Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Hierarchical Frequency-dependent Chance Constrained Unit Commitment for Bulk AC/DC Hybrid Power Systems with Wind Power Generation
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China;2.Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9, Canada;3.Central China Branch of State Grid Corporation of China, Wuhan 430000, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (No. 51777143).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    As the steady-state frequency of an actual power system decreases from its nominal value, the composite load of the system generally responds positively to lower power consumption, and vice versa. It is believed that this load frequency damping (LFD) effect will be artificially enhanced, i.e., sensitivities of loads with respect to operational frequency will increase, in future power systems. Thus, for wind-integrated power systems, this paper proposes a frequency-dependent chance constrained unit commitment (FDCCUC) model that employs the operational frequency as a dispatching variable so that the LFD effect-based load power can act as a supplemental reserve. Because the frequency deviation is safely restricted, this low-cost reserve can be sufficiently exerted to upgrade the wind power accommodation capability of a power system that is normally confined by an inadequate reserve to cope with uncertain wind power forecasting error. Moreover, when the FDCCUC model is applied to a bulk AC/DC hybrid power system consisting of several independently operated regional AC grids interconnected by DC tie-lines, a hierarchically implemented searching algorithm is proposed to protect private scheduling information of the regional AC grids. Simulations on a 2-area 6-bus system and a 3-area 354-bus system verify the effectiveness of the FDCCUC model and hierarchical searching algorithm.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 10,2022
  • Revised:June 15,2022
  • Adopted:
  • Online: July 25,2023
  • Published: