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Abstract—The integration of photovoltaic power generation 
is a new development into the traction power supply system 
(TPSS). However, traditional research on the TPSS operation 
strategy has not fully considered the risk of uncertainty in pho‐
tovoltaic power output. To this end, we propose an operation 
strategy for the rail transit green energy system that considers 
the uncertainty risk of photovoltaic power output. First, we es‐
tablish a regenerative braking energy utilization model that con‐
siders the impact of time-of-use (TOU) electricity price on the 
utilization efficiency and economic profit of regenerative brak‐
ing energy and compensates for non-traction load. Then, we 
propose an operation strategy based on the balance of power 
supply and demand that uses an improved light robust (ILR) 
model to minimize the total cost of the rail transit green energy 
system, considering the risk of uncertainty in photovoltaic 
power output. The model incorporates the two-step load check 
on the second-level time scale to correct the operational results, 
solve the issue of different time resolutions between photovol‐
taic power and traction load, and achieve the coordinated opti‐
mization of risk cost and operation cost after photovoltaic inte‐
gration. Case studies demonstrate that the proposed model can 
effectively consider the impact of the uncertainty in photovol‐
taic power output on the operation strategy, significantly im‐
proving the efficiency and economy of the system operation.

Index Terms——Rail transit green energy system, improved 
light robust (ILR) optimization, two-step load check, time reso‐
lution, operation strategy.

I. INTRODUCTION 

IN China, the railway industry has high and increasing car‐
bon footprint year by year, and there is a huge potential 

for carbon reduction throughout the life cycle [1]. The aca‐
demic community has recently proposed integrating photo‐
voltaic power generation into the traction power supply sys‐
tem (TPSS) to promote carbon reduction in the railway in‐
dustry. This initiative has multiple benefits: it fully utilizes 
the natural resources around the railway, promotes the ener‐
gy self-sufficient of the TPSS, ensures the normal operation 
of rail transit during power grid outages, and reduces the car‐
bon footprint to assist in achieving the carbon peaking and 
carbon neutrality goals [2]-[4]. However, the inevitable pre‐
diction error of photovoltaic power output results in uncer‐
tainty on the supply side of the TPSS, which increases the 
operational risk of the system. Developing the operation 
strategy of the rail transit green energy system that considers 
both operational risk and cost is an urgent issue to be ad‐
dressed.

As photovoltaic power generation technology is still a cut‐
ting-edge field of research, most studies have primarily fo‐
cused on distributed photovoltaic power generation systems, 
photovoltaic power stations, and microgrids, among others. 
There is a notable dearth of research exploring the TPSS 
with photovoltaic integration [5]. In the non-traction field, 
existing studies primarily investigate the utilization of photo‐
voltaic power generation to power communication and signal 
systems at stations [6], [7]. In the traction field, current re‐
search on the TPSS with photovoltaic integration mainly fo‐
cuses on overall system design and control strategy under 
different operational conditions [8]. Reference [9] proposes a 
relatively simple photovoltaic integration scheme using sin‐
gle-phase inverters connected to the traction feed line. Refer‐
ence [10] proposes a three-phase photovoltaic integration to‐
pology and its control method, which effectively integrates 
the photovoltaic power system based on the basic principles 
of the TPSS. Reference [11] proposes a control method for a 
complex electrified railway system with photovoltaic integra‐
tion from the perspective of the topology of the TPSS, focus‐
ing on the Sichuan-Tibet Railway. Reference [12] analyzes 
the impact of photovoltaic integration on the TPSS from 
multiple aspects, including the adaptability of photovoltaic 
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inverters, the interaction influence of harmonic-negative se‐
quence current and reactive power, the voltage stability of 
the traction network, the consumption of photovoltaic ener‐
gy, and the feedback of regenerative braking energy, among 
other energy management problems. Unlike general power 
loads, the traction load also includes a portion of regenera‐
tive braking energy, which is an important part of the opera‐
tion strategy. Reference [13] proposes two regenerative brak‐
ing energy utilization schemes of energy storage type and en‐
ergy feedback type based on the characteristics of traction 
load. Reference [14] proposes a bypass DC circuit-based 
idea for utilizing regenerative braking energy in urban rail 
transit. However, these studies do not adequately consider 
the risk associated with the uncertainty of photovoltaic pow‐
er output. In addition, there is a lack of detailed models for 
the optimal coordination of the photovoltaic power system, 
energy storage, and power grid in the TPSS.

Research on the uncertainty of photovoltaic power output 
and the resulting operational risk has mainly focused on 
power dispatch, using methods such as stochastic optimiza‐
tion and robust optimization (RO). Stochastic optimization 
requires generating typical scenarios based on the probability 
of uncertain parameters [15], [16]. This often requires a sig‐
nificant amount of historical data and may not suit incom‐
plete or newly constructed photovoltaic power stations. In 
contrast, RO does not require knowledge of the probability 
distribution function of uncertain parameters and describes 
the fluctuation range of parameters through an uncertain set. 
This makes it more widely applicable but also more conser‐
vative. Many studies have improved the conservatism of the 
traditional RO model. For example, [17] proposes a robust 
model that considers the operational risk and demand re‐
sponse, which improves the conservatism of the model by 
dynamically adjusting the output boundaries of wind power. 
Reference [18] focuses on the constraint violation and ad‐
justs the conservatism of the solution by limiting the devia‐
tion of the objective function. Based on [18], [19] proposes 
an improved light robust (ILR) model that allows for certain 
constraint violations to improve solution conservatism and 
prevent excessive violation. The proposed model has been 
applied in [20] and [21].

On the load side of the TPSS, the traction load shows 
strong fluctuations and shock characteristics that change sud‐
denly in response to changes under train operation condi‐
tions [22]. To address this issue, [23] proposes a traction 
load prediction method that treats dynamic traction load as 
an ordered combination of the time slots provided by the 
train running timetable. Reference [24] presents a traction 
load prediction method based on analyzing the main charac‐
teristic parameters of traction load from measured data. The 
aforementioned studies indicate that although traction load is 
strongly fluctuating and random, it can be roughly deter‐
mined by the train running timetable and historical data with‐
in a specific period and operation interval, showing a certain 
level of predictability. In contrast, although current photovol‐
taic power prediction can achieve high accuracy, the predic‐
tion error of photovoltaic power output is unavoidable and 
significant, as it is heavily dependent on changes in the natu‐

ral environment [25].
This paper studies the operation strategy of the rail transit 

green energy system considering the uncertainty risk of pho‐
tovoltaic power output. It introduces a regenerative braking 
energy utilization model, which considers the impact of time-
of-use (TOU) electricity price on the utilization efficiency 
and economic profit of regenerative braking energy and can 
compensate for non-traction load. This paper also constructs 
an ILR model to minimize the total cost and balance the 
power supply and demand of the rail transit green energy 
system.

This paper makes three main contributions.
1) We propose an ILR model for the rail transit green en‐

ergy system considering the uncertainty of photovoltaic pow‐
er output. This model optimizes risk cost and operation cost 
in coordination, offering a solution for the low-carbon rail 
transit green energy system.

2) We propose a regenerative braking energy utilization 
model that considers the impact of TOU electricity price on 
the efficiency and economy of regenerative braking energy.

3) We establish a power supply and demand balance mod‐
el that accounts for the risk of photovoltaic operation and 
the fluctuation of traction load. This model incorporates the 
two-step load check on the second-level time scale to correct 
the operational results and solve the issue of different time 
resolutions between photovoltaic power and traction load.

The rest of this paper is organized as follows. Section II 
introduces the structure of the rail transit green energy sys‐
tem. Section III models the operation strategy of the rail 
transit green energy system. The model solving strategy is 
presented in Section IV. Case studies are shown in Section 
V, and conclusions are drawn in Section VI.

II. STRUCTURE OF RAIL TRANSIT GREEN ENERGY SYSTEM 

This section presents a typical structure of the rail transit 
green energy system, as shown in Fig. 1.

The distributed photovoltaic power system is installed in 
the traction substation and on both sides of the railway to op‐
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Fig. 1.　Structure of rail transit green energy system.
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timize the energy utilization of rail transit assets. The hybrid 
energy storage system is configured as needed to effectively 
utilize regenerative braking energy and meet the balance of 
power supply and demand. As an intermediate link, power 
electronic devices can achieve power conversion and aggre‐
gation. The traction transformer introduces clean electricity 
into the traction network, enabling the gradual transforma‐
tion of the traditional TPSS to the rail transit green energy 
system. The system uses real-time information collection de‐
vices to achieve the “network−source−storage−vehicle” col‐
laborative energy supply for rail transit [26].

A. Characteristics of Traction Load

Compared with general power loads, the traction load has 
strong fluctuations. Through analysis of the measured trac‐
tion load of a traction substation, as shown in Fig. 2, it can 
be observed that the load is relatively large with a maximum 
instantaneous power of 51.27 MW. The power changes fre‐
quently with peaks and valleys, and the energy consumption 
is high with a daily consumption of 392.9 MWh. When the 
traction load is less than 0, it indicates that the train is under 
the braking condition, and regenerative energy is fed back to 
the traction network. In addition, traction load is closely re‐
lated to the train running timetable, and thus accurate predic‐
tion can be achieved.

B. ILR Model Considering Risk Cost of Photovoltaic Power 
Output

In this subsection, a budgeted uncertain set of photovolta‐
ic power output is constructed and an ILR model that consid‐
ers the risk cost of photovoltaic power output is established.
1)　ILR Model

According to the distribution characteristics of the photo‐
voltaic power system along the railway, the output of a pho‐
tovoltaic power system can be decomposed into the sum of 
the output of multiple photovoltaic units. The photovoltaic 
power output constraint can be expressed as:

P PV
T £∑

j = 1

k

P PV
jT (1)

where P PV
T  is the output of the photovoltaic power system 

during period T; P PV
jT  is the output of photovoltaic unit j dur‐

ing period T; and k is the total number of photovoltaic units.
Considering the uncertainty of photovoltaic power output, 

the output of photovoltaic units can be expressed as the ex‐
pected value plus fluctuation term, while setting the total 
fluctuation amount during different periods as:

ì
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(2)

where γT is the slack variable during period T, representing 
the degree of the constraint violation; P̄ PV

jT  is the expected 
output of photovoltaic unit j during period T; P͂ PV

jT  is the max‐
imum amplitude of fluctuation in the output of photovoltaic 
unit j during period T; ζjT is the proportion of fluctuation in 
the output of photovoltaic unit j during period T; and ΓT is 
the total fluctuation amount during period T.

Then, we transform the photovoltaic power output con‐
straint into its tractable linear counterpart with a budgeted 
uncertain set using the sorting truncation method in [12], 
which is expressed as:
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where ë ûΓT  is the greatest integer that is less than or equal to 

ΓT; [ -DPTDPT ] is the fluctuation range of the overall out‐

put of the photovoltaic power system during period T; and 

| P͂ PV′
jT | is an element in the sequence {| P͂ PV

1T | | P͂ PV
2T | ...| P͂ PV

kT |} 
after descending order.

Compared with the traditional RO model, the ILR model 
described above can reflect the predictive accuracy of the 
photovoltaic power output by controlling the total fluctuation 
amount, and its tractable linear counterpart with a budgeted 
uncertain set can improve the applicability of the model. Ad‐
ditionally, the ILR model extends the traditional RO problem 
that solely focuses on operation cost to an optimization prob‐
lem that considers both risk cost and operation cost. The ob‐
jective function is as follows:

min
xγ

(cT x +ωTγ) (4)

where cT x is the original objective function of the optimiza‐
tion problem, representing operation cost; ωTγ is the cost of 
constraint violation, representing risk cost of the photovolta‐
ic power output; and ω is the weight coefficient vector of 
the slack variable, a higher value of which implies a greater 
cost for constraint violation.
2)　Risk Cost Analysis of Slack Variable

Generally, the larger the slack variable, the higher the 
risk cost, resulting in the increasing weight coefficient as 
the slack variable increases. Considering that it is difficult 
to obtain the true probability distribution of the photovolta‐
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Fig. 2.　Measured traction load.
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ic power output, we divide the confidence interval of the 
photovoltaic power output into the low-risk area and the 
high-risk area based on the expected power output, as 
shown in Fig. 3.

When the photovoltaic power output is in the low-risk ar‐
ea, a smaller weight coefficient is assigned, while a larger 
weight coefficient is assigned when in the high-risk area. 
And the risk cost during period T is calculated as:

ωTγT =
ì
í
î

ïï
ïï

ωL
TγT                                      0 £ γT £DPT

ωL
TDPT +ω

H
T ( )γT -DPT     DPT < γT £ 2DPT

(5)

where ωT is the weight coefficient during period T; and ωL
T 

and ωH
T  are the weight coefficients in the low-risk area and 

the high-risk area during period T, respectively.
In this paper, we define the value of the weight coefficient 

as obtained by multiplying the electricity price by the risk 
scaling factor, which can be expressed as:

{ωL
T = b1GT

ωH
T = b2GT

(6)

where GT is the electricity price during period T; and b1 and 
b2 are the risk scaling factors of the photovoltaic power out‐
put in the low-risk area and the high-risk area, respectively. 
When the risk scaling factor is less than 1, it indicates that 
the risk of photovoltaic power output is small, and the ab‐
sorption of photovoltaic power is encouraged.

III. OPERATION STRATEGY OF RAIL TRANSIT GREEN 
ENERGY SYSTEM 

A. Conversion of Time Resolution

According to [27], the time resolution requirement for 
photovoltaic power prediction data is 15 min, while the time 
resolution of the measured data of traction load is mostly 1 
s, indicating a mismatch in time resolution. The conversion 
of power data in terms of time resolution is formulated as:

ì
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t =P x

T                    tÎ [ ]n ( )T - 1 + 1nT

Dt®DT:P x
T =
∑
t = T

T + nDt - 1

P x
t

n
    n =

DT
Dt

(7)

where Dt and DT are the time resolutions of 1 s and 15 min, 

respectively; P x
t  and P x

T are the power data with time resolu‐
tions of Dt and DT, respectively; and the superscript x can 
represent any element.

B. Regenerative Braking Energy Utilization Model

1)　Objective Function
The train under the braking condition generates a large 

amount of regenerative energy, which can be collected by su‐
percapacitor energy storage (SCES). Considering the impact 
of the TOU electricity price on the utilization efficiency and 
economic profit of regenerative braking energy, the objective 
function under the braking condition is set to maximize the 
utilization of regenerative braking energy through SCES un‐
der the guidance of the TOU electricity price, as shown 
in (8).

max GTOU
T | P SCES

T |DT (8)

where GTOU
T  is the TOU electricity price during period T; and 

P SCES
T  is the power of SCES during period T, which is nega‐

tive in charging status and positive in discharging status.
2)　Prevailing Constraints

The prevailing constraints under the braking condition in‐
clude the state of charge (SOC) limits of SCES (9) and (10), 
the equal capacity limit of SCES at the beginning and end 
of each day (11), and the charging and discharging power 
limit of SCES (12).

S SCES
L E SCES

M £E SCES
T £ S SCES

H E SCES
M (9)

E SCES
T =E SCES

0 -∑
T′= 1

T

P SCES
T′ DT (10)

E SCES
96 =E SCES

0 (11)

P RB
T £P SCES

T £P SCES
M (12)

where S SCES
L  and S SCES

H  are the minimum and maximum 
SOCs of SCES, respectively; E SCES

0  and E SCES
96  are the initial 

and final capacities of SCES, respectively; E SCES
T  is the ca‐

pacity of SCES during period T; E SCES
M  and P SCES

M  are the rat‐
ed capacity and power of SCES, respectively; and P RB

T  is the 
limited charging power of SCES under the braking condition 
during period T.

Considering that the charging power of SCES should not 
exceed the regenerative braking energy during the corre‐
sponding period, P RB

T  is calculated as:

P RB
T =

∑
t = T

T + nDt - 1

P RB
t

n
(13)

P RB
t =

ì
í
î

ïïP RB0
t         P RB0

t >-P SCES
M

-P SCES
M     P RB0

t £-P SCES
M

(14)

where P RB0
t  is the regenerative braking power during period 

t, which is negative in the traction load.
3)　Compensation for Non-traction Load

Aside from the traction load, non-traction loads such as 
air conditioning, lighting, electric heating, communication, 
and signal systems coexist within the traction substation. Uti‐
lizing regenerative braking energy can compensate for non-
traction load, then we have:
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Df
T =

ì
í
î

ïïDf0
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T < 0

Df0
T -P SCES

T     P SCES
T ³ 0

(15)

where Df0
T  and Df

T are the non-traction loads during period T 
before and after compensation, respectively.

Meanwhile, the utilization efficiency of regenerative brak‐
ing energy is defined as:

η =
∑
T = 1

96

( )Df0
T -Df

T DT

∑
t = 1

86400

|| P RB0
t Dt

´ 100% (16)

where ∑
T = 1

96

( )Df0
T -Df

T DT represents the regenerative braking 

energy utilized by SCES; and ∑
t = 1

86400

| P RB0
t |Dt represents the to‐

tal regenerative braking energy in the traction load.
Then, the economic profit generated by SCES utilizing re‐

generative braking energy is given by:

C0 =∑
T = 1

96

[GTOU
T (Df0

T -Df
T ) -W SCES

C | P SCES
T | ]DT (17)

where W SCES
C  is the cost per MWh of electricity generated by 

SCES.

C. Power Supply and Demand Balance Model Based on ILR 
Optimization

1)　Objective Function
Considering the uncertainty of photovoltaic power output 

and the resulting operational risk, lithium-ion battery energy 
storage (LBES) is needed to meet the balance of power sup‐
ply and demand under the traction condition. Instead of the 
TOU electricity price, the two-part electricity price is adopt‐
ed for traction load. The objective function under the trac‐
tion condition is set to minimize the total cost of the rail 
transit green energy system, as shown in (18).

min Ctotal =Coperation +Crisk (18)
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where Coperation is the operation cost; Crisk is the risk cost; C1 
is the cost of purchasing electricity from the power grid; C2 
is the cost of LBES; C3 is the subsidy for distributed photo‐
voltaic power generation; P G

T  is the power output of the pow‐

er grid during period T; P LBES
T  is the power of LBES during 

period T; Dq
T is the traction load during period T; D̄q is the 

average traction load within a day; W LBES
C  is the cost per 

MWh of electricity generated by LBES; W LBES
D  is the profit 

per MWh of electricity generated by LBES; W LBES
DT  is the ad‐

justed value for W LBES
D  during period T; and W PV

V  is the subsi‐
dy per MWh of electricity generated by distributed photovol‐
taic power system.

In this paper, P LBES
T  is negative in charging status and posi‐

tive in discharging status. When the traction load is at its 
peak, W LBES

DT  is positive, and LBES should be in discharging 
status to generate profit; when the traction load is at its val‐
ley, W LBES

DT  is negative, and LBES should be in charging sta‐
tus to generate profit. Therefore, the setting of W LBES

DT  helps 
guide LBES for peak shaving and valley filling.
2)　Prevailing Constraints

In addition to photovoltaic power output constraint (3), 
the prevailing constraints under the traction condition also in‐
clude the power balance limit of the system (20), the power 
limit of the traction transformer (21), the SOC limit of 
LBES (22) and (23), the equal capacity limit of LBES at the 
beginning and end of each day (24), and the charging and 
discharging power limit of LBES (25).

P G
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T +P PV
T =Dq

T +Df
T (20)

0 £P G
T £P G

M (21)
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M £E LBES
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H E LBES
M (22)
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0 -∑
T′= 1

T

P LBES
T′ DT (23)

E LBES
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0 (24)

-P LBES
M £P LBES

T £P LBES
M (25)

where P G
M is the rated power of the traction transformer; 

S LBES
L  and S LBES

H  are the minimum and maximum SOCs of 
LBES, respectively; E LBES

0  and E LBES
96  are the initial and final 

capacities of LBES, respectively; E LBES
T  is the capacity of 

LBES during period T; and E LBES
M  and P LBES

M  are the rated ca‐
pacity and power of LBES, respectively.

IV. MODEL SOLVING STRATEGY 

For the complex models mentioned above, this section 
presents a strategy to solve them. The flowchart is illustrated 
in Fig. 4, and it is described in detail in the following para‐
graphs.

A. Solution of Regenerative Braking Energy Utilization Mod‐
el

Under the braking condition, the regenerative braking en‐
ergy utilization model is a linear programming (LP) problem 
with a time resolution of 15 min, which can be efficiently 
solved by commercial optimization software. SCES is a pow‐
er-type storage with fast response speed, which can easily 
meet the constraints with a time resolution of 1 s. Moreover, 
the compensated non-traction load in the solution results is 
used as the input for the power supply and demand balance 
model.
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B. Solution of Power Supply and Demand Balance Model 
Based on ILR Optimization

Under the traction condition, the risk cost in the objective 
function of the power supply and demand balance model 
with a time resolution of 15 min is nonlinear. As a result, 
the computational efficiency is not high and the global opti‐
mal solution cannot be conveniently obtained by commercial 
optimization software. In addition, LBES is an energy-type 
storage without fast response speed, which may violate the 
constraints with a time resolution of 1 s. To address the is‐
sue of different time resolutions between photovoltaic power 
and traction load, we propose a solving strategy that incorpo‐
rates the two-step load check on the second-level time scale 
to correct the operational results.
1)　Model Linearization

Assuming the photovoltaic power output is in the low-risk 
area, the model is converted to an LP problem owing to 0 £
γT £DPT, from which the solution of the slack variable γ′T 
can be obtained. According to γ′T, the risk cost of the photo‐
voltaic power output can be adjusted as:

ωTγT =
ì
í
î

ïïωL
TγT                      γ′T <DPT

ωL
TDPT +ω

H
T γT    γ′T =DPT

(26)

0 £ γT £DPT (27)

Since γ′T is known, the model is converted to an LP prob‐
lem, and the operational results can be obtained with a time 
resolution of 15 min.
2)　Two-step Load Check

Considering the scenario where the power grid is capable 
of meeting the demand independently, it is believed that the 

rated power of the traction transformer should be greater 
than the peak load. When the traction load with a time reso‐
lution of 1 s is above or slightly below its average value in 
15 min, the power balance constraint of the system can be 
met by increasing or decreasing the output of the power 
grid, and constraint violation will not occur because the load 
variation is within a manageable range. When the traction 
load with a time resolution of 1 s is far lower than its aver‐
age value in 15 min, it is insufficient to maintain the system 
power balance by only decreasing the output of the power 
grid, and constraint violation occurs at this time. To maxi‐
mize the absorption of photovoltaic power, it is necessary to 
limit the discharging power of LBES. If it exceeds the regu‐
lation range of the power grid and LBES, the photovoltaic 
power curtailment has to be considered. To this end, a two-
step load check method is proposed to correct the above op‐
erational results.

1) The first load check after the first model solution aims 
to adjust the maximum discharging power constraint for 
LBES.

Through (7), the photovoltaic power output and the com‐
pensated non-traction load in the first operational results 
with a time resolution of 15 min can be converted into the 
power with a time resolution of 1 s, and the discharging 
power of LBES with a time resolution of 1 s is generated ac‐
cording to its rated power. Then, the power output of the 
power grid with a time resolution of 1 s corresponding to 
the maximum discharging power of LBES is calculated as:

P GΙ
t =Dt -P PVΙ

t -P LBES
M (28)

where Dt is the comprehensive load during period t, which 
is obtained by adding traction load and compensated non-
traction load with a time resolution of 1 s; and the super‐
script Ι represents the first load check process.

When P GΙ
t ³ 0, it indicates that there is no constraint viola‐

tion, the maximum discharging power constraint for LBES 
does not need to be adjusted during period t. When P GΙ

t < 0, 
it indicates that there is a situation where the absorption of 
photovoltaic power is affected because the discharging pow‐
er of LBES is too high, causing the constraint violation. 
Therefore, it is necessary to adjust the maximum discharging 
power of LBES during period t, as shown in (29).

P LBES
MDt =

ì

í

î

ïïïï

ïïïï

P LBES
M                 P GΙ

t ³ 0

P LBES
M +P GΙ

t     -2P LBES
M <P GΙ

t < 0

-P LBES
M              P GΙ

t £-2P LBES
M

(29)

where P LBES
MDt  is the maximum discharging power of LBES 

during period t with a time resolution of 1 s.
Then, P LBES

MDt  can be converted into P LBES
MDT with a time reso‐

lution of 15 min through (7). The adjusted maximum dis‐
charging power constraint for LBES is introduced into the 
power supply and demand balance model used for the sec‐
ond model solution.

2) The second load check after the second model solution 
aims to address the issue of constraint violation beyond the 
regulation range of the power grid and LBES, which may re‐
sult in photovoltaic power curtailment.

The first operational results

Start

End

The second operational results

ILR optimization

ILR optimization

Photovoltaic power curtailment

Adjustment of the maximum discharging power constraint of LBES

Data input and model initialization

Solution of regenerative braking energy utilization model

Compensated non-traction load

The first solution of power supply and demand balance model

Model linearization

The first load check on second-level time scale

Model linearization

The second solution of power supply and demand balance model

The second load check on second-level time scale

Operation strategy output

Fig. 4.　Flowchart of model solving strategy.
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Through (7), the power of LBES in the second operation‐
al results with a time resolution of 15 min can be converted 
into power with a time resolution of 1 s. But when P LBES

t >
P LBES

MDt , it is necessary to make P LBES
t =P LBES

MDt  and adjust the 
power during other periods to ensure that the average power 
during period T is equal to P LBES

T .
Then, the power output of the power grid in the second 

load check process with a time resolution of 1 s can be ex‐
pressed as:

P GΙΙ
t =Dt -P PVΙΙ

t -P LBES
t (30)

where the superscript ΙΙ represents the second load check 
process.

Similar to the first load check, a constraint violation will 
occur when P GΙΙ

t < 0. And the photovoltaic power curtailment 
during period t is calculated as:

P PVcurtail
t =-P GΙΙ

t     P GΙΙ
t < 0 (31)

Finally, P PVcurtail
t  can be converted into P PVcurtail

T  with a 
time resolution of 15 min through (7).

V. CASE STUDY 

The test system of the rail transit green energy system is 
shown in Fig. 1. The measured traction load of a traction 
substation is shown in Fig. 2. The expected power outputs 
of the photovoltaic units and non-traction load in the traction 
substation are shown in Fig. 5.

TOU electricity price and two-part electricity price are 
shown in Fig. 6.

Under the braking condition, the rated power and capacity 
of SCES are 3 MW and 1 MWh, respectively. Under the 
traction condition, the rated power and capacity of LBES are 
3 MW and 2 MWh, respectively. W SCES

C , W LBES
C , W LBES

D , and 
W PV

V  are 6.85 $/MWh, 6.85 $/MWh, 10.96 $/MWh, and 6.85 
$/MWh, respectively [28] - [30]. The risk scaling factors of 
the photovoltaic power output in the low-risk area and the 
high-risk area are 0.8 and 1.2, respectively. The model is 
coded with the YALMIP toolbox in MATLAB environment 
and solved by commercial optimization software GUROBI.

A. Analysis of Regenerative Braking Energy Utilization Model

In this subsection, three different sets of the rated power 
and capacity for SCES (denoted as sets 1-3) are used, i.e., (1 
MW, 1 MWh), (3 MW, 1 MWh), and (3 MW, 2 MWh). The 
utilization efficiency, economic profit, and carbon dioxide 
emission reduction of the regenerative braking energy utiliza‐
tion model with such sets are shown in Fig. 7, where the to‐
tal regenerative braking energy in the traction load is 6.17 
MWh, and the carbon dioxide emission reduction per MWh 
of electricity utilized is 0.858 t.

From Fig. 7, it can be observed that the higher the rated 
power and capacity of SCES, the greater the utilization effi‐
ciency, economic profit, and carbon dioxide emission reduc‐
tion of the regenerative braking energy utilization model. 
Furthermore, there is a similar utilization efficiency but dif‐
ferent economic profits in the results of sets 2 and 3, result‐
ing from the impact of TOU electricity price. Figure 8 
shows the power of SCES in the solution results of the 
above two sets, from which we can find that, as the rated ca‐
pacity of SCES increases, the discharging power of SCES is 
more concentrated during the peak electricity price period, 
which improves the economic profit of the regenerative brak‐
ing energy utilization model while compensating for non-
traction load.
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B. Analysis of Power Supply and Demand Balance Model 
Based on ILR Optimization

1)　Cost Comparison with Different ILR Model Parameters
Considering that risk mainly comes from the uncertainty 

of photovoltaic power output, two different sets of the total 
fluctuation amount from 07: 00 to 17: 00 (denoted as sets 4 
and 5) are used, as shown in Fig. 9, where 1-3 denote the  
total amount of fluctuations. And it is easy to find that the 
value of set 4 is smaller than that of set 5, which means the 
smaller the fluctuation range, the smaller the risk area and 
the higher the predictive accuracy of the photovoltaic power 
output.

Additionally, we compare the cost of sets 4 and 5, as 
shown in Table I, from which we can find that the risk cost 
of set 4 is significantly lower than that of set 5, which 
means that improving the predictive accuracy can reduce the 
risk of photovoltaic power output fluctuation, resulting in 
the lower total cost of the rail transit green energy system.

With set 4, three different sets of the risk scaling factors 
of the photovoltaic power output in the low-risk area and the 
high-risk area (denoted as sets 6-8) are used, i.e., (0.8, 1.2), 
(1.05, 1.2), and (1.15, 1.2). And the cost comparison of sets 
6-8 is shown in Table II, from which it is easy to find that 
when the risk scaling factor in the low-risk area increases 

from 0.8 to 1.05, the risk cost increases by 31.15%, while 
when the risk scaling factor in the low-risk area increases 
from 1.05 to 1.15, the risk cost decreases to 0 but the total 
cost increases by $250.16. Due to the high risk of the photo‐
voltaic power output at this time, it is believed that the cost 
of absorbing distributed photovoltaic power is greater than 
that of directly purchasing electricity from the power grid. 
Besides, the curtailment of the photovoltaic power and the 
increased cost of purchasing electricity from the power grid 
have to be considered, resulting in increased operation costs. 
The impact of the risk scaling factor in the high-risk area is 
similar to the above, and repetitive analysis is not conducted.

2)　Analysis of Operational Results with Load Check on Sec‐
ond-level Time Scale

To evaluate the reliability of the operational results with 
load check on the second-level time scale, we select a typi‐
cal period from 12: 30 to 12: 45 for analysis, during which 
the average comprehensive load is 27.17 MW, as shown in 
Fig. 10(a).

When the comprehensive load with a time resolution of 1 
s is above or slightly below its average value of 15 min, the 
power balance constraint of the system can be met by solely 
increasing or decreasing the output of the power grid. In the 
situation, the LBES is discharging at its rated power and the 
photovoltaic power is fully absorbed, as shown in Fig. 10(b) 
and (c).

When the comprehensive load with a time resolution of 1 
s is far lower than its average value of 15 min, it is insuffi‐
cient to maintain the system power balance by only decreas‐
ing the output of the power grid. As the output of the power 
grid drops to 0, the LBES rapidly transitions from discharg‐
ing to charging status, and the photovoltaic power curtail‐
ment is conducted if it exceeds the regulation range of the 
power grid and LBES, as shown in Fig. 10(d) and (e).

Furthermore, the operational results of the first model so‐
lution and the second load check during the typical period 
mentioned above are compared, as shown in Table III. The 
photovoltaic power decreases slightly after the second load 
check, due to the abrupt drops in comprehensive load. And 
the total curtailed photovoltaic power is 32.5 kWh during 
the typical period.
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TABLE I
COST COMPARISON WITH DIFFERENT SETS OF TOTAL AMOUNT OF 

FLUCTUATIONS

Set

4

5

Operation cost ($)

35466.56

35474.78

Risk cost ($)

142.48

220.84

Total cost ($)

35609.04

35695.62

TABLE II
COST COMPARISON WITH DIFFERENT SETS OF RISK SCALING FACTORS

Set

6

7

8

Operation cost ($)

35466.56

35469.30

35906.33

Risk cost ($)

142.48

186.87

0

Total cost ($)

35609.04

35656.17

35906.33
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VI. CONCLUSION 

The renewable energy resources along the railway can be 
effectively utilized by integrating photovoltaic power into 
the TPSS, thus building the rail transit green energy system. 
However, the uncertainty of photovoltaic power output may 
pose a risk to the TPSS. To this end, we propose an opera‐
tion strategy for the rail transit green energy system consider‐
ing the uncertainty risk of photovoltaic power output. By an‐
alyzing the measured data of a specific traction substation as 
the test system, the following conclusions are drawn.

1) To enhance the utilization efficiency and economic prof‐
it of regenerative braking energy, the operation strategy of 
SCES under the braking condition is optimized by consider‐
ing the impact of TOU electricity price.

2) The issue arising from different time resolutions be‐
tween photovoltaic power and traction load is resolved 
through the implementation of a two-step load check on the 
second-level time scale. This coordinated optimization ad‐
dresses the risk associated with photovoltaic operation and 
the fluctuations in traction load, thereby achieving a balance 

between risk cost and operation cost.
3) The ILR model can be solved by commercial optimiza‐

tion software in only 4.38 s after linearization, demonstrat‐
ing a good model-solving performance of the proposed oper‐
ation strategy.

Focusing on the impact of photovoltaic power output un‐
certainty on the rail transit green energy system, the control 
methods and topology structure of the system are not dis‐
cussed. How to implement the proposed operation strategy 
through control methods will be the future research direction.
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TABLE III
COMPARISON OF OPERATIONAL RESULTS DURING TYPICAL PERIOD

Operation

First solution

Second check
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load (MW)

27.17
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(MW)

14.03

14.84

LBES power 
(MW)

3.00

2.32
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10.01

1867



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 6, November 2024

of the CSEE, vol. 41, no. 3, pp. 961-973, Feb. 2021.
[18] M. Fischetti and M. Monaci, “Light robustness,” in Robust and On‐

line Large-scale Optimization. Berlin: Springer, 2009, pp. 61-84.
[19] L. Qin, J. Lin, S. Dai et al., “An improved light robust optimization 

model and its linear counterpart,” Proceedings of the CSEE, vol. 36, 
no. 13, pp. 3463-3469, Jul. 2016.

[20] Y. Zhang, X. Lin, Z. Xu et al., “Dispatching method of micro-energy 
grid based on light robust optimization,” Automation of Electric Pow‐
er Systems, vol. 42, no. 14, pp. 75-82, Jul. 2018.

[21] L. Qin, J. Lin, S. Dai et al., “Improved light robust optimization mod‐
el based wind-thermal unit commitment,” Proceedings of the CSEE, 
vol. 36, no. 15, pp. 4108-4119, Aug. 2016.

[22] D. Feng, S. Lin, X. Sun et al., “Reliability assessment for traction 
transformer considering load characteristics of high-speed railway,” 
Journal of the China Railway Society, vol. 39, no. 8, pp. 62-69, Aug. 
2017.

[23] B. Wei, H. Hu, K. Wang et al., “Research on traction load forecasting 
method for high-speed railway traction substation based on measured 
data and train timetable,” Transactions of China Electrotechnical Soci‐
ety, vol. 35, no. 1, pp. 179-188, Jan. 2020.

[24] L. Zhang, Q. Li, and Y. Zhu, “Prediction of traction load for new elec‐
trified railway,” Journal of Southwest Jiaotong University, vol. 51, no. 
4, pp. 743-749, Aug. 2016.

[25] S. Zhao, T. Zhang, Z. Li et al., “Distribution model of day-ahead pho‐
tovoltaic power forecasting error based on numerical characteristic 
clustering,” Automation of Electric Power Systems, vol. 43, no. 13, pp. 
36-45, Jul. 2019.

[26] Y. Liu, Y. Chen, H. Tian et al., “New energy and energy storage plan‐
ning and configuration in rail transportation self-sufficient energy sys‐
tems based on two-stage robust optimization,” High Voltage Engineer‐
ing, doi: doi.org/10.13336/j.1003-6520.hve.20231304

[27] Technical Requirements for Connecting Photovoltaic Power Station to 
Power System, GB/T 19964-2024, 2024.

[28] Y. Chen, Y. Yao, and Y. Zhang, “A robust state estimation method 
based on SOCP for integrated electricity-heat system,” IEEE Transac‐
tions on Smart Grid, vol. 12, no. 1, pp. 810-820, Jan. 2021.

[29] Y. Chen, J. Ma, P. Zhang et al., “Robust state estimator based on max‐
imum exponential absolute value,” IEEE Transactions on Smart Grid, 
vol. 8, no. 4, pp. 1537-1544, Jul. 2017.

[30] H. Zhang, D. Yue, C. Dou et al., “Resilient optimal defensive strategy 
of TSK fuzzy-model-based microgrids’ system via a novel reinforce‐

ment learning approach,” IEEE Transactions on Neural Networks and 
Learning Systems, vol. 34, no. 4, pp. 1921-1931, Apr. 2023.

Yanbo Chen received the B.S. degree in electrical engineering from Hua‐
zhong University of Science and Technology, Wuhan, China, in 2007, the 
M. S. degree in electrical engineering from China Electric Power Research 
Institute, Beijing, China, in 2010, and the Ph. D. degree in electrical engi‐
neering from Tsinghua University, Beijing, China, in 2013. He is currently a 
Professor with School of Electrical and Electronic Engineering, North China 
Electric Power University, Beijing, China. His research interests include 
power system state estimation and optimal power flow.

Haoxin Tian received the B.S. and M.S. degrees in electrical engineering 
from North China Electric Power University, Baoding, China, in 2018 and 
2021, respectively. He is currently pursuing the Ph. D. degree in electrical 
engineering at North China Electric Power University, Beijing, China. His 
research interests include planning and operation of power systems with re‐
newable energy.

Guodong Zheng received the B.S. degree from North China Electric Power 
University, Baoding, China, in 2020, and the M.S. degree in electrical engi‐
neering from North China Electric Power University, Beijing, China, in 
2023. He is currently an Electrical Engineer with State Grid Changsha Pow‐
er Supply Company, Changsha, China. His research interests include opera‐
tion strategy and risk assessment of rail transit green energy system.

Yuxiang Liu received the B. S. degree from North China Electric Power 
University, Beijing, China, in 2021. He is currently pursuing the M.S. de‐
gree in electrical engineering at North China Electric Power University. His 
research interests include planning and configuration of new energy and en‐
ergy storage of rail transit green energy system.

Maja Grbić received the B.S., M.S., and Ph.D. degrees in electrical engi‐
neering from School of Electrical Engineering, University of Belgrade, Bel‐
grade, Serbia, in 2010, 2012, and 2021, respectively. She is currently a Re‐
search Associate with Nikola Tesla Electrical Engineering Institute, Universi‐
ty of Belgrade. Her research interests include power system analysis and 
control.

1868


