Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Distributed Stochastic Scheduling of Massive Backup Batteries in Cellular Networks for Operational Reserve and Frequency Support Ancillary Services
Author:
Affiliation:

State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Fund Project:

This work was supported in part by the National Nature Science Foundation of China (No. 52177088).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Base station (BS) backup batteries (BSBBs), with their dispatchable capacity, are potential demand-side resources for future power systems. To enhance the power supply reliability and post-contingency frequency security of power systems, we propose a two-stage stochastic unit commitment (UC) model incorporating operational reserve and post-contingency frequency support provisions from massive BSBBs in cellular networks, in which the minimum backup energy demand is considered to ensure BS power supply reliability. The energy, operational reserve, and frequency support ancillary services are co-optimized to handle the power balance and post-contingency frequency security in both forecasted and stochastic variable renewable energy (VRE) scenarios. Furthermore, we propose a dedicated and scalable distributed optimization framework to enable autonomous optimizations for both dispatching center (DC) and BSBBs. The BS model parameters are stored and processed locally, while only the values of BS decision variables are required to upload to DC under the proposed distributed optimization framework, which safeguards BS privacy effectively. Case studies on a modified IEEE 14-bus system demonstrate the effectiveness of the proposed method in promoting VRE accommodation, ensuring post-contingency frequency security, enhancing operational economics, and fully utilizing BSBBs energy and power capacity. Besides, the proposed distributed optimization framework has been validated to converge to a feasible solution with near-optimal performance within limited iterations. Additionally, numerical results on the Guangdong 500 kV provincial power system in China verify the scalability and practicality of the proposed distributed optimization framework.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 16,2023
  • Revised:August 16,2023
  • Adopted:
  • Online: March 27,2024
  • Published: