Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Mode for reducing wind curtailment based on battery transportation
Author:
Affiliation:

1. State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400030, China 2. Quzhou Power Supply Company, State Grid Electric Power Company, Quzhou 324000, China

Fund Project:

s This work was supported by the National Natural Science Foundation of China (No. 51577017).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Renewable energy sources, such as wind and solar, face several obstacles, including curtailment, where the generated energy exceeds local demand and production must be reduced because of limited transmission capacity. Simultaneously, consumer demand for large-capacity batteries is expanding given the recent rapid development of electric vehicles (EVs) and plug-in hybrid EVs. A batterycharging mode, in which discharged batteries are transported from battery exchange stations in high-load areas to wind farms, is proposed to alleviate curtailment. In this study, batteries store otherwise curtailed energy and smooth the wind power output simultaneously. The structure of the battery-charging device is discussed, and the concept of a battery-charging container is proposed. The control principle of the battery-charging management unit is presented with a simulation model constructed in the PSCAD/EMTDC environment. A case study is simulated, and the feasibility of the mode is analyzed considering the levelized cost and energy losses. Simulation results show that this mode is a feasible solution to alleviating wind curtailment and providing fresh impetus for developing EV battery exchanges.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: November 11,2018
  • Published: