Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Automatic Generation Control of Multi-area Power System with Network Constraints and Communication Delays
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Newly proposed power system control methodologies combine economic dispatch (ED) and automatic generation control (AGC) to achieve the steady-state cost-optimal solution under stochastic operation conditions. However, a real power system is subjected to continuous demand disturbance and system constraints due to the input saturation, communication delays and unmeasurable feed-forward load disturbances. Therefore, optimizing the dynamic response under practical conditions is equally important. This paper proposes a state constrained distributed model predictive control (SCDMPC) scheme for the optimal frequency regulation of an interconnected power system under actual operation conditions, which exist due to the governor saturation, generation rate constraints (GRCs), communication delays, and unmeasured feed-forward load disturbances. In addition, it proposes an algorithm to handle the solution infeasibility within the SCDMPC scheme, when the input and state constraints are conflicting. The proposed SCDMPC scheme is then tested with numerical studies on a three-area interconnected network. The results show that the proposed scheme gives better control and cost performance for both steady state and dynamic state in comparison to the traditional distributed model predictive control (MPC) schemes.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 04,2018
  • Revised:
  • Adopted:
  • Online: June 03,2020
  • Published: