Abstract:This study utilizes hot dry rock (HDR) geothermal energy, which is not affected by climate, to address the capacity allocation of photovoltaic (PV)-storage hybrid power systems (HPSs) in frigid plateau regions. The study replaces the conventional electrochemical energy storage system with a stable HDR plant assisted by a flexible thermal storage (TS) plant. An HPS consisting of an HDR plant, a TS plant, and a PV plant is proposed. Game approaches are introduced to establish the game pattern model of the proposed HPS as the players. The annualized income of each player is used as the payoff function. Furthermore, non-cooperative game and cooperative game approaches for capacity allocation are proposed according to the interests of each player in the proposed HPS. Finally, the proposed model and approaches are validated by performing calculations for an HPS in the Gonghe Basin, Qinghai, China as a case study. The results show that in the proposed non-cooperative game approach, the players focus only on the individual payoff and neglect the overall system optimality. The proposed cooperative game approach for capacity allocation improves the flexibility of the HPS as well as the payoff of each game player. Thereby, the HPS can better satisfy the power fluctuation rate requirements of the grid and increase the equivalent firm capacity (EFC) of PV plants, which in turn indirectly guarantees the reliability of grid operation.