Abstract:To optimize the placement of soft open points (SOPs) in active distribution networks (ADNs), many aspects should be considered, including the adjustment of transmission power, integration of distributed generations (DGs), coordination with conventional control methods, and maintenance of economic costs. To address this multi-objective planning problem, this study proposes a multi-stage coordinated robust optimization model for the SOP allocation in ADNs with photovoltaic (PV). First, two robust technical indices based on a robustness index are proposed to evaluate the operation conditions and robust optimality of the solutions. Second, the proposed coordinated allocation model aims to optimize the total cost, robust voltage offset index, robust utilization index, and voltage collapse proximity index. Third, the optimization methods of the multi- and single-objective models are coordinated to solve the proposed multi-stage problem. Finally, the proposed model is implemented on an IEEE 33-node distribution system to verify its effectiveness. Numerical results show that the proposed index can better reveal voltage offset conditions as well as the SOP utilization, and the proposed model outperforms conventional ones in terms of robustness of placement plans and total cost.