Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Sample Generation for Security Region Boundary Identification Based on Topological Features of Historical Operation Data
Author:
Affiliation:

1.College of Energy and Electrical Engineering, Hohai University, Nanjing, China;2.NARI Group Corporation, Nanjing, China;3.State Grid Electric Power Research Institute, Nanjing, China

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Since the scale and uncertainty of the power system have been rapidly increasing, the computation efficiency of constructing the security region boundary (SRB) has become a prominent problem. Based on the topological features of historical operation data, a sample generation method for SRB identification is proposed to generate evenly distributed samples, which cover dominant security modes. The boundary sample pair (BSP) composed of a secure sample and an unsecure sample is defined to describe the feature of SRB. The resolution, sampling, and span indices are designed to evaluate the coverage degree of existing BSPs on the SRB and generate samples closer to the SRB. Based on the feature of flat distribution of BSPs over the SRB, the principal component analysis (PCA) is adopted to calculate the tangent vectors and normal vectors of SRB. Then, the sample distribution can be expanded along the tangent vector and corrected along the normal vector to cover different security modes. Finally, a sample set is randomly generated based on the IEEE standard example and another new sample set is generated by the proposed method. The results indicate that the new sample set is closer to the SRB and covers different security modes with a small calculation time cost.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 17,2023
  • Revised:October 07,2023
  • Adopted:
  • Online: July 30,2024
  • Published: