Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Double-uncertainty optimal operation of hybrid AC/DC microgrids with high proportion of intermittent energy sources
Author:
Affiliation:

1 Department of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, Hebei Province, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (No. 51577068) and Science & Technology Foundation of SGCC (No. 520201150012).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    This paper applies double-uncertainty optimization theory to the operation of AC/DC hybrid microgrids to deal with uncertainties caused by a high proportion of intermittent energy sources. A fuzzy stochastic expectation economic model for day-ahead scheduling based on uncertain optimization theory is proposed to minimize the operational costs of hybrid AC/DC microgrids. The fuzzy stochastic alternating direction multiplier method is proposed to solve the double-uncertainty optimization problem. A real-time intra-day unbalanced power adjustment model is established to minimize real-time adjustment costs. Through comparative analysis of deterministic optimization, stochastic optimization and fuzzy stochastic optimization of day-ahead scheduling and real-time adjustment, the validity of fuzzy stochastic optimization based on a fuzzy stochastic expectation model is proved.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: November 27,2017
  • Published: