Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Analysis of unbalanced clustered voltage and control strategy of clustered voltage balancing for cascaded H-bridge STATCOM
Author:
Affiliation:

1 School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China 2 College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    To explore the clustered voltage balancing mechanism of the cascaded H-bridge static synchronous compensator (STATCOM), this paper analyzes the causes of unbalanced clustered voltage. The negative-sequence current caused by the compensation of unbalanced reactive power or detection and control errors and the zero-sequence voltage caused by voltage drift of the STATCOM neutral point contribute to unbalanced clustered voltage. On this basis, this paper proposes a control strategy to inject negative-sequence current and zero-sequence voltage simultaneously. The injection of negative-sequence current may cause current asymmetry in the grid, and the zero-sequence injection has a relatively limited balancing ability in the clustered voltages. The proposed control strategy can not only generate a faster balancing response than the traditional zero-sequence voltage injection method, but also lower the extent of current asymmetry compared with the traditional negative-sequence current injection method. Then, the negative-sequence current and zero-sequence voltage injection are further transformed into the dq frame to establish a unified frame. The effectiveness of the proposed control strategy is verified by the simulation and experimental results.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: November 27,2019
  • Published: