Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Co-optimization approach to post-storm recovery for interdependent power and transportation systems
Author:
Affiliation:

1. Case Western Reserve University, Cleveland, USA; 2. University of Florida, Gainesville, USA; 3. Cleveland State University, Cleveland, USA

Fund Project:

U.S. National Science Foundation Project (No. ECCS-171121), CARRER Award (No. CMMI-1554559), and CSU FRD-IoT award.

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    The power and transportation systems are urban interdependent critical infrastructures (CIs). During the post-disaster restoration process, transportation mobility and power restoration process are interdependent, and their functionalities significantly affect other well-beings of other urban CIs. Therefore, to enhance the resilience of urban CIs, successful recovery strategies should promote CI function cooperatively and synergistically to distribute goods and services efficiently. This paper develops an integrative framework that addresses the challenges of enhancing the recovery efficiency of urban power and transportation systems in short-term recovery period. Specifically, the post-storm recovery process is considered as a scheduling problem under the constraints representing crew dispatch, equipment and fuel limit. We propose a new framework for co-optimizing the recovery scheduling of power and transportation systems, respecting precedency requirement and network constraints. The advantages and benefits of co-optimized recovery scheduling are validated in a testing system.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: July 31,2019
  • Published: