Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Long-term forecasting of annual peak load considering effects of demand-side programs
Author:
Affiliation:

1. Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia; 2. Public Enterprise Electric Power Industry of Serbia, Belgrade, Serbia

Fund Project:

Ministry of Education and Science of the Republic of Serbia, being the part of the research project ‘‘Smart Energy Networks’’ (No. III 42009/2011)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    The main purpose of this research paper is to investigate the long-term effects of the proposed demandside program, and its impact on annual peak load forecasting important for strategic network planning. The program comprises a particular set of demand-side measures aimed at reducing the annual peak load. The paper also presents the program simulations for the case study of the Electricity Distribution Company of Belgrade (EDB). According to the methodology used, the first step is to determine the available controllable load of the distribution utility/area under consideration. The controllable load is presumed constant over the analyzed time horizon, and the smart grid (SG) infrastructure available. The saturation of positive effects during intense program application is also taken into account. Technical and economic input data are taken from the real projects. The conducted calculations indicate that demand-side programs can bring about the same results as the energy storage in the grids with a strong impact of distributed generation from variable renewable sources (V-RES). In conclusion, the proposed demand-side program is a good alternative to building new power facilities, which can postpone investment costs for a considerable period of time.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 23,2018
  • Published: