Abstract:Non-intrusive load monitoring (NILM) can provide appliance-level power consumption information without deploying submeters for each load, in which load event detection is one of the crucial steps. However, the existing event detection methods do not efficiently detect both the starting time of an event (STE) and the ending time of an event (ETE), and their adaptability to scenarios with different sampling rates is limited. To address these problems, in this paper, an event detection method based on robust random cut forest (RRCF) algorithm, which is an unsupervised learning method for detecting anomalous data points within a dataset, is proposed. First, the mean-pooling preprocessing is applied to the aggregated load power series with a high sampling rate to minimize fluctuations. Then, the power differential series is obtained, and the anomaly score of each data point is calculated using the RRCF algorithm for preliminary detection. If an event has been preliminarily detected, misidentification caused by fluctuation will be further eliminated by using an adaptive power difference threshold approach. Finally, linear fitting is used to finely and accurately adjust the STE and ETE. The proposed method does not require any pretraining of the detection model and has been validated with both the BLUED dataset (with high and low sampling rates) and the REDD dataset (with low sampling rate). The experimental results demonstrate that the proposed method not only meets real-time requirements, but also exhibits strong adaptability across multiple scenarios. The precision is greater than 92% in distinct sampling rate scenarios, and the F1 score of phase B on the BLUED dataset reaches 94% in the scenario with a high sampling rate. These results indicate that the proposed method outperforms other state-of-the-art methods.