different entities usually make their 
own decisions for developing new power plants [13]. After 
determining the generation expansion plan, the prediction of 
future renewable generation is also essential for a compre‐
hensive TEP study on a renewable-energy-dominated power 
grid [14].

The planning horizon for TEP usually spans decades, and 
it is widely acknowledged that climate changes will be more 
pronounced compared with long-standing historical patterns 
[15], [16]. Climate changes can affect multiple sectors of the 
future power grids including load demand, generation, and 
transmission [17]-[19]. While the modern power grids are be‐
coming cleaner and greener, renewable power generation is 
highly dependent on the environmental variables such as 
wind speed, solar radiation, and temperature, which may be 
affected by climate change. Besides, the load demands, espe‐
cially those for heating, ventilation, and air conditioning, are 
highly correlated with the temperature [20]. Climate change 
may affect both the peak load demand and the average load 
demand. Moreover, the transfer capability of transmission 
line is influenced by weather conditions including tempera‐
ture and wind. While the dynamic line rating (DLR) tech‐
nique is becoming more widely adopted in the short-term op‐
eration of power grids, the impact of climate change on the 
transmission network should also be considered in the long-
term planning. Based on the above-mentioned reasons, it is 
necessary to consider the climate impact on the TEP of fu‐
ture renewable-energy-dominated power grids.

The accurate and detailed profiles of future power grid are 
the foundation for TEP, and considering climate impact on 
various sectors of the power grid may make the power grid 
profiles closer to the actual conditions in the future. Hence, 
data preparation is very important for TEP. However, few 

studies are presented to create the future power grid profiles 
required for TEP. Most of the real-world power grid data are 
sensitive and not publicly accessible. Instead, many synthetic 
test cases are available for research purposes such as the 
IEEE/CIGRE benchmark cases [21], [22], the PEGASE test 
case [23], and the Polish Circle 2000 case [24]. Most of 
these cases represent the systems for a certain time snapshot 
only. While there are a handful of studies on the climate im‐
pact on power grids, very few studies present the spatio-tem‐
poral datasets of the future climate-impacted power grids 
which can be used by TEP. In this paper, we create the fu‐
ture profile of the Texas 123-bus backbone transmission (TX-
123BT) system [25], which includes the renewable power 
generation and DLRs influenced by meteorological variables. 
The representative profiles are also created and used as dif‐
ferent scenarios in TEP. The datasets can be used to study 
the operation, planning, resilience, and many other analyses 
on climate-impacted power grids. By utilizing this dataset, 
we are able to evaluate the performance improvement of 
TEP considering the climate impact.

The trend of decarbonization in the energy sector may 
lead to changes on both generation and demand sides. Due 
to incentive policies and other factors, more variable renew‐
able energy (VRE) will be invested and deployed into the fu‐
ture power grid. Meanwhile, conventional generation such as 
coal and gas plants is expected to decline. According to the 
National Renewable Energy Laboratory, 70% of U. S. total 
energy is expected to be generated by renewable energies by 
2035, and it will rise to 90% by 2050 [26]. Expected high 
penetration of renewable energies requires the improvement 
of current TEP strategies to handle the versatility and uncer‐
tainties of VRE. Therefore, the U. S. Department of Energy 
(DOE) is proposing the state-of-the-art TEP techniques to ad‐
dress challenges arising from high penetration of renewable 
energies [27]. Besides, climate change will directly influence 
the weather conditions in future, and thus inpact the renew‐
able power generation. The impact may also increase the ver‐
satility and uncertainties of VRE, and thus increase the diffi‐
culties in operation and planning of future power grids. An 
intuitive method to adapt to the versatility is to increase the 
resolution of VRE in the TEP model. A model for TEP con‐
sidering climate impact (TEP-CI) with higher resolution for 
renewable energy generation and line flow limits is proposed 
in this paper. With the TEP-CI model, an initial study can be 
conducted on the TEP-CI of renewable-energy-dominated 
power grids. It can also serve as a benchmark for developing 
more comprehensive TEP-CI models.

To numerically evaluate the performance of the TEP-CI 
model, we have developed a security-constrained unit com‐
mitment (SCUC) model that can reflect the impacts of future 
power grid investment and climate changes, and can be used 
to simulate the daily operations of future power grids. The 
SCUC simulations are conducted in all typical days to ob‐
tain the operation conditions of future power grids in differ‐
ent planning epochs. Three widely-used reliability indices, 
i.e., loss of load probability (LOLP), loss of load expectation 
(LOLE), and expected unserved energy (EUE), are used to 
evaluate the overall reliability of the power grid for each cer‐
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tain future period. We showcase how different types of in‐
vestment will influence future power grid by conducting the 
reliability analysis in the following three cases, respectively: ① a power grid without any asset investment, referred as fu‐
ture (FR) case; ② a power grid with only future generation 
investment (FGI); and ③ a power grid with both future gen‐
eration and transmission investment (FGTI). The reliability 
of future power grid under different investment situations is 
analyzed.

In the literature, very few studies address the creation of 
accurate future power grid profiles, or perform numerical 
analysis of the climate impact on the renewable-energy-domi‐
nated power grids, and how it will influence the TEP. In 
[28], the climate impact on various components of power 
system is discussed and concluded; however, no numerical 
analysis is conducted. In [29], the future planning of the cli‐
mate-impacted Indonesian power grid is studied, which, how‐
ever, consists of less than 20% renewable energy sources, 
and the climate impact is not considered. In [30], the climate 
impact on the generation mix of Portuguese power grids is 
studied. Since the generation is not studied at facility level, 
the study cannot capture the spatio-temporal characteristics 
of climate impact on renewable power generation.

Many studies focus on the modeling of transmission ex‐
pansion considering the specific impact of weather or cli‐
mate conditions. In [31], the stochastic TEP model includes 
the dynamic and uncertain nature of DLRs. The economic 
benefits obtained by considering the DLR are validated, but 
the reliability of the future power grids with its obtained in‐
vestments are not investigated. A three-stage robust model 
that considers the climate impact on renewable power gener‐
ation is proposed in [32]. The model accounts for the effects 
of El Niño and La Niña on renewable power generation but 
may not fully capture the nuances of climate impact on a re‐
gional scale. The model in [33] addresses the uncertainties 
of renewable power generation. However, it does not consid‐
er climate impact on renewable power generation and trans‐
mission line capacity.

Based on the above literature, current TEP utilizes the pre‐
dicted information of future representative scenarios without 
considering the climate impact. Existing models do not con‐
sider higher temporal resolution and capture temporal chang‐
es for these power grid conditions. Existing evaluation of 
TEP focuses on economic aspects. The reliability of the fu‐
ture power grid, especially after suitable transmission invest‐
ment, remains to be investigated. Few studies conclude and 
present the whole procedures of TEP, including data prepara‐
tion, model formulation, and numerical evaluation. This pa‐
per addresses the climate impact on all these procedures. Var‐
ious meteorological variables are considered in future renew‐
able power generation and DLR profiles. The proposed TEP-
CI model considers the fluctuation of weather-dependent re‐
newable power generation and DLR. A specialized SCUC 
model which incorporates climate-dependent variations and 
load shedding is also required to obtain the daily operation 
conditions of future power grid for the reliability evalua‐
tions. The reliability indices which can evaluate power grid 
reliability for a long period in the future are calculated and 
compared. We evaluate the reliability of power grid with the 

proposed TEP-CI model to study the necessity and perfor‐
mance improvement after considering climate impact. The 
main contributions of this paper are summarized as below.

1) The climate-impacted profiles of the TX-123BT system 
from 2020 to 2050 including renewable power generation 
and DLRs are created. The representative profiles are also 
created for the planning and other scenario-based studies.

2) The TEP-CI model considers the versatility of renew‐
able energy sources and climate impact, and is improved to 
adapt the spatio-temporal data of the representative profiles.

3) Three reliability indices, i. e., LOLP, LOLE, and EUE, 
are introduced to evaluate the long-term power grid reliabili‐
ty under various investment situations and TEP models.

The rest of this paper is structured as follows. Section II 
presents the procedures to create the time-sequential climate-
impacted power grid profiles. Section III shows the TEP-CI 
model for renewable-energy-dominated power grids. The 
SCUC for TEP performance evaluation is presented in Sec‐
tion IV, while the reliability evaluation results are shown in 
Section V. The conclusions are drawn in Section VI.

II. TIME-SEQUENTIAL CLIMATE-IMPACTED POWER GRID 
PROFILES

Typically, the TEP needs to consider the operation condi‐
tions of future power grid in different scenarios. Thus, the 
future power grid profiles including predicted load and gen‐
eration information are critical for TEP to obtain a suitable 
transmission investment plan. The TEP requires both compre‐
hensive technical data of the current grid configurations and 
future prospective information. The proposed TEP-CI model 
requires comprehensive geographic details of the power grid 
infrastructure and dependable prediction of future climate 
conditions specific to the region to create future power grid 
profiles that incorporate climate impacts.

The TX-123BT system is a synthetic power grid based on 
the footprint of Texas [34]. It is designed to represent the 
Electric Reliability Council of Texas (ERCOT) system, 
which covers most areas in Texas territory. It includes 345 
kV high-voltage backbone transmission network distributed 
in ERCOT, which is shown in Fig. 1. The generator capaci‐
ties and load distributions of the TX-123BT system are 
closely aligned with the actual ERCOT system as it was in 
2019. Compared with other publicly accessible test power 
grids, TX-123BT system provides the geographic locations 
of all substations, transmission lines, thermal generators, and 
renewable power plants. These geographic locations are nec‐
essary to obtain the future climate and weather conditions at 
the facilities, which are required for the creation of renew‐
able power generation and DLR profiles. We create the cli‐
mate-impacted power grid profiles based on the future cli‐
mate data extracted from Coupled Model Intercomparison 
Project Phase 6 (CMIP6) for 2020-2050. The CMIP6 is an 
advanced, comprehensive, coupled model global climate 
change project [35]. CMIP6 generates climate projections 
based on a variety of scenarios using complex climate mod‐
els. The projections are based on a range of scenarios called 
shared socioeconomic pathways (SSPs) combined with repre‐
sentative concentration pathways (RCPs). SSPs describe pos‐
sible future changes in demographics, economics, technolo‐
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gy, energy consumption, and land use. RCPs outline path‐
ways of greenhouse gas concentrations and their radiative 
forcing on the climate system. By combining SSPs with 
RCPs, CMIP6 explores a wide range of future climate out‐
comes. The extracted data are for meteorological variables 
such as wind speed, solar radiation, and temperature under 
RCP 8.5, which is considered as the most likely global 
warming conditions if the world makes usual efforts on re‐
ducing the emission in the future [36]. We compare the pre‐
dicted climate data from CMIP6 with the historical climate 
data from North American Land Data Assimilation System 
(NLDAS-2) [37] for the same period of 2019-2022, and veri‐
fy that these meteorological variables in CMIP6 is coherent 
with the historical observations.

Figure 2 displays a year-long comparison of temperature 
data in CMIP6 and NLDAS-2 at a bus location.
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Fig. 2.　Year-long comparison of temperature data in CMIP6 and NLDAS-2.

The CMIP6 climate data has three-hour resolution. In 
each three-hour period, the wind speed, solar radiation, and 

temperature data for all bus locations in TX-123BT system 
are extracted. Based on the weather-dependent models for 
DLR, solar and wind power generations in [34], the corre‐
sponding profiles are created for 2019-2050, and have the 
same three-hour resolution. The renewable power generation 
and DLR profiles are calculated for each renewable power 
plant or transmission line at three-hour resolution based on the 
future climate prediction at the specific location of the facility.

For DLR, the lower wind speed, higher temperature, and so‐
lar radiation on the two terminal buses of the transmission line 
are averaged, respectively, and then used in the calculation. 
The monthly average DLR at a transmission line (named as 
transmission line 1) for 2019-2024 is shown in Fig. 3.

The gross power output of a wind farm is the aggregation 
of all the wind turbines inside. To simplify the relationship 
between the wind speed at the wind farm location and the 
power output, we assume that the wind turbines in one wind 
farm are of the same type. Besides, the wind speed at the 
wind turbine height is required for the calculation of wind 
power generation. Since the wind speed in CMIP6 is the wind 
speed on the “earth surface” at 10 m height, we estimate the 
wind speed at 80 m height using the logarithmic wind profile 
method [38], which assumes that the wind speed increases 
with altitude due to the decrease in surface drag. This method 
provides a reliable approximation of wind speed at the turbine 
hub height, which is essential for creating the wind power gen‐
eration profile based on the CMIP6 dataset. The logarithmic 
relationship between wind speeds at 80 m and 10 m heights is:

v80 = v10

ln
80
z0

ln
10
z0

(1)

Based on the estimated wind speed and the wind power 
generation model, the wind power generation profiles are 
created. The monthly average wind power generation of a 
wind power plant (wind power plant 72) is plotted in Fig. 4.
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Fig. 3.　Plot of monthly average DLR at transmission line 1.
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Fig. 4.　Monthly average wind power generation of wind power plant 72.
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Fig. 1.　High-voltage backbone transmission network of TX-123BT system.
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The solar power generation is calculated using both short‐
wave and longwave radiation data extracted from CMIP6. 
The effective radiation on the solar panel is estimated based 
on the frequency range of the commonly used solar panels. 
The monthly average solar power generation of a solar pow‐
er plant (solar power plant 66) is shown in Fig. 5. Due to 
the computation burden, planning models for future power 
grid such as TEP often consider a limited number of repre‐
sentative future scenarios. Hence, we create the representa‐
tive daily profiles for every quarter of each five-year period 
from 2021 to 2050. Each representative profile encapsulates 
the average renewable power generation and DLRs derived 
from identical hours across all days within the same quarter. 
Since load demand is significantly affected by social activi‐
ties, representative load demand profiles are established for 
weekdays and weekends within each quarter. The representa‐
tive DLR, wind and solar power generations, and load de‐
mand profiles in 2021-2025 are shown in Fig. 6. In Fig. 6(a), 
the DLR in Quarter 1 is higher than other quarters due to 
the low temperature. In Quarter 3, the DLR is the lowest 
and drops obviously at noon time due to the high tempera‐
ture. According to Fig. 6(b) and (c), the wind power genera‐
tion is obviously lower in summer, while load is obviously 
higher. This illustrates why summer and winter (high wind 
power and low load power) scenarios are necessary to be 
both analyzed in some industrial applications in ERCOT.

Since the created representative profiles do not include the 
future newly invested power plants or transmission lines, 
they will be regarded as the benchmark case for the TEP 
simulation, referred to as the FR case in TX-123BT system. 
The new power plants including renewable energy sources 
are interconnected with the power grid through queue sys‐
tems by various entities in the U.S.. An agent-based model 
(ABM) is used to mimic the generation investment behavior 
by market participators [39]. Each market participator is re‐
garded as an agent and can make its own investment deci‐
sions based on the market and grid operation information. 
The ABM is selected due to its unique ability to model the 
complex interactions and decision-making processes among 
various stakeholders in the energy market including utility 
companies, independent power producers, and regulatory 
bodies. Unlike traditional models that might simplify these 
interactions through aggregated supply-demand curves or 
static investment decisions, ABM allows for a dynamic rep‐
resentation of how individual decisions and actions can lead 
to emergent market behaviors and investment patterns. In 

[39], the generation investment obtained from ABM is ana‐
lyzed and validated. The future generation investment for 
TX-123BT system including the capacity and plant type of 
different market participants is obtained based on the ABM 
model. Then, the future generation of the new renewable re‐
sources is calculated. The future TX-123BT system with 
new generation investment and related profiles is named as 
the FGI case.

III. TEP-CI MODEL FOR RENEWABLE-ENERGY-DOMINATED 
POWER GRIDS

Traditional TEP model considers the future power grid 
and market trends such as increasing load demands and fuel 
price, whereas the climate impact is not considered. The cli‐
mate may impact the power grid on various sectors such as 
transmission, generation, and load demands. In Section II, 
the representative profiles including the renewable power 
generation and DLRs of the future climate-impacted power 
grid are created. In this paper, we address the timely chang‐
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ing characteristics of the renewable power generation and 
DLRs due to the meteorological variables in the TEP-CI 
model. In this section, the TEP-CI model and its transmis‐
sion investment plan in the TX-123BT system are presented.

A. TEP-CI Model

In order to consider the components in TEP-CI model, we 
have made the following updates to the TEP model: ① the 
line flow capacity constraints now include the changing 
DLRs for different hours in the representative scenario; ② 
constraints are added to describe the available renewable en‐
ergy sources in the power grid; and ③ the power balance 
equation is modified to include the weather-dependent renew‐
able power generation and load profiles. After the update, 
the TEP-CI model can utilize the representative profiles cre‐
ated in Section II. The detailed TEP-CI model is shown below.

min (COP + CCAP ) (2)

COP = N YSA 365
N D ∑

g Î Gt Î Td Î DTp Î P

pG
gtdpC

G
g +

N YSA 365
N T ∑

g Î G't Î Td Î DTp Î P

pG'
gtdp C G'

g (3)

CCAP = ∑
k Î L'p Î P

V L'
kpC

L'
k [1 + (N P - p + 1)RM N Y ] (4)

∑
j Î LT(n)

pL
jtdp - ∑

j Î LF(n)

pL
jtdp + ∑

j Î LNT(n)

pL'
jtdp - ∑

j Î LNF(n)

pL'
jtdp +

∑
g Î GB(n)

pG
gtdp + ∑

g Î GNB(n)

pG'
gtdp + ∑

r Î RB ( )n

pR
rtdp + pR'

ntdp =

pD
ntdp    "n Î Bt Î Td Î DTp Î P (5)

pmin
g £ pG

gtdp £ pmax
g     "g Î Gt Î Td Î DTp Î P (6)

pmin
gp £ pG'

gtdy £ pmax
gp     "g Î G't Î Td Î DTp Î P (7)

pminR
r £ pR

rtdp £ pmaxR
rtdp    "r Î Rt Î Td Î DTp Î P (8)

pminR'
r £ pR'

rtdy £ pmaxR'
rtdp    "r Î R't Î Td Î DTp Î P (9)

-pmax
ktdp £ pL

ktdp £ pmax
ktdp    "k Î Lt Î Td Î DTp Î P (10)

-M (1 - uL'
kp )£ pL'

ktdp -
θ F

ktdp - θ T
ktdp

xL'
k

£ M (1 - uL'
kp )

"k Î L't Î Td Î DTp Î P (11)

-pmaxL'
ktdpuL'

kp £ pL'
ktdp £ pmaxL'

ktdpuL'
kp    "k Î L't Î Td Î DTp Î P

(12)

∑
p'Î Pp'£ p

uL'
kp' £ uL'

kp    "k Î L'p Î P (13)

vL'
kp ³ uL'

kp - uL'
kp - 1    "k Î L'p Î Pp > 1 (14)

vL'
k1 = uL'

k1    "k Î L' (15)

The TEP-CI model can minimize the operation and trans‐
mission investment cost for the studied period by (2). The 
operation cost includes both the existing and new thermal 
generators in (3). The capital cost of the transmission line is 
simplified by assuming that the yearly maintenance cost is 
part of the total construction cost in (4). The nodal power 
balance addresses the available renewable energy sources for 
each time interval by (5). The power output constraints for 

existing and newly invested thermal generators obtained 
from the ABM are described by (6) and (7), respectively. 
The renewable power generation output for each time inter‐
val should be under its available amount. To be noticed, 
pmaxR

rtdp is the maximum available renewable output in the rep‐
resentative profiles, which is calculated using the CMIP6 cli‐
mate data. The power output constraints for both existing 
and new renewable energy sources are (8) and (9), respec‐
tively. The line flow limit for existing transmission line is 
shown in (10), and pmax

ktdp is the DLR in the representative 
profiles. To model the line flow limit of the new transmis‐
sion line, we use a large number M and the binary variable 
uL′

kp to enforce the DC power flow constraint when the line 
is constructed, as described in (11). The flow limit of the 
new lines is described by (12). And the constraints related to 
the binary variables for line construction are shown in 
(13)-(15).

While this model integrates a wide range of general physi‐
cal constraints related to power flow and generators, it de‐
mands accurate prediction of future renewable power genera‐
tion and DLRs affected by weather variations. The reliability 
of prediction hinges on specific climate models that may not 
encompass every potential future climate scenario, along 
with detailed geographic data at the facility level for the 
transmission network and renewable power plants.

B. Transmission Investment Plan of TEP-CI Model

TEP models are implemented using Python with Pyomo 
package [40]. Since the models are formulated as mixed-inte‐
ger linear programming (MILP) problem, the commercial 
solver Gurobi [41] is used to find optimal solutions. The pro‐
posed TEP-CI model is designed to accommodate various 
resolution profiles such as one-hour or three-hour intervals, 
denoted by t periods within a day. Given that the profiles in 
this paper are created at a three-hour resolution, preserving 
this granularity in the model helps to shorten the simulation 
time without compromising the quality of solutions. In the 
first simulation of the TEP-CI model, we set the number of 
year-epoch to be three, and each epoch represents a five-
year period. Thus, it determines the TEP of TX-123BT sys‐
tem in 2021-2035. Even for the FR case of TX-123BT sys‐
tem, which has no generation investments during this plan‐
ning period, the TEP-CI model can easily find a feasible so‐
lution. The investment and system operation costs in 2021-
2035 for FR case are presented in Table I. The new transmis‐
sion line investment results are shown in Table II.

The TEP-CI model finds 15 transmission lines to be in‐
vested. The transmission line investment cost is $3 million, 
which is about 2.94% of the total cost for the FR case of 
TX-123BT system in 2021-2035.

TABLE I
INVESTMENT AND SYSTEM OPERATION COSTS IN 2021-2035 FOR FR CASE

Cost type

Generation cost

Transmission line investment cost

Total cost

Cost (billion $)

102.87

3.02

105.89
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In the second simulation of the TEP-CI model, we set the 
number of year-epochs to be 6, which means that the TEP-
CI model will give the transmission line investment results 
in 2021-2050. For this future period, the safe operation can‐
not be maintained without load shedding for FR case. The 
load demands are expected to increase rapidly in 2035-2050, 
and existing generation resources cannot meet the needs of 
such large amount of loads. Using the representative profiles 
under FGI case as input for the TEP-CI model, the simula‐
tion results are shown in Tables III and IV.

The DLRs of the new transmission lines in the investment 
plan are calculated for the future periods after they are con‐
structed. The new transmission lines and their DLR profiles 
are then integrated into the FGI case and form the future sce‐
nario that includes both generation and transmission invest‐
ments, i.e., the FGTI case.

The comparisons between the proposed TEP-CI model 
and traditional TEP model [42] are concluded in Table V. 
For the results of the proposed TEP-CI model, the percentile 
value in the brackets indicates the increase or decrease com‐
pared with the results of the traditional TEP model. As ob‐
served from Table V, the proposed TEP-CI model results in 
higher transmission line investment costs due to its utiliza‐
tion of detailed and high-resolution climate-impacted pro‐
files. While this model leads to higher initial transmission 

costs, it significantly lowers generation costs over the plan‐
ning periods.

Table VI presents the solution time of the proposed TEP-
CI model compared with traditional TEP model. For shorter 
planning spans such as 15 years, the solution time of the pro‐
posed TEP-CI model is not significantly extended. However, 
as the proposed TEP-CI model considers higher resolution 
of climate-impacted profiles, its solution time increases 
markedly for longer planning spans.

