Abstract:With the development of smart home energy management technology, prosumers are endowed with increased initiative in peer-to-peer (P2P) transactions, bringing new potential for cost savings. In this study, a novel strategic P2P energy trading framework is proposed considering the impact of network constraints on personal transaction strategies. Prosumers can estimate the allowed power injection before engaging in the P2P energy trading, which is solved in a distributed manner based on the sharing form alternating direction method of multipliers (ADMM) algorithm. To quantify the network usage cost for each prosumer and promote local transactions among prosumers at the same bus, a modified continuous double auction (CDA) matching algorithm is proposed including a transaction fee. An adaptive aggressiveness-based bidding strategy is generated considering the risk of uncertainty in real-time energy delivery amount under the limitations of the distribution network. The proposed strategic P2P energy trading framework is tested with the IEEE 37-bus distribution network and it is effective in creating profits for prosumers and supporting distribution network operations.