Abstract:Decarbonization in the power sector is one of the critical factors in achieving carbon neutrality, and the top-level design needs to be carried out from the perspective of power planning. A multi-stage provincial power expansion planning (PPEP) model is proposed to simulate the power expansion planning at different stages of the power systems rich in renewable energy generation. This model covers 16 types of power supply, considering macro-policy demands and micro-operation constraints. The stand-alone capacity aggregation model for coal-based units within the PPEP model allows for accurate construction and retirement with different stand-alone capacities. Moreover, the soft dynamic time warping (soft-DTW) based K-medoids technique is adopted to generate typical scenarios for balancing the model accuracy and solution efficiency. Additionally, a multi-market trading equilibrium (MMTE) mechanism is proposed to address the differences in the levelized cost of energy between the coal-based and renewable-based units by participating in energy and ancillary service markets. Since the coal-based units take on the task of providing ancillary services from renewable-based units in the ancillary service market, the MMTE mechanism can effectively equalize the profits of both by having renewable-based units purchase ancillary services from coal-based units and pay for them, thus improving the motivation of coal-based units. A case study in Xinjiang province, China, verifies the effectiveness of the planning results of the PPEP model and the profit equilibrium realization of the MMTE mechanism.