In this paper, the simulations and results specifically for 
the TX-123BT system are presented. Adapting the proposed 
TEP-CI model to power grids across various geographic re‐
gions necessitates precise predictions for future renewable 
power generation and DLR profiles. Achieving accurate pre‐
diction of future renewable energy investments may involve 
the integration of region-specific climate and weather predic‐
tion data and utilization of ABM or other regionally appro‐
priate methods.

IV. SCUC FOR TEP PERFORMANCE EVALUATION

The SCUC is modified and customized specifically for the 
future climate-impacted power grids and TEP performance 
evaluation. Firstly, to study the reliability performance of 
power grid under different investment plans, the load shed‐
ding should be considered in the SCUC. Specifically, the 
load shedding variables are introduced to the power balance 
equations, and the constraints describing the maximum shed‐
ding amount are added to the SCUC. The loads will be shed‐
ded only when the power grid cannot be operated safely. 
The shedding will happen when the physical constraints can‐
not be satisfied, because it may cause both economic losses 
and social disturbance. Hence, a penalty term is added to the 
objective function of the SCUC to make sure that the load 
shedding can only happen in time of need. With the pro‐
posed TEP-CI model, the SCUC solutions can give the infor‐
mation of the unserved load due to the increasing load de‐

TABLE II
NEW TRANSMISSION LINE INVESTMENT RESULTS IN 2021-2035 FOR FR 

CASE

Line 
No.

2

6

7

22

31

Construction 
period

2021-2025

2026-2030

2021-2025

2025-2030

2021-2025

Line 
No.

50

56

58

68

72

Construction 
period

2025-2030

2025-2030

2025-2030

2025-2030

2021-2025

Line 
No.

74

165

171

233

249

Construction 
period

2026-2030

2026-2030

2026-2030

2031-2035

2021-2025

TABLE III
INVESTMENT AND SYSTEM OPERATION COSTS IN 2021-2050 FOR FGI CASE

Cost type

Generation cost

Transmission line investment cost

Total cost

Cost (billion $)

146.76

6.00

152.76

TABLE IV
NEW TRANSMISSION LINE INVESTMENT IN 2021-2050 FOR FGI CASE

Line 
No.

3

6

7

8

9

30

Construction 
period

2036-2040

2041-2045

2031-2035

2036-2040

2031-2035

2041-2045

Line 
No.

49

57

72

80

74

82

Construction 
period

2041-2045

2041-2045

2021-2025

2041-2045

2021-2025

2041-2045

Line 
No.

83

112

147

189

191

247

Construction 
period

2021-2025

2036-2040

2021-2025

2021-2025

2021-2025

2021-2025

TABLE V
RESULTS OF PROPOSED TEP-CI AND TRADITIONAL TEP MODELS IN 2021-

2035 FOR FGI CASE

Model

Traditional 
TEP

Proposed 
TEP-CI

Total cost 
(billion $)

79.34

55.73 
(-29.7%)

Transmission 
line investment 
cost (billion $)

0.24

0.47 (+95.8%)

Generation 
cost (bil‐
lion $)

79.1

55.26 
(-30.1%)

Total flow on 
transmission 
line (MWh)

18727

22988 
(+22.75%)

TABLE VI
SOLUTION TIME OF PROPOSED TEP-CI MODEL COMPARED WITH 

TRADITIONAL TEP MODEL

Planning span 
(year)

15

30

Solution time (s)

Traditional TEP model

209.5

6235.6

Proposed TEP-CI model

214.7 (+2.48%)

8821.1 (+41.4%)
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mand and climate change in the future.
Secondly, the power grid profiles have the same three-

hour resolution as the climate data, while the commonly 
used SCUC has hourly resolution. We can simply transfer 
the three-hour resolution profiles into hourly profiles by as‐
suming that the data during all the three hours are the same 
and used as hourly data input for SCUC. However, for both 
simulations of the SCUC on a large number of future pro‐
files and the TEP for climate-impacted power grids, the num‐
ber of time intervals will significantly influence the solution 
time. Hence, the SCUC is adjusted from hourly resolution to 
three-hour resolution. Besides, the SCUC input data such as 
generator costs c0, c1, and generator ramping rate are updat‐
ed for three-hour resolution. The detailed formulation of 
SCUC for TEP evaluation is shown below.

min ∑
g Î G(p)
∑
t Î T

(C G
g Pgt + C On

g uG
gt + C SU

g vG
gt ) + M ∑

b Î Bt Î T

pS
nt   (16)

pRC
nt = 0    "(nt)Î ST 1 (17)

ST 1 =
ì
í
î

ïï
ïï

ü
ý
þ

ïïïï
ïï

(nt)
|

|

|
||
|
|
|
n Î Bt Î T s.t.  pD

nt - ∑
r Î R(b)

pR
rt ³ 0 (18)

pRC
nt £ ∑

r Î R(b)

pR
rt - pD

nt    "(nt)Î ST 2
(19)

ST 2 =
ì
í
î

ïï ü
ý
þ

ïï|(nt) n Î Bt Î T s.t.  pD
nt - ∑

r Î R(n)

pR
rt < 0 (20)

pRC
nt £ pD

nt - ∑
r Î R(n)

pR
rt    "(nt)Î ST 1

(21)

pRC
nt = 0    "(nt)Î ST 2 (22)

P min
g uG

gt £ Pgt    "g"t (23)

Pgt + rgt £ P max
g ugt    "g"t (24)

0 £ rgt £ R10
g ugt    "g"t (25)

∑
m Î G

rmt ³ Pgt + rgt    "g"t (26)

-Rg £ Pgt - Pgt - 1 £ Rg    "g"t (27)

Pkt = θkt /xk    "k"t (28)

-P max
kt £ Pkt £ P max

kt     "k"t (29)

∑
g Î G(n)

Pgt + ∑
k Î K(n - )

Pkt - ∑
k Î K(n + )

Pkt + ∑
r Î R(n)

pR
rt =

pD
nt + pRC

nt - pS
nt    "n"t (30)

vG
gt ³ ugt - ugt - 1    "gt > 1 (31)

In (16), the SCUC will optimize the operation cost for the 
day, and an additional term is added to ensure that the load 
shedding is employed strictly as a last resort. There will be 
no renewable power curtailment on a bus when the total re‐
newable power is less than the load at the location according 
to (17) and (18). The maximum renewable power curtail‐
ment is constrained by (19) and (20). Similarly, the load 
shedding can only be made when the renewable power on 
the bus is not sufficient in (21) and (22). The minimum and 
maximum power outputs of thermal generator, the reserve 

constraints, and ramping limits are given in (23) - (27). The 
DC power flow and line flow limits are given in (28) and 
(29). The nodal power balance equation includes both the 
load shedding and renewable power curtailment by (30). The 
online and starting binary variables of generator are con‐
strained in (31).

In each of the FR, FGI, and FGTI cases, the future repre‐
sentative profiles in 2021-2050 include 48 daily profiles for 
weekdays and weekends in each quarter with 5-year plan‐
ning epoch. The SCUC simulations are run on all the daily 
profiles for different cases. The weekday highest load shed‐
ding for different quarters in FR case in 2041-2045 and 
2046-2050 are shown in Fig. 7.

It can be observed that in the FR case, the power grid 
must necessarily shed loads after 2040. The required load 
shedding amount grows rapidly due to the increasing load 
demand. It indicates that the current power grid conditions 
cannot handle the increasing loads 20 years later. This is rea‐
sonable given the absence of expansion and development in 
generation and transmission infrastructure in FR case.

The weekend load shedding for Quarter 3 in FR case in 
2041-2045 and 2046-2050 is plotted in Fig. 8. Load shed‐
ding in 2046-2050 is substantially greater than that in 2041-
2045, and the daily shedding patterns differ significantly be‐
tween the two 5-year spans.

In the FGTI case, Table VII summarizes the total opera‐
tion cost and generation of thermal plants in Quarter 3 in 
FGTI case for different 5-year periods. A comparison be‐
tween the weekdays in 2021-2025 and 2046-2050 reveals 
that the total generation has approximately doubled, while 
the total operation cost has roughly tripled. This discrepancy 
is attributable to the higher marginal prices associated with 
the high power output of generator. This situation arises be‐
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cause few thermal power plants are invested in the future, 
while the total generation is increasing.

V. RELIABILITY EVALUATION RESULTS

To evaluate the reliability of future power grids in differ‐
ent cases, we develop several reliability indices which can 
be calculated based on the SCUC simulation results of the 
operation conditions for all days in the future. We select the 
concepts of reliability indices which are widely used in in‐
dustry and academics. These indices include the EUE, 
LOLP, and LOLE. The three indices are the implications of 
the ability of the power grid to reliably meet the load de‐
mand from different aspects. Each index offers a unique lens 
through which the robustness and resilience of the power 
grid can be assessed, catering to the intricate dynamics of 
power supply and load demand. EUE quantifies the total en‐
ergy that cannot be supplied due to power grid limitations 
within a specified time frame, serving as a direct measure of 
the magnitude of energy deficit. A higher EUE indicates 
more significant instances where the power grid fails to 
meet load demand, pointing towards potential weaknesses in 
generation capacity or transmission infrastructure. This index 
is especially crucial in evaluating the performance of power 
grid during peak load periods or in scenarios with high re‐
newable energy variability, where the balance between sup‐
ply and demand is most delicate. LOLP assesses the likeli‐
hood that the power grid will not meet the load demand at 
any given time, essentially reflecting the overall reliability of 
power grid. An increase in LOLP suggests a higher risk of 
power shortages, signaling the need for enhanced planning 
and investment. It underscores the importance of having suf‐
ficient reserve margins and flexible resources that can quick‐
ly respond to fluctuations in supply and demand. LOLE, ex‐
pressed in hours per year, estimates the expected duration of 
load not being served. It complements LOLP by providing 
insight into the length of time when the power grid might be 
under stress, thus affecting consumer experience and eco‐
nomic activities. A lower LOLE value indicates that, while it 
may occasionally fail to meet the load demand, the power 
grid does so for the minimal duration of disruption to end-us‐
ers.

