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Event Detection Based on Robust Random 
Cut Forest Algorithm for Non-intrusive 
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Abstract——Non-intrusive load monitoring (NILM) can provide 
appliance-level power consumption information without deploy‐
ing submeters for each load, in which load event detection is 
one of the crucial steps. However, the existing event detection 
methods do not efficiently detect both the starting time of an 
event (STE) and the ending time of an event (ETE), and their 
adaptability to scenarios with different sampling rates is limit‐
ed. To address these problems, in this paper, an event detection 
method based on robust random cut forest (RRCF) algorithm, 
which is an unsupervised learning method for detecting anoma‐
lous data points within a dataset, is proposed. First, the mean-
pooling preprocessing is applied to the aggregated load power 
series with a high sampling rate to minimize fluctuations. Then, 
the power differential series is obtained, and the anomaly score 
of each data point is calculated using the RRCF algorithm for 
preliminary detection. If an event has been preliminarily detect‐
ed, misidentification caused by fluctuation will be further elimi‐
nated by using an adaptive power difference threshold ap‐
proach. Finally, linear fitting is used to finely and accurately ad‐
just the STE and ETE. The proposed method does not require 
any pretraining of the detection model and has been validated 
with both the BLUED dataset (with high and low sampling 
rates) and the REDD dataset (with low sampling rate). The ex‐
perimental results demonstrate that the proposed method not 
only meets real-time requirements, but also exhibits strong 
adaptability across multiple scenarios. The precision is greater 
than 92% in distinct sampling rate scenarios, and the F1 score 
of phase B on the BLUED dataset reaches 94% in the scenario 
with a high sampling rate. These results indicate that the pro‐
posed method outperforms other state-of-the-art methods.

Index Terms——Non-intrusive load monitoring, event detection, 
robust random cut forest, adaptive threshold.

I. INTRODUCTION 

FEEDBACK information on energy usage can provide 
electricity consumers with a basis to better control their 

electricity utilization behaviours and ultimately save energy 

[1], [2]. Therefore, obtaining load usage information is high‐
ly important for energy management [3]-[5].

Non-intrusive load monitoring (NILM), which was initial‐
ly proposed in [6], can provide individual electrical load us‐
age information without deploying submeters for each load 
[7] - [9]. According to the information acquired from NILM, 
electricity consumers can determine and adjust their electrici‐
ty utilization behaviours to save energy. Moreover, NILM 
can help both electricity consumers and providers locate de‐
vices with high power consumption at peak hours, identify 
malfunctioning devices, and forecast power demand 
[10], [11].

NILM can be divided into two main categories: nonevent-
based NILM and event-based NILM. In NILM studies, a 
switch action or change in the working state of a load is 
called an event. An event-based NILM could have better per‐
formance than a nonevent-based NILM because the acquired 
rich load features can greatly enhance the identification accu‐
racy [12].

The main purpose of event detection in NILM is to detect 
the starting time of an event (STE) and ending time of an 
event (ETE) when a state transition occurs from aggregated 
load measurements [13]. Accurate event detection is a pre‐
requisite for precise NILM [14], [15]. For this reason, many 
studies have carried out in-depth investigations in this field. 
The existing event detection methods can be divided into 
three main categories according to their implementation prin‐
ciples: expert heuristic methods, probabilistic methods, and 
pattern matching methods.

Expert heuristic methods mainly utilize professional 
knowledge and propose a set of decision rules for event de‐
tection. Reference [16] utilized the variation in average ac‐
tive power in the pre-window and post window to detect 
events and provided exact time stamps of the events in the 
aggregated signal. Reference [13] proposed a computational‐
ly fast algorithm with low complexity that returns the time 
at which corresponding events occur by detecting the vari‐
ance and mean absolute deviation of the aggregated active 
power. In [17], the median filter algorithm and ripple mitiga‐
tion algorithm were used to remove unexpected disturbances 
in the aggregated load power series and extract the real sig‐
nal of switching on/off events.

Probabilistic methods use the statistical probability distri‐
bution of aggregated load data to detect changes after an 
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event occurs. Typical probabilistic methods include the likeli‐
hood ratio and cumulative sum. A generalized event detec‐
tion method based on likelihood ratio was proposed in [18], 
in which a sliding detection window was used to determine 
whether a state transition occurred. Reference [19] proposed 
an improved cumulative sum method for NILM. When there 
is no high-level noise at the common bus, the threshold is re‐
duced to detect loads with low power; otherwise, the thresh‐
old is increased dynamically to reduce noise interference. 
Two robust algorithms were proposed in [20], including a 
modified version of the chi-square goodness-of-fit test and 
an event detection method based on cepstrum smoothing.

Pattern matching methods detect events by matching the 
sequence fragments corresponding to the event transient pro‐
cess with a known feature library. In [21], the transient load 
features were represented by the spectrogram of the derived 
root mean square (RMS) of current signal, and these spectro‐
grams were used as inputs to the neural network to detect 
the event. Reference [22] proposed an unsupervised frame‐
work that includes an algorithm for characterizing transient 
load features in a given environment and a proximity-based 
motif matching algorithm for event detection.

In addition to the above three types of event detection 
methods, several other methods have been proposed. For in‐
stance, [23] proposed an event detection composition block 
by combining the individual detection results of event detec‐
tion agents to produce a single output that identifies the in‐
stances with a high likelihood of a load event in time. In 
[24], a multivariate event detection algorithm was proposed 
that selected the optimal threshold by analysing the operat‐
ing characteristic curves with three metrics, namely, the F-
measure, the largest vertical distance from the receiver oper‐
ating characteristic (ROC) curve to the main diagonal, and 
the closest point to the (0,1) corner on the ROC curve. An‐
other method that combined probabilistic methods and ex‐
pert heuristic methods was proposed in [25]. This method in‐
cluded a voting-based improved isolated forest algorithm for 
highly sensitive event predetection and a time-shift down 
sampling matching algorithm for highly accurate event verifi‐
cation.

Although the above methods have made impressive prog‐
ress, there is still space for improvement. First, although ex‐
pert heuristic methods and pattern matching methods are ex‐
cellent at detecting specific types of events, they cannot han‐
dle complex events. Decision rules must be set by develop‐
ers manually, and it is challenging to select appropriate con‐
ditions to adapt the data. Thus, model accuracy is highly de‐
pendent on developer’s expertise. With the growth of the da‐
taset, both the predefined rules and patterns may not adapt 
to the new data, and the prior setting may limit the general‐
ization of the methods.

Compared with expert heuristic methods, probabilistic 
methods are more flexible. The generalization performance 
of these methods is excellent because they are data driven. 
However, probabilistic methods have high requirements for 
data quality and rely on customized parameter settings at the 
beginning of the process. Consequently, they cannot main‐
tain satisfactory performance in different scenarios. For in‐

stance, the method in [12] can only work at a high sampling 
rate, and the methods in [13] and [26] must be implemented 
at a low sampling rate. The initialized parameters of these 
methods cannot support both scenarios simultaneously, 
which impacts the adaptability of each method in practical 
situations.

Furthermore, most of the existing event detection methods 
[14] have focused only on detecting the STE while ignoring 
the ETE. However, both STE and ETE are crucial for subse‐
quent load identification, as event-based NILM methods rely 
on extracting load features such as harmonic current and 
voltage-current (V-I) trajectories [27] by calculating the dif‐
ferences in steady-state voltage and current before and after 
the event. Although some methods have considered detecting 
both the STE and ETE [14], [26], they focused mainly on 
one or two specific types of events and have not generalized 
their methods to more complex events in actual scenarios.

To address these challenges, in this paper, an event detec‐
tion method based on the robust random cut forest (RRCF) 
algorithm is proposed. This method, which can handle 
streaming data and offer precise STE and ETE information 
for subsequent load identification, can work in different sce‐
narios. First, the STE and ETE are preliminarily detected by 
using the RRCF algorithm, and then the misidentification 
caused by fluctuations is further eliminated by using an adap‐
tive power difference threshold, which can be adjusted in re‐
al time according to the standard deviation of the aggregated 
load power. Finally, the STE and ETE are finely adjusted by 
linear fitting. The proposed method can address challenging 
events such as repetitive events, high fluctuation events, 
long transient events, and near-simultaneous events, and im‐
prove event detection accuracy, as validated on the basis of 
the BLUED dataset [28] and REDD dataset [29].

The main contributions of this work are as follows.
1) The proposed method can detect both the STE and 

ETE with high accuracy. Thus, this method provides a good 
foundation for subsequent load identification.

2) The proposed method has high sensitivity in scenarios 
with high sampling rates, which means that it can detect 
events that occur within a short period of time.

3) The proposed method has high practicality and adapt‐
ability because it can meet real-time requirements and per‐
forms well in scenarios with high and low sampling rates.

This paper is organized as follows. Section II introduces 
the principle of the RRCF algorithm and the calculation of 
anomaly scores. Section III presents the architecture of the 
proposed method and the principles of each stage for event 
detection. Section IV analyses the performance of several 
challenging event detection methods, and the proposed meth‐
od is verified on the BLUED and REDD datasets. Finally, 
Section V presents the main conclusions.

II. PRINCIPLE OF RRCF ALGORITHM AND CALCULATION OF 
ANOMALY SCORES 

Before introduction of load event detection, in this sec‐
tion, we will first introduce the principle of the RRCF algo‐
rithm, which lays the foundation for the proposed method.
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A. Principle of RRCF Algorithm

RRCF algorithm [30] is an outlier detection algorithm for 
dynamic data streams generated in real time. It has been ap‐
plied in various scenarios such as in the real-time detection 
of abnormal wind power data [31].

The first step of the RRCF algorithm is to create a ran‐
dom forest of trees, where each tree is obtained by partition‐
ing the sample data. The second step is to calculate the 
anomaly score for each data point in the trees, in which the 
anomaly score is defined as the expected change in the com‐
plexity of the tree as a result of adding or removing that da‐
ta point from the tree. The random cut forest assigns an 
anomaly score by computing the average score from each 
constituent tree and scaling the result with respect to the 
sample size.

Anomaly scores can manifest during unexpected spikes in 
time series data or breaks in periodicity or with unclassifi‐
able data points. Therefore, when viewed in a plot, data 
points with a high anomaly score are often easily distinguish‐
able from “regular” datasets.

RRCF algorithm can be run in steaming data or batch pro‐
cessing mode, enabling the model to adapt to different data 
types and anomaly patterns. The computational complexity 
of the RRCF algorithm can be optimized by adjusting the pa‐
rameters of the forest, namely, the number of trees and the 
size of the tree, which can maintain the balance between 
computational complexity and model accuracy.

B. Calculation of Anomaly Score

The procedure for calculating an anomaly score is as fol‐
lows. Given a set of points Z and a point yÎ Z, let f (yZT) 
be the depth of y in tree T(Z). Consider the tree produced by 
deleting {x} as T(Z -{x}). Let the depth of y in T(Z -{x}) be 
f (yZ -{x}T). Figure 1 shows an example of deleting one 
data point based on the tree structure.

In Fig. 1, the circle represents the parent node, the trian‐
gle represents the child leaf node, and the square represents 
the data point that needs to be removed. The anomaly score 
for data point {x} is calculated as:

Score(xZ)= ∑
yÎ Z -{x}

( f (yZT)- f (yZ -{x}T)) (1)

In the tree, the depth of an anomalous data point is usual‐
ly much shallower than that of a normal data point. Thus, 
the anomaly score will increase when abnormal data points 
are added or deleted. Therefore, a low anomaly score means 
that the corresponding data point is “normal”, and a high 

anomaly score means that the corresponding data point is 
“anomalous”.

III. ARCHITECTURE OF PROPOSED METHOD AND PRINCIPLES 
OF EACH STAGE FOR EVENT DETECTION 

In this section, how to employ the RRCF algorithm in the 
event detection is presented. First, the procedure of the pro‐
posed method is introduced. Then, the principle of prelimi‐
nary detection based on RRCF algorithm is elaborated, and 
after preliminary detection, the details of postprocessing is 
further described. Finally, the complete algorithm is dis‐
played.

A. Procedure of Proposed Method

A flowchart of the proposed method is shown in Fig. 2.

The functions of each module are as follows.
1) Data preprocessing: the mean-pooling preprocessing is 

applied to the aggregated load power series with a high sam‐
pling rate to eliminate fluctuations, which is unnecessary for 
series with a low sampling rate. Then, the power differential 
series is obtained via calculation.

2) Preliminary detection based on RRCF algorithm: the 
anomaly score of each data point in the power differential se‐
ries is calculated, and the possible event is preliminarily de‐
tected.

3) Postprocessing: when a possible event is detected, the 
power difference threshold further inhibits the misidentifica‐
tion event. Then, the STE and ETE are finely adjusted by 
linear fitting.

4) Adaptive power difference threshold updating: the stan‐
dard deviation of the aggregated load power data is calculat‐
ed at each moment to update the adaptive power difference 
threshold.

B. Principle of Preliminary Detection Based on RRCF Algo‐
rithm

First, for data with a high sampling rate, the mean-pooling 
processing is applied to eliminate fluctuations and reduce fre‐
quency. Nevertheless, the mean-pooling processing is unnec‐
essary for data with a low sampling rate.

Y

Preprocess data

Preliminary detection
based on RRCF algorithm

Postprocessing

Record event

N

Obtain aggregated
load power data

Calculate anomaly
score

Is anomaly
score higher than

threshold?

Update adaptive power
difference threshold

Inhibit misidentification

by adaptive power

difference threshold

Finely adjust STE and

ETE by linear fitting

Fig. 2.　Flowchart of proposed method.
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Fig. 1.　Deleting one data point from tree T(Z). (a) Tree T(Z). (b) Tree 
T(Z -{x}).
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Figure 3(a) shows an aggregated load power series consist‐
ing of two events, and the sampling frequency is 20 Hz. 
When an event occurs, the power value becomes an outlier 
relative to the power values in the previous steady state. 
Hence, these data points can be detected as outliers by the 
RRCF algorithm.

However, when the aggregated load power series are used 
directly, a potential problem could occur. As the RRCF algo‐
rithm determines whether the value of the current moment is 
an outlier according to the series data before this moment, if 
a certain load is switched on and off in a short time (e. g., 
the number of data points for the second steady state in Fig. 
3(a) is not enough) and the power value after the event is 
the same as that of the previous steady state (e.g., the power 
value after the second event in Fig. 3(a) is the same as the 
power value of the first steady state), the data points after 
the event may not be identified as abnormal data points or 
they may have lower anomaly scores.

Therefore, the power differential series shown in Fig. 3(b) 
is used to calculate the anomaly score. Based on the aggre‐
gated load power series {P(t)|t = 12...N} with a length of 
N, the power differential series {∆P(t)|t = 12...N - 1} is ob‐
tained as:

∆P(t) = P(t + 1)-P(t) (2)

As shown in Fig. 3(b), the power differential series is 
very close to zero in the steady state. When an event occurs, 
the power difference changes suddenly, and the resulting val‐
ue becomes an outlier. Thus, the RRCF algorithm can be 
used to detect events based on the power differential series.

First, the random forest is initialized with 100 data points 
obeying a normal distribution X~N(05). Then, the aggregat‐
ed load power series can be obtained in real time, and the 
anomaly score is calculated for each point in the power dif‐
ferential series. The anomaly score threshold is set in ad‐
vance and compared with the anomaly scores. When the cur‐
rent anomaly score exceeds the threshold, the power differ‐
ence value changes, indicating that an event may occur. 

When the anomaly score converges to the threshold, it can 
be preliminarily deduced that the event is finished.

When the anomaly score threshold is set to be 20, the 
event detection results for Fig. 3 are shown in Fig. 4. As 
shown in Fig. 4, in addition to the two actual events, two 
falsely detected events are caused by power fluctuations. 
Therefore, it is necessary to determine whether the event is 
reasonable or unreasonable by postprocessing.

C. Postprocessing

The primary purpose of postprocessing is to eliminate mis‐
identifications caused by power fluctuations and to accurate‐
ly locate the STE and ETE.
1)　Inhibition of Misidentification Based on Adaptive Power 
Difference Threshold

Most event misidentifications are false-positive events, i.e., 
one event is falsely detected, although there is no actual 
event, which usually arises due to power fluctuations in high-
power appliances [12]. These misidentifications can be elimi‐
nated by setting a power difference threshold and comparing 
it with the power difference between the STE and ETE. 
However, when power fluctuation is high, the performance 
of a fixed power difference threshold is not ideal. Load 
events with low power may be missed when the threshold is 
too large. When the threshold is too small, there are many 
misidentifications in the case of large fluctuations. Hence, 
the power difference threshold needs to be dynamically up‐
dated to adapt to fluctuations or noises in the aggregated 
power signal.

In this paper, the standard deviation of the aggregated 
power signal in the steady state is used to adjust the thresh‐
old, which is expressed as:
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DPthr =max ( )DP0sd +DP0 × arctan ( )sd
DP0

4
π

(3) 

where DPthr is the adaptive power difference threshold; DP0 
is the preset threshold with the zero standard deviation; and 
sd is the standard deviation of the steady state before the lat‐
est event. As shown in (3), when sd is very small, DPthr is 
equal to DP0. With the increase of sd, the corresponding 
DPthr also increases. The changing trend of DPthr is shown in 
Fig. 5.

The value of DP0 is defined by the electric customer. For 
example, if the customer pays attention only to high-power 
load events, the value of DP0 can be set higher; if the cus‐
tomer also requires attention be paid to low-power load 
events, the value of DP0 can be set lowered. When the abso‐
lute value of the power difference is greater than the thresh‐
old, the event is considered true; otherwise, it is deemed 
false and can be eliminated.
2)　Adjustment of STE and ETE

The purpose of event detection is to extract the features of 
the load causing the event; thus, it is essential to locate the 
STE and ETE accurately. However, the STE and ETE found 
by the RRCF algorithm are only the starting and ending 
time of outliers in the aggregated load power series, as 
shown in Fig. 6, and these values are not accurate enough. 
Thus, the accurate STE and ETE in the steady state still 
need to be obtained.

As shown in Fig. 6, the ETE is detected by the RRCF al‐
gorithm, which usually occurs slightly earlier, as highlighted 
through the red dotted line circle; that is, the event is consid‐
ered to have ended before the steady state is completely 
reached. To determine the accurate STE and ETE, several da‐
ta points near the starting and ending points detected by the 
RRCF algorithm are selected and then the linear fitting is 
carried out to calculate the slope and goodness of fit. For ex‐
ample, as shown in Fig. 7, to obtain an accurate ETE, the al‐
gorithm selects some ETE points for the linear fitting pro‐
cess. These ETE points include both those that are in an un‐
stable state and those that reach a steady state. Two ETE 
points are passed by the brown and green lines, which have 
steep slopes that indicate they are in an unstable state, and 
one ETE point is passed by the red line, which has gradual 
slope that represents it is located in a steady state.

Linear fitting is implemented according to the following 
equations:

P̄ = ax + b (4)

 a =

∑
i = 1

N

P(t0 ± i)∑
i = 1

N

x(i)

N
-∑

i = 1

N

x(i)P(t0 ± i)

1
N ( )∑

i = 1

N

x(i)

2

-∑
i = 1

N

x2 (i)

(5)

b =
∑
i = 1

N

P(t0 ± i) - a∑
i = 1

N

x(i)

N
(6)

r = 1 -
∑
i = 1

N

(P(t0 ± i)- P̄(i))2

∑
i = 1

N ( )P(t0 ± i)-
1
N∑i = 1

N

P(t0 ± i)
2 (7)

where N is the number of the selected data points; P ={P(t0 ±
i)|i = 12...N}, and t0 is the STE or ETE detected by the 
RRCF algorithm; + and – of ± are for the ETE and STE, re‐
spectively; x ={x(i)= i|i = 12N}; P̄ is the power value af‐
ter linear fitting; and a, b, and r are the slope, bias, and 
goodness of fit, respectively. The thresholds of slope and 
goodness of fit are set as athr and rthr, respectively. When the 
slope and goodness of fit meet the criteria a < athr and r > rthr, 
the steady state is reached. No adjustment is needed if anoth‐
er event occurs before the above conditions are met.

D. Detailed Algorithm

The detailed algorithm for the proposed method is shown 
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in Algorithm 1, where “event flag” indicates whether a possi‐
ble event occurs, and “adjust flag” indicates whether the lat‐
est detected STE and ETE are adjusted properly.

IV. CASE STUDY 

In this section, the proposed method is validated on public 
datasets with different sampling rates. First, the parameters 
of the RRCF algorithm that can meet the real-time require‐
ment are determined. Then, the detection results for several 
challenging events are discussed, and the proposed method 
is validated on both the BLUED dataset (with both high and 
low sampling rates) and the REDD dataset (with low sam‐
pling rates). Finally, the advantages of the proposed method 
are demonstrated by comparing it with other methods.

A. Parameter Determination of RRCF Algorithm

The RRCF algorithm has three parameters: the number of 
trees, the size of the tree, and the shingle size. The shingle 
size is set to be 1 because the power data are sampled once 
at a time. Since the event detection task needs to be run in 
real time, the other two parameters should be kept as small 
as possible to meet real-time requirements. Besides, the high 
identification accuracy should be maintained. After testing, 
when the number of trees is set to be 2 and the size of the 
tree is set to be 64, the time cost is approximately 0.33 s for 
400 sampling points, which means that the proposed method 
can meet the real-time requirement while achieving satisfac‐
tory accuracy. All of the following tests are performed with 

these parameters.

B. Detection of Several Challenging Events in Scenario with 
a High Sampling Rate

In this subsection, the detection results for several chal‐
lenging events on the BLUED dataset [28] are presented. 
This dataset includes the household-grade voltage and cur‐
rent data with a high sampling frequency (12 kHz) from one 
household in the United States over a period of approximate‐
ly 8 days. This dataset contains aggregated load power series 
at a sampling rate of 60 Hz.

First, mean-pooling processing is employed to eliminate 
high fluctuations, taking the average value of every three da‐
ta points. Therefore, the time interval between two adjacent 
data points is 0.05 s. Although mean-pooling processing is 
very simple, it effectively inhibits the periodic interference.

The parameter values used in event detection for the 
BLUED dataset are shown in Table I, and the length of the 
data points for linear fitting is set to be 6. DP0 is set to be 
30 W, which is the minimum power change for an individu‐
al load based on the BLUED dataset. After several valida‐
tions, the optimal anomaly score threshold is turned to be 35.

We then select several challenging events from the 
BLUED dataset and verify the detection performance of the 
proposed method.
1)　Case 1: Repetitive Event Detection Within a Short Time

A repetitive event, as shown in Fig. 8, means that the 
steady state has many switching on/off events.

As observed from Fig. 8, the proposed method can accu‐
rately detect all repetitive events and adjust each STE and 
ETE. The time interval between the second event and the 
third event is only approximately 0.35 s, and this event can 
also be accurately detected. The results show that the pro‐
posed method has good sensitivity, which means that it can 
detect events that occur within a very short time.
2)　Case 2: Large-fluctuation Event Detection

As shown in Fig. 9, a large-fluctuation event has serious 
fluctuation in the steady state.

As shown in Fig. 9(b), there are some misidentifications 
due to high fluctuations when the power difference threshold 
is fixed at 30 W. In Fig. 9(c), the red dotted line circle indi‐
cates the large fluctuations during this period. Thus, using a 
specified threshold, these misidentifications are detected as 
actual events. The adaptive power difference threshold can be 
updated according to the fluctuations, as shown in Fig. 9(d). 
Thus, the misidentifications caused by fluctuations can be ef‐
fectively eliminated and the accuracy of event detection is 
improved.
3)　Case 3: Long Transient Event Detection

For long transient events, it takes a long time to reach the 
steady state after the STE.

Algorithm 1: detailed algorithm for proposed method

Input: aggregated load power data

Output: load event list

Step 1: initialize the random forest with 100 data points obeying normal 
distribution X~N(05) and all thresholds in algorithm

Step 2: sample the aggregated load power series in real time

Step 3: apply mean-pooling processing to high-frequency data. Then, ob‐
tain the power differential series via calculation

Step 4: input power differential series into the random forest to calculate 
the anomaly score for each data point

Step 5: if anomaly score is larger than threshold Scorethr, then event flag 
is set to be 1 and return to Step 2 to continue sampling

          else

            if event flag = 1: event flag is reset to be 0 and go to Step 6

            else: go to Step 7

Step 6: calculate the power difference ∆P before and after the event

          if ∆P > ∆Pthr: adjust flag is set to be 0 and record event. Return to 
Step 2 to continue sampling

          else: go to Step 9

Step 7: if adjust flag = 1: go to Step 9

          else: go to Step 8

Step 8: calculate the slope a and the goodness of fit r by the linear fitting 
before the next event occurs

          if a is smaller than threshold athr and r is larger than threshold 
rthr: adjust the recorded event information in Step 6 and adjust 
flag is set to be 1. Return to Step 2 to continue sampling

          else: go to Step 2 to continue sampling

Step 9: an adaptive power difference threshold is calculated by the stan‐
dard deviation of the actual aggregated load power data and go to Step 
2 to continue sampling

TABLE I
PARAMETER VALUES USED IN EVENT DETECTION FOR BLUED DATASET

Anomaly score 
threshold

35

DP0 (W)

30

Slope threshold
 athr

5

Goodness 
threshold rthr

0.8
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There are two main types of long transient events in the 
scenario with a high sampling rate, i. e., medium-long tran‐
sient events and ultra-long transient events (which may be 
several minutes), as shown in Fig. 10. The medium-long 
transient event takes 0.7 s to reach the steady state, and the 
ultra-long transient event will keep the transient process for 
almost 10 s.

Several studies have attempted to identify the entire tran‐
sient process of an event [12], [26]; however, in practice, it 
is often difficult to obtain the whole transition process. This 
is because the load-switching event is irregular, which can‐
not guarantee that no other event occurs during the transient 
process. The purpose of event detection is to extract load fea‐
tures for load identification. Therefore, if enough load fea‐
tures can be extracted, event detection can be achieved. To 
meet this objective, the local steady state (the steady state of 
a load during a transient process) in the long transient event 
transition is sufficient to extract the needed load features.

For long transient events, the entire transition process of 
the medium-long transient event can be detected, as shown 
in Fig. 10(a), while the local steady state of the ultra-long 
transient event can be detected at the end of the event, as 
shown in Fig. 10(b).

The results show that the proposed method has high practi‐
cality, which means that it can detect another event that oc‐
curs when the load has not reached the steady state; this is 
also shown in the following case.
4)　Case 4: Near-simultaneous Event Detection

When two events occur within a very short time, it is 
called a near-simultaneous event, as shown in Fig. 11(a). 
This event is similar to case 1, but the difference is that in 
this case the two events occur because of two different 
loads. In Fig. 11(a), the interval time between the first event 
and the second event is approximately 0.3 s, and when the 
second event occurs, the first event is still in the transient 
process, as indicated via the red dotted line circle.

Suppose that the information of the local steady state is 
not used. In this case, the near-simultaneous events that oc‐
cur from different loads are detected as a single event, and it 
is difficult to extract the features of the load in the subse‐
quent load identification stage.
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The proposed method can accurately detect near-simultane‐
ous events by using local steady-state data points during the 
transient process of the event.

C. Validation in Scenario with a High Sampling Rate

In this subsection, the proposed method is validated in the 
scenario with a high sampling rate with the BLUED dataset. 
The preprocessing procedure for data with a high sampling 
rate is the same as that in Section IV-B. Therefore, the final 
sampling frequency is 20 Hz. In the BLUED dataset, the ap‐
pliances are connected to two phases: phase A and phase B. 
Phase A contains appliances with relatively stable power. In 
contrast, phase B has appliances with relatively large power 
fluctuations. This dataset also provides true labels about the 
occurrence times of events, with 904 events recorded in 
phase A and 1578 events recorded in phase B.

The event detection results during certain time periods, 
where load events are very frequent, are shown in Fig. 12. 
The aggregated load power series of phase B fluctuates sub‐
stantially and is much more complex than that of phase A. 
In phase A, 940 events are finally detected by the proposed 
method, which is greater than the actual 904 events. In 
phase B, 2001 events are finally detected by the proposed 
method, which is greater than the actual 1578 events. The 
number of detected events is greater than that of actual 
events due to the separation of repetitive events in the run‐
ning state of a particular load into several events, as shown 
in Fig. 12(c). In phase B, a few repetitive events are not re‐
corded due to the short time period between adjacent events 
and the large power fluctuation, as shown by the red dotted 
line circle in Fig. 12(e).

The event detection results show that the proposed meth‐
od can accurately detect the STE and ETE and effectively 

eliminate the misidentification caused by fluctuations. Al‐
though some events in phase B are not recorded, this prob‐
lem is not severe because these events are repetitive events 
caused by the same load.

D. Validation in Scenario with a Low Sampling Rate

In this subsection, the proposed method is validated in the 
scenario with a low sampling rate with both BLUED and 
REDD datasets.
1)　Event Detection Results in BLUED Dataset

First, the proposed method is validated with the BLUED 
dataset. To reduce the sampling rate to 1 Hz, the number of 
data points in the mean-pooling processing is set to be 60. 
Meanwhile, the slope threshold athr is set to be 10, which is 
a larger value than that in the scenario with a high sampling 
rate. This is because the time interval between adjacent data 
points of the aggregated load power series in the scenario 
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with a low sampling rate is longer compared with that in the 
scenario with a high sampling rate. The other parameters are 
the same as those in the scenario with a high sampling rate

The event detection results for a selected day that is the 
most representative in a week are shown in Fig. 13. As 
shown in Fig. 13(a), the events in phase A can be accurately 
detected. However, the event detection results of phase B are 
not as good as those in the scenario with a high sampling 
rate, mainly because of the repetitive event. In the repetitive 
event, only one data point can be sampled in each repetition; 
thus, these data points in the aggregated load power series 
are closer to the impulse fluctuation, as shown in Fig. 13(c). 
This deficiency is due to the low sampling rate.

2)　Event Detection Results in REDD Dataset
The performance of the proposed method is validated in 

the REDD dataset as well. The REDD dataset provides the 
aggregated load power series that are recorded at 1 Hz and 

collected from six real houses. Considering the complexity 
of appliance composition, we select the aggregated load pow‐
er series for approximately one day from House 1 to vali‐
date the proposed method.

The event detection results in the REDD dataset are 
shown in Fig. 14. As can be observed, the proposed method 
performs well in the scenario with a low sampling rate. The 
REDD dataset also contains many repetitive events, as 
shown in Fig. 14(b) - (d). However, the time period of the 
switching on/off state in Fig. 14 is longer than that in Fig. 
13, with most lasting more than 1 s; therefore, the proposed 
method can accurately detect all repetitive events.

The validation results for the REDD dataset show that the 
proposed method can perform well for different households, 
which means that it has high adaptability.
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E. Comparison with Other Methods

In order to show the superiority of the proposed method, 
it is compared with several well-known methods for the 
BLUED dataset. The comparison results are shown in Table 
III in terms of three metrics, namely, the correct rate Preci‐
sion, the recall rate Recall, and the F1 score F1, which are 
calculated as:

F1 = 2
Precision ×Recall
Precision +Recall

(8)

Precision =
TP

TP +FP
(9)

Recall =
TP

TP +FN
(10)

where TP, FP, and FN denote the true positive, false posi‐
tive, and false negative cases, respectively.

The comparison results show that the proposed method 
outperforms other state-of-the-art methods. The method in 
[14] focuses only on the STE. The methods in [25] and [26] 
try to detect the whole transition process of the event. Never‐
theless, these methods do not allow another event to occur 
during the long transient event detection, which is not practi‐
cal in reality.

In addition, the event detection methods in the references 
can only be applied to low-frequency or high-frequency pow‐
er data, while the proposed method can be used in both sce‐
narios. With respect to the scenario with a high sampling 
rate, the proposed method can accurately detect both the 
STE and ETE of all events; thus, it can provide a favourable 
foundation for subsequent load identification. Although repet‐
itive event detection in scenarios with a low sampling rate is 
not as effective as that in scenarios with a high sampling 
rate, the first and last events are accurately detected, provid‐
ing sufficient information to perform subsequent load identi‐
fication. Other events, except for repetitive events in scenari‐
os with low sampling rates, can be accurately detected.

V. CONCLUSION 

In this paper, an event detection method based on the 
RRCF algorithm is proposed. The power differential series is 

input into the random forest, and the anomaly score is calcu‐
lated for each data point to roughly determine the STE and 
ETE. Then, postprocessing is carried out to inhibit misidenti‐
fications by using an adaptive power difference threshold 
and accurately locating the STE and ETE. The proposed 
method is validated in the BLUED and REDD datasets. The 
results illustrate that the proposed method outperforms other 
state-of-the-art methods. The STE and ETE can be accurate‐
ly detected by the proposed method, and the adaptive power 
difference threshold can enhance the accuracy by eliminating 
the misidentifications caused by fluctuations. In addition, the 
proposed method has high adaptability because it performs 
well in different scenarios with distinct sampling rates.

The proposed method offers a favourable foundation for 
NILM problems in different scenarios, but there are still 
some limitations that require further research. For example, 
with growth of the dataset and changes in data distribution, 
the accuracy might be influenced. Therefore, follow-up re‐
search could explore mechanisms for adaptation to ensure 
the continued accuracy of event detection.

In addition, the energy consumption modes related to 
NILM problems need to be considered. Both [32] and [33] 
improved the energy efficiency based on residential occupan‐
cy information via various probabilistic prediction methods. 
Additionally, [34] identified the periods when high demand 
occurs by building a closely tied relationship with residential 
occupancy patterns and consumer activities, catering to de‐
mand response and improving energy efficiency. In future 
work, the proposed method could be combined with the de‐
mand response capability identification to promote energy ef‐
ficiency and sustainability in buildings.
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