Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

A fault locating method for multi-branch hybrid transmission lines in wind farm based on redundancy parameter estimation
Author:
Affiliation:

1 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Baoding 071003, China 2 State Grid Wuxi Power Supply Company, Wuxi 214000, China

Fund Project:

This work was supported in part by National Natural Science Foundation of China (No. 51677072).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    In order to solve the problem of “abandoned” wind caused by short circuit faults in a wind farm, a wind farm fault locating method based on redundancy parameter estimation is proposed. Using the characteristics of the traveling wave, transmission equations containing the position of the fault point are constructed. Parameter estimation from statistical theory is used to solve the redundant transmission equations formed by multiple measuring points to locate the faults. In addition, the bad data error detection capability of the parameter estimation is used to determine bad data and remove them. This improves locating accuracy. A length coefficient is introduced to solve the error enlargement problem caused by a transmission line sag. The proposed fault locating method can solve the fault branch misjudgment problem caused by the short circuit faults near the data measuring nodes of the wind farm based on the proposed fault interval criterion. It also avoids the requirements to the traveling wave speed of traditional methods, thus its fault location is more accurate. Its effectiveness is verified through simulations in PSCAD/EMTDC, and the results shows that it can be used in the fault locating of hybrid transmission lines.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 24,2019
  • Published: