Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

A convex relaxation approach for power flow problem
Author:
Affiliation:

1 Electrical and Computer Engineering Department, San Diego State University, San Diego, CA 92182, USA 2 Global Energy Interconnection Research Institute North America, San Jose, CA 95134, USA 3 Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX 75275, USA

Fund Project:

This work was supported by Technology Project of State Grid Corporation of China (No. SGRIJSKJ(2016)800).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    A solution to the power flow problem is imperative for many power system applications and several iterative approaches are employed to achieve this objective. However, the chance of finding a solution is dependent on the choice of the initial point because of the non-convex feasibility region of this problem. In this paper, a non-iterative approach that leverages a convexified relaxed power flow problem is employed to verify the existence of a feasible solution. To ensure the scalability of the proposed convex relaxation, the problem is formulated as a sparse semi-definite programming problem. The variables associated with each maximal clique within the network form several positive semidefinite matrices. Perturbation and network reconfiguration schemes are employed to improve the tightness of the proposed convex relaxation in order to validate the existence of a feasible solution for the original non-convex problem. Multiple case studies including an ill-conditioned power flow problem are examined to show the effectiveness of the proposed approach to find a feasible solution.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: November 27,2019
  • Published: