Journal of Modern Power Systems and Clean Energy
Email Alert

ISSN 2196-5625 CN 32-1884/TK

Subsequent Commutation Failure Suppression Considering Negative-sequence Voltage Caused by Symmetrical Fault at AC Side of Inverter
Author:
Affiliation:

School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China

Fund Project:

This work was supported by National Natural Science Foundation of China (No. 51877061).

  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
    Abstract:

    The negative-sequence voltage is often caused by the asymmetrical fault in the AC system, as well as the harmonics after the symmetrical fault at the AC side of inverter in line commutated converter based high-voltage DC (LCC-HVDC). The negative-sequence voltage affects the phase-locked loop (PLL) and the inverter control, thus the inverter is vulnerable to the subsequent commutation failure (SCF). In this paper, the analytical expression of the negative-sequence voltage resulting from the symmetrical fault with the commutation voltage is derived using the switching function and Fourier decomposition. The analytical expressions of the outputs of the PLL and inverter control with respect to time are derived to quantify the contribution of the negative-sequence voltage to the SCF. To deal with the AC component of the input signals in the PLL and the inverter control due to the negative-sequence voltage, the existing proportional-integral controls of the PLL, constant current control, and constant extinction angle control are replaced by the linear active disturbance rejection control against the SCF. Simulation results verify the contributing factors to the SCF. The proposed control reduces the risk of SCF and improves the recovery speed of the system under different fault conditions.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 01,2024
  • Revised:June 29,2024
  • Online: March 26,2025