In synthesizing the insights derived from EUE, LOLP, and 
LOLE, decision-makers and stakeholders gain a comprehen‐
sive understanding of the operation challenges of the power 

grid and the areas that require attention.
The EUE is an index that can evaluate the amount of total 

unserved energy for a given period such as one year. It can 
evaluate the scale of the outage by calculating the total 
amount of unserved energy.

EUE = ∑
p Î Pd Î DT(D)

n Î Bt Î T

pS
pdnt N

D + ∑
p Î Pd Î DT(E)

n Î Bt Î T

pS
pdnt N

E

(32)

The LOLP is the occurrence probability of load loss/shed‐
ding. Specifically, it measures how often the power grid can‐
not serve all loads such as load curtailment or blackout. The 
LOLP is usually calculated for a specific period such as one 
year.

LOLP = EUE ×
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The LOLE can indicate the expected total outage duration 
for a specific period such as one year. In the LOLE calcula‐
tion, we calculate the average outage hour on a bus for the 
entire year. Compared with LOLP, the LOLE can give us an 
insight on how long the load loss will last, instead of the oc‐
currence probability of the load loss. As a brief conclusion, 
the LOLP, LOLE, and EUE can comprehensively evaluate 
the occurrence probability, duration, and the scale of load 
loss.
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The results of different risk indices of future TX-123BT 
system without investment, with the proposed TEP-CI mod‐
el, and with traditional TEP model and generation invest‐
ment are shown in Tables VIII-X, respectively. With the 
transmission line investments planned by the TEP-CI model, 
all three reliability indices for 2041-2045 decrease signifi‐
cantly. For the period 2046-2050, the LOLP and EUE are 
both reduced significantly due to the transmission invest‐
ments. LOLE has not decreased as substantially as the other 
two indicators, which suggests that while the severity of out‐
ages has been significantly mitigated, their time durations re‐
main prolonged. Based on the results and analysis, the reli‐
ability of future power grid is remarkably improved with the 
transmission investments obtained by the proposed TEP-CI 
model.

TABLE VIII
DIFFERENT RISK INDICES OF FUTURE TX-123BT SYSTEM WITHOUT 

INVESTMENT

5-year period

2021-2025

2026-2030

2031-2035

2036-2040

2041-2045

2046-2050

Annual LOLP (%)

0

0

0

0.013

0.810

4.060

LOLE (hour/bus)

0

0

0

2.92 (0.036%)

25.36 (0.320%)

125.26 (1.550%)

EUE (MWh)

0

0

0

69105

4803316

27233362

TABLE VII
TOTAL OPERATION COST AND GENERATION OF THERMAL PLANTS IN 

QUARTER 3 IN FGTI CASE FOR DIFFERENT 5-YEAR PERIODS

5-year period

2021-2025

2026-2030

2031-2035

2036-2040

2041-2045

2046-2050

Total operation cost (M$)

Weekday

11.55

13.94

17.41

21.52

26.83

33.43

Weekend

11.62

13.90

15.31

17.90

21.18

25.17

Total generation (GWh)

Weekday

711.1

810.3

940.3

1090.7

1263.9

1462.1

Weekend

714.2

808.6

858.5

956.4

1070.2

1199.1

1746
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VI. CONCLUSION

As more weather-dependent renewable power generations 
are expected in future power grids, the improvement to the 
current TEP model is required. A systematic procedure in‐
cluding data preparation, model improvement, and reliability 
evaluation of the proposed TEP-CI model is presented in 
this paper.

To address the climate impact on the future power grid 
that will be considered in the TEP-CI model, the future 
weather-dependent spatio-temporal profiles for the TX-
123BT system are created. The proposed TEP-CI model con‐
siders these representative profiles in each planning epoch. 
The SCUC simulations are conducted on the future power 
grids in different investment cases including FR, FGI, and 
FGTI. The reliability indices are proposed and calculated for 
each future planning epoch based on the daily operation con‐
ditions. The reliability of the power grid in FR, FGI, and FG‐
TI cases are compared and analyzed. This paper depicts the 
scheme of the TEP considering climate impact and paves the 
way for further planning studies.
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